
Introduction

Ecological and environmental issues have gradually 
drawn attention from all countries around the world 
[1]. Accordingly, the concept of “clear waters and lush 
mountains are mountains of gold and silver” has been 
put forward by the Chinese government as a guideline 
for environmental governance. In the process of 
environmental governance, the design of environmental 
assessment [2-6] is particularly important in order to 

effectively evaluate the efficiency of environmental 
governance. Environmental assessment encourages 
the consideration of environmental factors in planning 
and decision-making, ultimately leading to more 
environmentally compatible production activities. For 
example, in order to ensure the rationality of location 
and layout of environmental construction projects, so 
as to enable the efficient operation of the environmental 
supply chain [7] and to guide the design of 
environmental protection measures, it is very important 
to carry out scientific assessment of environmental 
construction projects. Only in this way can the purpose 
of strengthening environmental management be 
achieved. To some extent, environmental assessment 
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is actually a multi-attribute decision-making (MADM) 
problem [8-9]. The location schemes of environmental 
construction projects to be planned are the alternatives, 
the factors that affect environmental governance are 
multiple attributes, and the staff of environmental 
management departments are decision makers. 
Therefore, this paper focuses on the problem of multi-
attribute decision-making in environmental assessment.

The decision method that evaluates multiple 
attributes to obtain the ranking of alternatives is 
called MADM [10-11]. Decision-makers evaluate each 
attribute in MADM, and the weights of attributes are 
obtained. In the actual evaluation process, decision-
makers may express their opinions dishonestly in 
order to obtain more individual benefits, which is 
called strategic manipulation or non-cooperative 
behavior [12]. Nevertheless, the strategic manipulation 
or the non-cooperative behavior is rarely discussed 
in previous methods such as AHP model, TOPSIS 
model, VIKOR model, BWM model and FMEA model  
[13-17]. The strategic weight manipulation model 
can help decision-makers achieve the purpose of 
manipulating the alternative ranking [18-19]. However, 
it is not easy to manipulate the ranking of the 
alternative. A certain compensation cost needed to be 
paid by decision makers. Generally, decision makers 
are expected to achieve their goal of manipulating the 
alternatives ranking by minimizing the compensation 
cost. Decision-making in real life tends to be more 
and more complex and uncertain [20-26], and the 
interference of uncertain factors on decision-making 
can’t be ignored. Consequently, the compensation cost 
of the decision makers is not a fixed value. And the 
decision makers can’t measure the compensation cost 
with a specific value, which often fluctuates within a 
certain range. The uncertainty of compensation cost 
is still rarely considered in previous studies. In order 
to cope with the fluctuation of compensation cost, the 
robust optimization method is introduced for modeling 
in this paper.

Robust optimization fully takes into account the 
uncertainty in the modeling process and reduces the 
decision risk caused by uncertain factors. And the 
variable is described in the form of set. In MADM, 
stochastic programming [27-28] and fuzzy programming 
[29-30] are commonly utilized to cope with the 
uncertainty parameters. However, the probability 
distribution function for random parameters needed 
to be known in advance in stochastic programming. 
Fuzzy programming requires the fuzzy membership 
function of parameters to be determined in advance. 
For some subjective and objective reasons, probability 
distribution function and fuzzy membership function 
are not easy to obtain completely. Compared with these 
two methods, robust optimization does not require the 
probability distribution of uncertain parameters and the 
fuzzy membership function of uncertain parameters. 
The key of robust optimization is to select an 
appropriate uncertainty set to characterize the random 

parameters and meet the realization of all constraints 
in the worst case [31-34]. Robust optimization has 
been widely applied in group decision-making [35-
38], facility location [39-42], portfolio management 
[43-45] and other fields. However, few literatures have 
applied robust optimization method to strategic weight 
manipulation for environmental assessment. Hence, in 
order to investigate the construction of environmental 
assessment projects under uncertain circumstances, we 
provide two kinds of uncertainty sets to describe the 
uncertain compensation cost more accurately, so as to 
eliminate the serious influence of uncertainty factors 
as much as possible. We build a robust optimization 
model to mathematize the strategic weight manipulation 
problem in environmental assessment, which can 
significantly improve the robustness and reduce the risk 
of the model.

