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Abstract

Land use is highly dependent on scale and heterogeneous, serving as an important tool to examine 
land use change by comparing spatial multi-scale cultivated land models through an appropriate 
simulation model. In the present study, such indicators as the goodness of fit, the spatial auto-correlation 
of residuals, the number of factors and spatial scale are adopted to compare the variability and accuracy 
of four spatial multi-scale models: OLS (Ordinary Least Squares), SL (Spatial Lag), SE (Spatial Error) 
and GWR (Geographically Weighted Regression). According to the global characteristics, there is  
a positive autocorrelation between the distribution of cropland and the driving factors at multiple spatial 
scales and they are relatively sensitive to the sampling scale. According to the local characteristics,  
the smaller the spatial scale, the more accurate the spatial location of regional cropland aggregation.  
The order of merit of models characterizing the local spatial pattern and distribution pattern of 
cultivated land at the scale of plateau urban clusters is as follows: GWR, spatial error model, spatial lag 
model, and OLS. The GWR performs better in characterizing local spatial features, simulation accuracy  
and driving factor coefficients. Besides, the CLUE-S simulation model improved by GWR Logistic  
is more accurate in characterizing the spatial pattern of local land use and its distribution pattern at the 
scale of urban clusters in the plateau region.
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Introduction

LUCC (Land use/land cover change) research plays 
a key role in global change research whether in China 
or abroad [1]. Currently, one of the main tasks of the 
LUCC science program and the focus of land use 
science research is to "develop new LUCC modeling 
methods and simulation models" to make better use of 
LUCC models and to establish links with other models. 
The study of land use pattern change and dynamic 
simulation is the focus of research on land science, 
geography and other disciplines, providing an important 
solution to exploring land use patterns and processes 
[2].

Currently, land use simulation models are studied 
worldwide [3]. One is based on the combination of 
econometric statistics and models [4, 5], and the other 
is to set rules and scenario objectives (models) in 
advance [6]. On this basis, multi-scenario models are 
constructed for multi-scenario simulations [7]. In terms 
of theory, methodology and practical applications, 
a series of progresses have been made, such as the 
evolution from a single non-spatial model to the 
integration of non-spatial and spatial models and the 
diversification of functions and roles. The commonly 
used models include empirical statistical model [8],  
CA (Cellular Automata) model [9], CLUE(the 
Conversion of Land Use and its Effects)/CLUE-S 
(the Conversion of Land Use and its Effects at 
Small regional) model [10], FLUS (Future Land Use 
Simulation) model [11], SD (System Dynamics) model 
[12], and MAS (Multi-Agent System) model [13].  
The principles followed by these models are mostly 
based on multiple regression and simulation. With 
the spatial pattern of land use is simulated through 
empirical probability, the focus is placed on global 
spatial characteristics. Despite some scholars having 
realized the importance of scale issues to land use study, 
there has been little breakthrough made in methodology 
and case study so far [14].

As for the formation of land use, it is influenced by 
various factors such as natural, economic, ecological, 
and social factors. Also, it is a dynamic evolutionary 
process with highly scale-dependent, scale-coupled, and 
non-smooth characteristics, the morphology and state 
of which can change at multiple spatial and temporal 
scales [15]. The difference in scale selection can 
have a significant impact on the results of simulation 
performed by the established model. In addition, the 
model is subjected to some limitations in expressing 
the local pattern and the local characteristics of the 
driving factors. As a result, there are changes to the 
driving factors affecting the pattern, which is ignored 
by many prior studies. Therefore, the construction 
of a multi-scale land use pattern model requires that 
consideration is given to its local spatial heterogeneity 
and the complexity of the spatial drivers [16]. Moreover, 
the correlations based on spatial and temporal scales 
are essential for the existence of order, pattern and 

diversity in nature [17]. Most of the current studies 
on land use simulation adopt mathematical models but 
fail to quantify the scale effects and the magnitude of 
impact caused by land use patterns. In addition, the 
spatial analysis ignores the local and non-stationary 
characteristics of land use and drivers, which is adverse 
to revealing the characteristics of autocorrelation within 
the data.