The main contributions and the originality of 
this study can be summarized as follows: Firstly, the 
uncertainty of compensation cost in real life is taken 
into account, which enriches the uncertainty factors in 
the model and reduces decision risks. We utilize robust 
optimization method to deal with cost uncertainty and 
supplement the research gap in this area. Secondly, this 
paper describes the disturbance of compensation cost 
by introducing budgeted uncertainty set and polyhedron 
uncertainty set, which can describe the uncertainty of 
unit compensation cost more accurately. We construct 
the robust optimization model and equivalently 
transform the robust model into a convex optimization 
problem that can be easily solved in polynomial time 
by using duality theory. Finally, through a simulation 
application of environmental assessment, we show 
that our proposed method is more practical than 
deterministic optimization method. We also discuss 
some parameters and analyze the impact of their 
changes on the model.

The rest of this paper is arranged as follows: Section 
2 proposes material and methods; Section 3 are results 
and discussion of case study; Section 4 concludes and 
presents future research directions. 

Material and Methods  

Data

The material used in this paper is the data for 
simulation. Industrial development and population 
growth have led to a sharp increase in global waste 
production. Waste incineration can obtain a certain 
amount of energy while effectively reducing the amount 
of waste [46]. In the environmental construction project 
location of municipal solid waste oxy-fuel incineration 
power plant, we comprehensively consider the five 
indicators {a1, a2, a3, a4, a5} that including economic 
input, environmental improvement, financial returns, 
social benefits and technical support. And ten location 
alternatives {x1, x2, ..., x9, x10} to be planned. 
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For benefit indicators, the standardized process is 
shown in Eq. (1).

                  (1)

For cost indicators, the standardized process is 
shown in Eq. (2).

                 (2)

where sij indicates the attributes value of an alternative 
xi ∈ {x1, x2, ..., xm} with respect to ai ∈ {a1, a2, ..., an}.

Table 1 shows the initial data of different indicators 
under different alternatives. And Table 2 shows the 
standardized data normalized by Eq. (1) and Eq. (2). 
Besides, a1 and a5 are cost indicators. a2, a3 and a4 are 
benefit indicators.

Methods

The ranking order is determined by comparing 
the score D(xi) of the alternative xi, which ranks first 
with the higher value. When comparing the ranking 
of alternative xi, (i ∈ I = {1, 2, ..., m}) and alternative 
xl, (l ∈ I = {1, 2, ..., m}), in order to calculate the ranking 
of alternative xi, we only need to find out the number of 
alternatives that meet the cardinality set. H = {xl|D(xi) 
>D(xl)}, (i≠l) Suppose p(xl) represents the ranking of the 
alternative xi, then p(xl) = |H| + 1.

In multi-attribute decision-making, the attributes 
weight will be manipulated strategically by decision-
makers to realize their interest. Assuming that the 
manipulator wants to change the ranking of alternative 
xl, we define the expected ranking of manipulator 
is p*(xl), it is obvious that p*(xl) = p(xl). Suppose 
the attribute weight vector before manipulation is  

ω0 = (ω1
0, ..., ωj

0 ..., ωn
0)T, ( j ∈ J = {1, 2, ..., n}), the weight 

vector after manipulation is ω = (ω1, ..., ωj ..., ωn)
T. 

The attribute weight deviation in manipulation process 
is dj = |ωj

0 – ωj|. Assuming that the unit compensation 
cost is cj, the total cost paid by the decision-makers to 
manipulate the attribute weight is cTd. Moreover, an 
infinite constant M and a 0-1 variable yil are introduced 
in this paper.

The original nominal model we built is as follows:
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(3)

The objective is to minimize the cost to be 
compensated by the decision makers to change the 
weight of environmental factors. The specific constraints 
are as follows. The first constraint and the second 
constraint represent the comprehensive evaluation score 
comparison between the location alternative xi, (i ∈ I) 
and xl, (l ∈ I). We utilize an infinite constant M and a 
0-1 variable yil, when yil = 1, we have D(xi)>D(xl). On 
the contrary, when yil = 0, then  D(xi)≤D(xl). The third 
constraint represents the expected ranking of alternative 
xl. The fourth constraint indicates the attribute aj 
weight deviation in manipulation process is less than 
or equal to dj. The fifth constraint indicates that the 
sum of attributes weight is 1. The sixth constraint is 

Table 1. Initial data of numerical simulation.

Alternatives a1 a2 a3 a4 a5

x1 699 92 15000 85 79122

x2 571 74 12000 73 26823

x3 285 79 13500 80 32663

x4 57 51 9000 71 8148

x5 1722 39 7000 62 5060

x6 1824 61 10000 79 12500

x7 579 98 16500 98 85259

x8 1755 88 18000 76 142000

x9 655 80 14000 91 42443

x10 800 82 13000 84 23426

Table 2. Standardized data of numerical simulation.