For quite long, cultivated land conservation has 
been playing an important part in the development of 
agricultural economy for China [18]. In view of the 
special status and importance of cultivated land, the 
cultivated land in Yunnan central urban agglomeration 
area is taken as the research object in this paper to 
construct cultivated land prediction models based on 
spatial autoregression and geographically weighted 
regression for analysis on the overall and local clustering 
characteristics of the spatial pattern of cultivated land 
at multiple scales of space. Besides, a comparative 
analysis is conducted on their accuracy to identify  
a more accurate cultivated land simulation model, and 
to improve the existing models. On this basis, the scale 
applicability of the models and the accuracy of land 
spatial layout simulation are improved, thus providing 
theoretical reference and technical support for cultivated 
land protection.

Material and Methods

Overview of the Study Area

As one of the 19 urban agglomerations designated 
by the state, Yunnan central urban agglomeration area 
is the most well-developed region in Yunnan Province 
of China both economically and socially. It features 
the most superior resource endowment and the most 
significant location advantages [19], attracting the main 
production factors and economic scale from across the 
province. It is also the area that can best demonstrate 
the prosperity and strength of Yunnan, providing a key 
driving force for the growth of provincial economy. 
The GDP generated by the urban agglomeration in 
2020 amounts to 12320.66 billion yuan, accounting 
for 53.05% of the provincial total. It has a population 
of 18,139,400, accounting for 37.56% of the provincial 
total.

Data Source

In this paper, the land use classification data for the 
three years of 2000, 2010 and 2020 are sourced from 
the Resource and Environment Data Center of the 
Chinese Academy of Sciences (https://www.resdc.cn/). 
The elevation data are obtained by DEM processing 
with SRTM 30 m resolution [20]. The data of population 
and socio-economic development are collected from the 
statistical yearbook of Yunnan Province of China in 
previous years.
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Due to the wide range of data sources, there are 
variations in data format, coordinate system and scale, 
etc. Based on the 2020 land use classification data, data 
assimilation was performed to process other multi-
source data [20], such as the distance data obtained 
by GIS spatial analysis, slope and slope direction as 
calculated by DEM data. Besides, each socioeconomic 
factor was rasterized.

Driving forces refer to the main influencing 
factors for changes in land use patterns and purposes.  
They are the driving factors in the evolution of land 
use. By combining the characteristics of the study area 
and data accessibility, a total of 16 influencing factors 
were identified as drivers from five perspectives: natural 
environment and topography, traffic accessibility, water 
resources, scale indicators, and intensity indicators. 
They are shown in Table 1. (1) natural and topographic 
indicators include elevation, slope and slope direction; 
(2) transportation accessibility indicators include 
the closest distance to roads, the closest distance to 
railroads, the closest distance to rural roads, the closest 
distance to towns, and the closest distance to villages; 
(3) water resources indicators include the distance 
to ditches and the distance to rivers system; (4) scale 
indicators include total population and agricultural 
population; and (5) intensity indicators include GDP per 
capita, population density, net income per farmer and 
cultivated land per capita.

On this basis, the logistic function of SPSS stepwise 
regression analysis was applied to analyze the drivers 
of land use. Given the sensitivity of logistic regression 
model to the presence of multivariate covariance in 
the independent variables, it is necessary to diagnose 
covariance among the independent variables before 
regression analysis, so as to eliminate the factors with 
significant covariance while improving the accuracy of 
model construction. In general, the covariance diagnosis 
is assessed against the tolerance (TOL) and the variance 
inflation factor (VIF, Variance Inflation Factor), 

which are correlated with each other. The smaller the 
tolerance value, the stronger the covariance. Usually, 
it is considered to have covariance when the value 
is less than 0.2, and have serious covariance problem 
when the value is less than 0.1. The larger the VIF, the 
stronger the covariance. It is considered to have serious 
covariance problem when the value is greater than 10. 
In this study, covariance diagnosis was performed on 16 
independent variables initially selected according to the 
different needs of the model.

Fig. 1. Location of study area.

Table 1. Indicators of Drivers of Land Use Pattern Evolution in 
the Study Area.