Alternatives a1 a2 a3 a4 a5

x1 0.6367 0.8983 0.7273 0.6389 0.4592

x2 0.7091 0.5932 0.4545 0.3056 0.8411

x3 0.8710 0.678 0.5909 0.5000 0.7984

x4 1 0.2034 0.1818 0.2500 0.9774

x5 0.0577 0 0 0 1

x6 0 0.3729 0.2727 0.4722 0.9457

x7 0.7046 1 0.8636 1 0.4143

x8 0.0390 0.8305 1 0.3889 0

x9 0.6616 0.6949 0.6364 0.8056 0.727

x10 0.5795 0.7288 0.5455 0.6111 0.8659
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the 0-1 variable. The seventh constraint represents that 
the weight of the attribute aj is greater than 0 and not 
greater than 1.

However, model (3) does not take into account the 
uncertainty of compensation cost, which is not robust. 
Due to the fluctuation of compensation cost in the 
actual situation, the fluctuation is often accompanied 
by the decision risk. The decision risk cannot be 
completely eliminated. Accordingly, we introduce 
budgeted uncertainty set and polyhedron uncertainty set 
to characterize the disturbance of compensation cost.

The dynamics of model (3) are investigated and 
the main results are listed as Proposition 2.1 and 
Proposition 2.2 as follows.

Proposition 2.1 Inspired by the method proposed 
by Bertsimas and Zhang et al. [47-48], in order to 
further reduce the uncertainty of compensation cost 
in modeling and improve the computational efficiency, 
we introduce uncertain budget to reduce the range of 
uncertain scenario set and optimize the computational 
results. Simultaneously, we do not need the probability 
distribution of uncertain parameters, and the decision 
does not depend on the historical data [49-50]. 
Therefore, the above model (3) is transformed into a 
robust counterpart model:

  (4)

where z and qg are the dual variables in the dual 
problem.

Proof 2.1 According to the definition of budgeted 
uncertainty set, it is assumed that the probability 
distribution of the unit compensation cost is unknown, 
but the upper and lower bounds of the value interval 
are known. Here, c̠  is used to denote the lower bound 
of the uncertain parameter c. The length of the 
compensation cost change interval is denoted by c �, 
and the compensation cost interval can be expressed as  

[c̠ , c̠  + c �]. Then, the set of all possible scenarios for 
the compensation cost can be presented by {c|c̠ ≤c≤c̠  + 
c �}.The optimal solution for robust optimization is the 
optimal objective function value that is still feasible 
under all uncertainties. However, if all uncertain 
parameters are considered as the worst case, the solution 
would be too conservative. Here, εg is utilized to denote 
the deviation agree between the actual compensation 
cost and the lower bound (i.e., Eq. (5)):

                             (5)

Obviously, εg ∈ [0,1].
Denote the uncertainty budget by Г, then we have
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where Г belongs to [0,G], indicates the number 
of uncertain parameters in the planning period of 
environmental construction project (i.e., Eq. (6)). If Г 
is integer, it is interpreted as the maximum number of 
parameters that can deviate from their nominal values. 
All uncertain parameters are taken to their worst case if 
and only if Г is equal to zero (i.e., the unit compensation 
cost is the lower bound). Similarly, if and only if Г is the 
maximum value, all uncertainty parameters are likely to 
take their best case (i.e., the unit compensation cost is 
the upper bound). Therefore, the size of the uncertainty 
scenario set can be adjusted to strike a balance between 
optimality and robustness by changing the value of the 
uncertainty budget.

Based on the above considerations, the compensation 
cost in model (3) can be rewritten as the following 
model:
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Proof 2.2 According to Zpolyhedron = {ζ∈RG:||ζ||∞≤1, 
||ζ||1≤Г}, the cone representation becomes Z = ζ∈RG: P1ζ 
+ p1∈K1, P2ζ + p2∈K2}, where

 –
1

11 1[ ;0],  [0 ;1]  {[ ; ] : }G
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whence K*

2 = K2.
Setting y1 = {z; τ1], y

2 = {qt; τ2], with one-dimensional 
τ and L-dimensional z, qg, we have the following 
systems of constraints:

τ1, τ2, z, qg, d are variables among them. We can eliminate 
the τ variables, then we can obtain a representation of 

 and 
Zpolyhedron = {ζ∈RG:||ζ||∞≤1, ||ζ||1≤Г} by the following 
system of constraints in variables z, qg, d:

Therefore, the model based on polyhedron 
uncertainty set is proved in detail. 

Results and Discussion

The Results of Numerical Simulation

We choose the alternative x5 as an example to 
research. We let the ranking from 1 to 10, and let  
Г = 1. Input data into model (3), the uncertain factors 
in real life are not taken into account in this case.  
We can observe that the compensation cost decrease 
as the ranking of x5 goes down (see Fig. 1). When 
the ranking of x5 is 10, the decision maker does not 
need to pay compensation cost, which indicates  
that the initial ranking of the alternative x5 is equal 
to 10. As the ranking of alternative x5 rises, the 
compensation cost for decision makers become higher, 
which means that the ranking become more difficult to 
manipulate.

On the other hand, we strategically set the ranking 
of alternatives x1, x2, x5 and x8 in the same way. 
The corresponding results are shown in Table 3.

The robust model (7) cannot be solved directly. 
Since the uncertain parameter is included in the 
objective function, the scenario where the uncertain 
parameter maximizes the objective function is the 
worst-case scenario. We want to find an optimal solution 
that maximizes the objective function of the worst-case 
scenario. Consider the following linear programming:

 (8)

Obviously, the strong dual theory holds in above 
model (8). The primal problem and the dual problem can 
obtain the same objective function values. Therefore, 
the robust model can be reformulated based on the 
strong dual theory, and we can have the equivalent 
model (4).

Therefore, the model based on budgeted uncertainty 
set is proved 2.1. 

Proposition 2.2 If Z is a polyhedron uncertainty set 
which is defined as Zpolyhedron = {ζ∈RG:||ζ||∞≤1, ||ζ||1≤Г}, 
where Г is an uncertain level parameter, the robust 
optimization form of model (3) can be represented as
 

(9)
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ranking of alternative x1 is 1, none of the three models 
has a solution, which indicates that the ranking of the 
alternative can’t be manipulated arbitrarily.

Discussion of Data Results

Comparison Analysis

Next, we still take the alternative x5 as an example, 
and let the ranking from 1 to 10, while Г = 1. The 
results obtained by deterministic model (3) and robust 
optimization model (4) are compared (see Fig. 2). 
It can be shown that the robust optimization model 
with budgeted uncertainty set can better reflect the 
uncertainty factors faced by decision makers in 
actual decision-making activities and reduce the risk 
of decision making without increasing much cost. 
In the process of location alternatives planning of 
environmental construction projects, staff should fully 
consider the impact of environmental uncertainties, 
so as to more effectively evaluate the efficiency of 
environmental governance and finally achieve more 
environmentally compatible human activities.

In addition, we also compare the results obtained 
from the polyhedron uncertainty set model (9) and 
the budgeted uncertainty set model (4) (see Fig. 3). 
The cost required by the polyhedron uncertainty set 
model is too high, although the worst-case solution is 
optimized, but the decision result is too conservative. 
In contrast, the uncertainty set of budget reduces 
the scope of the uncertain scenario set. The decision 
makers can achieve the purpose of manipulating the 
ranking of environmental construction project location 

As can be seen from Table 3, the minimum 
compensation cost required by the budgeted uncertainty 
set model and the polyhedron uncertainty set model 
is higher than that required by the original nominal 
model. Because our proposed method takes into account 
the uncertainty existing in real life and optimizes the 
objective function in the worst case. Moreover, the 
weight allocation results of the budgeted uncertainty set 
model are consistent with those of the nominal model. 
However, the number of attributes weight changes of the 
polyhedron uncertainty set model is large, indicating 
that the effect of the budgeted uncertainty set model 
is relatively stable. In particular, when the expected 

Fig. 1. Minimum cost of different rankings for alternative x5

Table 3. The results of manipulating particular alternatives under different models.

Alternatives p* (x1) Model Mc ω
x1 2 (3) 0.8409 (0.2, 0.2701, 0.2, 0.2, 0.1299)

(4) 0.8760 (0.2, 0.2701, 0.2, 0.2, 0.1299)

(9) 1.4045 (0.2, 0.2453, 0.2453, 0.1547, 0.1547)

x2 4 (3) 0.8795  (0.2637, 0.2, 0.2, 0.1184, 0.2179)

(4) 0.9203  (0.2637, 0.2, 0.2, 0.1184, 0.2179)

(9) 1.8893 (0.2609, 0.1391, 0.2, 0.1391, 0.2609)

x5 5 (3) 5.3190 (0.1376, 0, 0.1675, 0, 0.6949)

(4) 5.5664 (0.1376, 0, 0.1675, 0, 0.6949)

(9) 15.1490 (0.1376, 0, 0, 0, 0.6887)

x8 9 (3) 0.2563 (0.2, 0.2, 0.1767, 0.2, 0.2233)

(4) 0.2679 (0.2, 0.2, 0.1767, 0.2, 0.2233)

(9) 0.5458 (0.2, 0.1824, 0.1824, 0.2176, 0.2176)

x1 1 (3) No solution No solution

(4) No solution No solution

(9) No solution No solution
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alternatives with less uncertain cost, while the risk of 
decision making is reduced and the calculation result is 
optimized.