Categories Factors

Natural and 
topographic

Elevation(E)

Slope(S)

Aspect(A)

Traffic 
accessibility

Distance from railroads(D-RR)

Distance to roads(D-RO)

Distance from country roads(D-CR)

Distance to towns(D-T)

Distance to villages(D-V)

Water Resources
Distance to ditchs(D-D)

Distance to rivers(D-RI)

Scale indicators
Total population(TP)

Agricultural population(AP)

Intensity 
indicators

GDP per capita(GDP/pc)

Population Density(PD)

GDP per farmer(GDP/pf)

Cultivated land per capita(CL/pc)
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The difference in scale of research can lead to 
variations in the level of detail in the study population, 
which leads to different findings [21]. Herein, reference 
was made to the study of Wang Yuanfei et al [22] for 

the optimal sample size formula 2AQ
n

=  (where Q  

represents the sample area, A denotes the study area, 
and n stands for the number of study area points), and 
to the proportional relationship between the study area 
and the scale selection by previous authors [23, 24].  
On this basis, 500 m×500 m was set as the basic study 
scale and GIS software was applied to convert the land 
use data into the five raster scales as required for the 
study: 1 km, 5 km, 10 km, 20 km, and 30 km.

Research Methods

Spatial Autocorrelation

Spatial correlation aims to analyze the 
characteristics of spatial distribution of spatial units 
based on the matching of location similarity and 
attribute similarity [25]. If the values at the neighboring 
locations are similar, positive spatial autocorrelation is 
observable; otherwise, negative spatial autocorrelation 
can be observed. The spatial autocorrelation analysis 
conducted in this paper involves the global Moran’s I 
index, local Moran’s I index, local G index and Moran 
scatter plot [17].

Global Spatial Autocorrelation

The global spatial autocorrelation indicates the 
extent of spatial dependence within a total spatial extent 
[26]. It is expressed as follows.

 (1)

Where xi and xjrepresent the attribute value of the 
element i and j, x ̅ denotes its average value, wij indicates 
the spatial weight between the elements i and j, and n 

refers to the total number of elements, .

Local Spatial Autocorrelation

The global assessment fails to indicate the specific 
spatial location where aggregation or anomalies 
occur. This is because different spatial units and 
neighborhoods within the study area vary to some 
extent in the level of spatial autocorrelation [27, 28]. 
To address this problem, a local spatial autocorrelation 
analysis is required. The three main methods to achieve 

this purpose are G-statistics for spatial linkage, local 
indicators and Moran scatter plots.

(1) LISA (Local indicators of spatial association)
LISA is used to measure the degree of similarity 

(positive correlation) or difference (negative correlation) 
between the value of observed unit attribute and that 
of the surrounding unit attribute. Lisa includes the 
local Moran index and the local Geary index. The local 
Moran index is expressed as follows:

 (2)

where zi' and zj' represent the standard deviation 
standardized observations.

(2) Moran scatter plot
Moran scatter plots are the statistical graphical 

methods that can be used to reflect the local 
autocorrelation of spatial location attributes [29] and 
to express the presence of concentrated aggregation or 
anomalous features within a local area. Moran scatter 
diagrams are presented in the form of coordinates in 
four quadrants, which correspond to four types of local 
spatial forms of connection between the regional units 
and their neighbors, respectively: high-high aggregation 
(HH) in the first quadrant; high-low anomaly (HL) in 
the second quadrant; low-low aggregation (LL) in the 
third quadrant; and low-high anomaly (LH) in the 
fourth quadrant.

Spatial Autoregressive Model

Based on the spatial correlation between the 
explanatory and dependent variables, Anselin L was 
used to obtain a generic sequential spatial linear 
regression equation [16]:

                      (3)

Where yi, xik, and εi represent the dependent variable, 
independent variable, and random error components, 
respectively, β0 denotes the constant of the model, 
and β0 indicates the regression coefficient of the k-th 
independent variable.

Geographically Weighted Regression Model 

GWR model was first proposed by British 
geostatistician A.S Fortheringham. Taking into account 
the more significant spatial correlation characteristics 
as observed and the spatial variations in the effects of 
different influencing factors on the dependent variable, 
the model can achieve higher accuracy and better 
goodness of fit through the GWR model [30]. It is 
expressed as follows.

             (4)



Comparative Spatial Distribution Simulation... 3067

values of cultivated land and 16 drivers at five scales 
of 1 km, 5 km, 10 km, 20 km and 30 km (Table 2).  
On this basis, it was found out that all of them tended  
to decrease with the increase in weight distance. 
Besides, all of the 13 driving factors showed strong 
spatial autocorrelation except for three of them, 
including slope direction, the distance from road and 
the distance from water system. Its implications are as 
follows. Firstly, the spatial pattern of cultivated land and 
its driving factors show spatial non-stationarity, and the 
spatial geographical location has a significant impact 
on various factors. Secondly, the smaller the weight 
distance, the more significant the spatial dependence, 
and spatial heterogeneity with the increase of the weight 
distance. Besides, the relationship is highly consistent at 
five spatial scales.

By comparing the values of the coefficients of 
different drivers at different spatial homogeneous scales, 

Where (μi, υi) represents the spatial location 
coordinate of the i-th sample point, βk denotes the 
regression coefficient changing with the spatial location, 
and εi refers to the standard deviation of the error 
estimation term.

Results and Discussion

Spatial Autocorrelation Analysis of Multi-Scale 
Model of Cultivated Land

Overall Clustering Analysis of Global Cultivated 
Land Global Characteristics

With the assistance of GeoDa software and ArcGIS 
spatial analysis tools, calculation was performed f 
or the spatial autocorrelation coefficients Moran’s I 

Table 2. Multi-scale Spatial Auto-correlation Coefficients Moran’s I of Cultivated Land and Driving Factors.