Sensitivity Analysis

The impact of uncertainty level on the compensation 
cost required by the decision makers to manipulate the 
target alternative is worth investigating. At different 
levels of uncertainty, the decision makers may have 
different compensation costs to manipulate the ranking 
of alternatives. Next, we research the impact of 
uncertainty level on the ranking of different alternatives. 
We take alternatives x4, x7 and x10 as examples, and 
we make the ranking of the three alternatives are equal  
to 3. We investigate the influence of uncertainty level 
parameters Г on the minimum compensation cost in 
two robust optimization models. Suppose Г changes 

from 1 to 6. The data obtained by solving model (4) and 
model (9) are shown in Table 4 and Table 5.

To facilitate observation, we visualize the data in 
the above table as Fig. 4 and Fig. 5.

Fig. 4 and Fig. 5 show that the uncertainty level 
parameter Г has no influence on the results of model 
(4), which indicates that the budgeted uncertainty 
set narrows the range of uncertain scenario set. The 
budgeted uncertainty set significantly reduces the 
decision risk brought by uncertain factors, and it 
also optimizes the calculation results. As for model 
(9), when the uncertainty level Г is from 1 to 3, the 
minimum compensation cost for the decision makers 
increases slowly with the uncertainty level Г increase, 
which means that the difficulty of manipulating the 
ranking of alternatives increases slowly. However, the 

Fig. 2. Minimum cost of different rankings for two models. Fig. 3. Minimum cost of different rankings for two uncertain 
models.

Alternatives p* (x1)
Different uncertain levels

Г = 1 Г = 2 Г = 3 Г = 4 Г = 5 Г = 6

x4 3 3.5314 3.5998 3.6567 3.6567 3.6567 3.6567

x7 3 3.1415 3.2023 3.2529 3.2529 3.2529 3.2529

x10 3 1.2929 1.3179 1.3388 1.3388 1.3388 1.3388

Table 4. Minimum compensation cost under different levels Г of model (4).

Table 5. Minimum compensation cost under different levels Г of model (9).

Alternatives p* (x1)
Different uncertain levels

Г = 1 Г = 2 Г = 3 Г = 4 Г = 5 Г = 6

x4 3 2.5386 2.5386 2.5386 2.5386 2.5386 2.5386

x7 3 1.6283 1.6283 1.6283 1.6283 1.6283 1.6283

x10 3 0.5689 0.5689 0.5689 0.5689 0.5689 0.5689
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weight manipulation cost result of model (9) becomes a 
constant when Г≥3, which means that the solution result 
of model (9) reaches convergence with the increase of 
uncertainty level. Model (9) can also fully take into 
account the uncertainty factors in decision making and 
reduce the risks faced by decision makers.

Conclusions

In this study, the uncertainty in the unit compensation 
costs of decision makers is taken into account. In 
order to describe the uncertainty characteristics of 
unit compensation cost more accurately, we construct 
budgeted uncertainty set and polyhedron uncertainty 
set. Through a robust optimization approach, we 
build a robust strategic weight manipulation model  

to reduce the risks faced by decision makers in uncertain 
circumstances. Moreover, the case of environmental 
assessment shows that the robust optimization model 
is more effective than original model. Some interesting 
conclusions can be drawn from the case study:

(1) The robust optimization model takes into 
account the uncertainty of compensation costs in 
the strategic weight manipulation. The robust model 
which reduces the risk of decision makers and achieves 
satisfactory results even in the worst case. However, the 
solution result of the robust optimization model is more 
conservative than that of the original model.

(2) The comparison between Fig. 2 and Fig. 3 shows 
that the budgeted uncertainty set robust optimization 
model can better reflect the actual uncertainty factors 
without increasing much cost. The budgeted uncertainty 
model reduces the range of uncertain scenario set, 
it reduces the uncertain risk in decision making and 
optimizes the calculation result. In other words, the 
budgeted uncertainty set is less conservative than the 
polyhedron uncertainty set.

(3) According to the data results in Table 3, the 
ranking of alternatives can’t be manipulated arbitrarily. 
In the strategic weight manipulation, the decision 
makers can’t arbitrarily interfere with the decision-
making process, which also shows that the strategic 
weight manipulation model is practical and has a certain 
scientific nature.

(4) The changes of uncertain parameters of budgeted 
uncertainty set will not affect the model. However, in 
the polyhedron uncertainty set, with the increase of 
uncertainty level parameters, the cost of the model 
increases slowly and then tends to converge. Therefore, 
the two uncertainty models in this paper can better 
reflect the uncertainty factors in actual decision-
making.

To sum up, after considering the uncertainty 
of compensation cost, a robust strategic weight 
manipulation model is proposed in this paper to 
reduce the risk in decision-making. In an application 
of environmental assessment, our method can 
effectively evaluate the rationality of location and 
layout of environmental construction projects, so as 
to better guide the design of environmental protection 
measures. However, the paper has some limitations. 
In future research, we can make full use of historical 
data to further reduce the conservatism of the model, 
that is, we can introduce the distributionally robust 
optimization theory to deal with the cost uncertainty. 
In addition, the impact of big data on decision-
making is becoming more and more valuable [51].  
In the future, we can investigate the cost changes in 
strategic weight manipulation under the background 
of big data. Machine learning plays an increasingly 
important role in decision-making [52]. In the 
future research, we can consider machine learning  
methods to determine the weight of attributes, which 
will make the calculation of initial weight more 
scientific.

Fig. 5. The tendency of cost under different uncertain levels Г 
for model (9).

Fig. 4. The tendency of cost under different uncertain levels Г 
for model (4).



Robust Strategic Weight Manipulation Model ... 1965

Acknowledgments 

This research was supported by National Office for 
Philosophy and Social Science (NO. 21ZDA105) and 
Shanghai Office of Philosophy and Social Science (NO. 
2020BGL010). This research was also supported by the 
National Natural Science Foundation of China (No. 
72171123, 72171149). We are very grateful to the editors 
and reviewers for their careful reading and constructive 
suggestions.

Declaration of Competing Interest 

The authors declare that they have no known 
competing financial interests or personal relationships 
that could have appeared to influence the work reported 
in this paper. 

References

1. ZHANG J.Y., ZHANG L.Y., ZHANG Y., WU C.L. 
Research on the Coordination between Economy and 
Human Ecological Settlement Environment, Pol J Environ 
Stud, 31 (1), 427, 2022.

2. SHAMMI M., HALDER P.K., TAREQ S.M., RAHMAN 
M.M., KABIR Z. From environmental impact assessment 
to strategic environmental assessment in Bangladesh: 
Evolution, perspective, governance and challenges, 
Environ Impact Assess, 97, 106890, 2022.

3. GONZÁLEZ A., THERIVEL R. Raising the game in 
environmental assessment: Insights from tiering practice, 
Environ Impact Assess, 92, 106695, 2022.

4. WANG K., LIU H., WANG X.P., WANG L.L. 
Environmental Impact Assessment of Multi-Pollutant 
Emission in Cotton Fabric Production, Pol J Environ Stud, 
30 (5), 4761, 2021.

5. FILIPPOVOVÁ J., POHANKA T. Environmental 
Assessment of Central European Floodplain Forests: 
A Case Study from the Morava River Alluvium, Pol J 
Environ Stud, 28 (6), 4511, 2019.

6. LUO Y.N., SUN F.Q., YAN X.L., SUN T. Research on 
Comprehensive Assessment of Effect on Environmental 
Pollution Collaborative treatment: Taking China’s Yangtze 
River Delta Urban Agglomeration as an Example, Pol J 
Environ Stud, 31 (6), 2022.

7. QU S.J., SHU L.L., YAO J.Y. Optimal pricing and  
service level in supply chain considering misreport 
behavior and fairness concern, Comput Ind Eng, 174, 
108759, 2022.

8. LIANG W., GOH M., WANG Y.M. Multi-attribute group 
decision making method based on prospect theory under 
hesitant probabilistic fuzzy environment, Comput Ind Eng, 
149, 106804, 2020.

9. ZHOU M., CHEN Y.W., LIU X.B., CHENG B.Y., YANG 
J.B. Weight assignment method for multiple attribute 
decision making with dissimilarity and conflict of belief 
distributions, Comput Ind Eng, 147, 106648, 2020.

10. WU S.Q., WU M., DONG Y.C., LIANG H.M., ZHAO 
S.H. The 2-rank additive model with axiomatic design in 
multiple attribute decision making, Eur J Oper Res, 287 
(2), 536, 2020.

11. DURBACH I. N., STEWART T. J. Modeling uncertainty 
in multi-criteria decision analysis, Eur J Oper Res, 223 (1), 
1, 2012.

12. DONG Y.C., LIU Y.T., LIANG H.M., CHICLANA F., 
HERRERA VIEDMA E. Strategic weight manipulation  
in multiple attribute decision making, Omega, 75, 154, 
2018.

13. LEE H.C., CHANG C.T. Comparative analysis of MCDM 
methods for ranking renewable energy sources in Taiwan, 
Renew Sust Energ Rev, 92, 883, 2018.

14. REZAEI J. Best-worst multi-criteria decision-making 
method, Omega, 53, 49, 2015.

15. LIU Z., MOU X., LIU H.C., ZHANG L. Failure Mode 
and Effect Analysis Based on Probabilistic Linguistic 
Preference Relations and Gained and Lost Dominance 
Score Method, IEEE T Cybernetics, 1, 2021.

16. ERDIN C., ÇAĞLAR M. Rural Fire Risk Assessment 
in GIS Environment Using Fuzzy Logic and the AHP 
Approaches, Pol J Environ Stud, 30 (6), 4971, 2021.

17. LI Y.Y., XIAO M.H., ZHU G.X., LI Y.B. Evaluation of 
Irrigation-Drainage Scheme under Water Level Regulation 
Based on TOPSIS in Southern China, Pol J Environ Stud, 
30 (1), 235, 2021.

18. JIN X.W., JI Y., QU S.J. Minimum cost strategic weight 
assignment for multiple attribute decision-making problem 
using robust optimization approach, Comput Appl Math, 
40 (6), 193, 2021.

19. JI Y., JIN X.W., XU Z.S., QU S.J. A mixed 0-1 
programming approach for multiple attribute strategic 
weight manipulation based on uncertainty theory, J Intell 
Fuzzy Syst, 41, 6739, 2021.

20. LU Y.L., XU Y.J., HERRERA-VIEDMA E., HAN Y.F. 
Consensus of large-scale group decision making in 
social network: the minimum cost model based on robust 
optimization, Inf Sci, 547, 910, 2021.

21. QU S.J., LI Y.M., JI Y. The mixed integer robust 
maximum expert consensus models for large-scale GDM 
under uncertainty circumstances, Appl Soft Comput, 107, 
107369, 2021.

22. LIANG X., GUO J., LIU P.D. A large-scale group decision-
making model with no consensus threshold based on social 
network analysis, Inf Sci, 612, 361, 2022.

23. MARDANI A., ZAVADSKAS E.K., FUJITA H., KÖPPEN 
M. Big data-driven large-scale group decision-making 
under uncertainty  (BiGDM-U), Appl Intell, 52 (12), 
13341, 2022.

24. WAN Q.F., XU X.H., CHEN X.H., ZHUANG J. A 
Two-Stage Optimization Model for Large-Scale Group 
Decision-Making in Disaster Management: Minimizing 
Group Conflict and Maximizing Individual Satisfaction, 
Group Decis Negot, 29 (5), 901, 2020.

25. LIANG Y.Y., JU Y.B., QIN J.D., PEDRYCZ W., DONG 
P.W. Minimum cost consensus model with loss aversion 
based large-scale group decision making, J Oper Res Soc, 
1, 2022.

26. TANG M., LIAO H.C., FUJITA H. Delegation Mechanism-
Based Large-Scale Group Decision Making With 
Heterogeneous Experts and Overlapping Communities, 
IEEE T Syst Man Cy S, 52 (6), 3542, 2022.

27. JI Y., LI H.H., ZHANG H.J. Risk-Averse Two-Stage 
Stochastic Minimum Cost Consensus Models with 
Asymmetric Adjustment Cost, Group Decis Negot, 31 (2), 
261, 2022.

28. LEE J., BAE S., KIM W.C., LEE Y. Value Function 
Gradient Learning for Large-Scale Multistage Stochastic 
Programming Problems, Eur J Oper Res, In Press, 2022.



Zuo L., et al.1966

29. MACIEL L., BALLINI R., GOMIDE F., YAGER R. 
Forecasting cryptocurrencies prices using data driven level 
set fuzzy models, Expert Syst Appl, 210, 118387, 2022.

30. ZHENG Y.H., XU Z.S., WANG X.X. The Fusion of Deep 
Learning and Fuzzy Systems: A State-of-the-Art Survey, 
IEEE T Fuzzy Syst, 30 (8), 2783, 2022

31. BEN-TAL A., NEMIROVSKI A. Robust solutions of 
uncertain linear programs, Oper Res Lett, 25 (1), 1, 1999.

32. BEN-TAL A., NEMIROVSKI A. Robust Convex 
Optimization, Math Oper Res, 23 (4), 769, 1998.

33. SOYSTER A.L. Technical Note – Convex Programming 
with Set-Inclusive Constraints and Applications to Inexact 
Linear Programming, Oper Res, 21 (5), 1154, 1973.

34. BERTSIMAS D., SIM M. Robust discrete optimization 
and network flows, Math Program, 98 (1), 49, 2003.

35. YANG Y., LIN J., FU Y.L., HUANG G.Q., HUANG W.H., 
FANG C. Tolerance framework for robust group multiple 
criteria decision making, Expert Syst Appl, 208, 118208, 
2022.

36. ZHANG H.J., JI Y., YU R., QU S.J., DAI Z.X. The Robust 
Cost Consensus Model with Interval-Valued Opinion and 
Uncertain Cost in Group Decision-Making, Int J Fuzzy 
Syst, 24 (1), 635, 2022.

37. BASHIR Z., ALI J., RASHID T. Consensus-based 
robust decision making methods under a novel study of 
probabilistic uncertain linguistic information and their 
application in Forex investment, Artif  Intell Rev, 54 (3), 
2091, 2021.

38. QU S.J., WEI J.P., WANG Q.H., LI Y.M., JIN X.W., 
CHAIB L. Robust minimum cost consensus models 
with various individual preference scenarios under unit 
adjustment cost uncertainty, Inf Fusion, 89, 510, 2023.

39. JI Y., DU J.H., HAN X.Y., WU X.Q., HUANG R.P., WANG 
S.L., LIU Z.M. A mixed integer robust programming 
model for two-echelon inventory routing problem of 
perishable products, Physica A, 548, 124481, 2020.

40. EGRI P., DÁVID B., KIS T., KRÉSZ M. Robust facility 
location in reverse logistics, Ann Oper  Res, 2021.

41. POURVAZIRI H., SALIMPOUR S., AKHAVAN NIAKI 
S.T., AZAB A. Robust facility layout design for flexible 
manufacturing: a doe-based heuristic, Int J Prod Res, 60 
(18), 5633, 2022.

42. PARK I.B., HUH J., KIM J., PARK J. A Reinforcement 
Learning Approach to Robust Scheduling of 
Semiconductor Manufacturing Facilities, IEEE T Autom 
Sci Eng, 17 (3), 1420, 2020.V

43. MA G., ZHENG J.J., WEI J., WANG S.L., HAN Y.F. 
Robust optimization strategies for seller based on 
uncertainty sets in context of sequential auction, Appl 
Math Comput, 390, 125650, 2021.

44. LUAN F., ZHANG W.G., LIU Y.J. Robust international 
portfolio optimization with worst-case mean-CVaR, Eur J 
Oper Res, 303 (2), 877, 2022.

45. BENATI S., CONDE E. A relative robust approach 
on expected returns with bounded CVaR for portfolio 
selection, Eur J Oper Res, 296 (1), 332, 2022.

46. MENG Q.C., PANG N.S., ZHAO S.Y., GAO J.W. Two-
stage optimal site selection for waste-to-energy plant 
using single-valued neutrosophic sets and geographic 
information system based multi-criteria decision-making 
approach: A case study of Beijing, China, Waste Manage, 
In Press, 2022.

47. BERTSIMAS D., SIM M. The Price of Robustness, Oper 
Res, 52 (1), 35, 2004.

48. ZHANG Y.Z., ZHANG X.P., LAN L.H. Robust 
optimization-based dynamic power generation mix 
evolution under the carbon-neutral target, Resour Conserv 
Recy, 178, 106103, 2022.

49. BATABYAL A.A., BELADI H. A stochastic dynamic 
programming approach to decision making in arranged 
marriages, Appl Math Lett, 24 (12), 2197, 2011.

50. ZHANG Y., GAO S.J., CHEN S.H. A stochastic predator–
prey eco-epidemiological model with the fear effect, Appl 
Math Lett, 134, 108300, 2022.

51. WANG L., JI Y., ZUO L.L. A Novel Data-Driven 
Weighted Sentiment Analysis with an Application  
for Online Medical Review, Pol J Environ Stud, 31 (6), 
2022.

52. QU S.J., XU L., MANGLA S.K., CHAN F.T.S., ZHU J.L., 
ARISIAN S. Matchmaking in reward-based crowdfunding 
platforms: a hybrid machine learning approach, Int J Prod 
Res, 1, 2022.