Scale/Weight 
distance 30 50 70 90 110 130 150 170 190 210 230 250

Cultivated 
land

1 0.297 0.246 0.233 0.202 0.167 0.163 0.155 0.153 0.142 0.131 0.124 0.117

5 0.331 0.273 0.240 0.217 0.200 0.186 0.174 0.161 0.149 0.139 0.130 0.123

10 0.448 0.372 0.328 0.296 0.273 0.253 0.235 0.217 0.199 0.184 0.171 0.160

20 0.536 0.456 0.405 0.354 0.327 0.298 0.275 0.249 0.220 0.202 0.183 0.171

30 0.606 0.485 0.408 0.379 0.340 0.289 0.289 0.252 0.222 0.204 0.177 0.159

E

1 0.473 0.366 0.323 0.276 0.251 0.228 0.200 0.181 0.168 0.157 0.146 0.135

5 0.484 0.389 0.330 0.288 0.257 0.231 0.211 0.193 0.177 0.163 0.152 0.144

10 0.495 0.402 0.341 0.295 0.264 0.238 0.216 0.197 0.179 0.164 0.151 0.143

20 0.561 0.482 0.423 0.359 0.326 0.292 0.269 0.245 0.217 0.198 0.180 0.169

30 0.539 0.479 0.376 0.346 0.298 0.271 0.249 0.220 0.196 0.179 0.158 0.147

S

1 0.482 0.433 0.389 0.332 0.287 0.269 0.238 0.201 0.188 0.176 0.165 0.143

5 0.550 0.465 0.401 0.350 0.308 0.273 0.244 0.221 0.204 0.190 0.180 0.172

10 0.626 0.533 0.459 0.397 0.348 0.308 0.273 0.246 0.225 0.209 0.196 0.186

20 0.671 0.587 0.518 0.435 0.387 0.339 0.302 0.271 0.240 0.223 0.206 0.194

30 0.704 0.623 0.519 0.470 0.404 0.359 0.321 0.282 0.250 0.232 0.208 0.191

A

1 0.098 0.066 0.051 0.038 0.031 0.025 0.027 0.026 0.025 0.024 0.032 0.020

5 0.106 0.074 0.054 0.043 0.036 0.031 0.028 0.027 0.026 0.025 0.023 0.022

10 0.130 0.093 0.068 0.052 0.043 0.037 0.035 0.033 0.031 0.029 0.027 0.025

20 0.106 0.082 0.055 0.032 0.027 0.024 0.026 0.025 0.024 0.021 0.019 0.017

30 0.148 0.083 0.071 0.054 0.046 0.045 0.043 0.039 0.036 0.034 0.028 0.022

D-RR

1 0.886 0.765 0.667 0.545 0.475 0.434 0.397 0.365 0.321 0.292 0.274 0.265

5 0.839 0.721 0.624 0.525 0.454 0.401 0.360 0.326 0.300 0.279 0.263 0.252

10 0.831 0.719 0.616 0.523 0.453 0.399 0.355 0.322 0.293 0.271 0.254 0.242

20 0.777 0.672 0.583 0.478 0.419 0.364 0.325 0.292 0.258 0.239 0.221 0.209

30 0.745 0.658 0.525 0.472 0.396 0.344 0.309 0.268 0.235 0.218 0.195 0.181
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Table 2. Continued.

D-RO

1 0.144 0.092 0.082 0.071 0.061 0.055 0.051 0.046 0.044 0.041 0.038 0.033

5 0.157 0.108 0.090 0.075 0.065 0.059 0.054 0.050 0.046 0.043 0.041 0.039

10 0.134 0.097 0.083 0.069 0.060 0.054 0.049 0.045 0.041 0.037 0.034 0.032

20 0.121 0.099 0.086 0.054 0.048 0.045 0.040 0.030 0.035 0.030 0.024 0.022

30 0.083 0.111 0.081 0.075 0.063 0.057 0.050 0.043 0.038 0.031 0.022 0.018

D-CR

1 0.892 0.783 0.691 0.643 0.552 0.486 0.435 0.397 0.364 0.52 0.338 0.325

5 0.872 0.776 0.685 0.605 0.532 0.470 0.421 0.383 0.357 0.340 0.327 0.317

10 0.871 0.772 0.682 0.597 0.525 0.464 0.412 0.376 0.348 0.331 0.318 0.308

20 0.832 0.747 0.670 0.570 0.510 0.446 0.400 0.362 0.329 0.312 0.299 0.289

30 0.781 0.734 0.616 0.568 0.485 0.427 0.388 0.341 0.306 0.294 0.275 0.262

D-T

1 0.687 0.543 0.452 0.442 0.338 0.309 0.266 0.254 0.220 0.196 0.188 0.176

5 0.659 0.486 0.378 0.309 0.264 0.235 0.208 0.187 0.173 0.164 0.156 0.151

10 0.641 0.473 0.366 0.293 0.251 0.222 0.196 0.176 0.160 0.151 0.143 0.137

20 0.532 0.400 0.316 0.239 0.208 0.180 0.159 0.139 0.123 0.114 0.107 0.101

30 0.433 0.418 0.287 0.253 0.204 0.181 0.158 0.135 0.118 0.110 0.097 0.089

D-V

1 0.867 0.801 0.745 0.695 0.632 0.544 0.499 0.422 0.401 0.388 0.365 0.336

5 0.852 0.753 0.664 0.585 0.520 0.468 0.428 0.395 0.370 0.349 0.332 0.317

10 0.844 0.751 0.664 0.582 0.518 0.466 0.422 0.390 0.362 0.341 0.322 0.306

20 0.795 0.708 0.634 0.540 0.486 0.432 0.394 0.362 0.329 0.310 0.289 0.275

30 0.781 0.698 0.584 0.537 0.463 0.413 0.377 0.338 0.309 0.291 0.268 0.250

D-D

1 0.242 0.178 0.143 0.132 0.119 0.102 0.095 0.086 0.080 0.074 0.069 0.061

5 0.225 0.165 0.139 0.121 0.105 0.093 0.084 0.076 0.070 0.065 0.061 0.059

10 0.149 0.106 0.091 0.078 0.068 0.059 0.052 0.048 0.042 0.039 0.037 0.035

20 0.123 0.089 0.077 0.062 0.055 0.049 0.044 0.039 0.034 0.031 0.027 0.026

30 0.165 0.132 0.097 0.083 0.067 0.058 0.048 0.037 0.033 0.029 0.023 0.017

D-RI

1 0.961 0.923 0.883 0.834 0.771 0.723 0.678 0.623 0.570 0.537 0.492 0.465

5 0.956 0.917 0.871 0.821 0.768 0.716 0.665 0.616 0.569 0.525 0.488 0.456

10 0.952 0.915 0.870 0.817 0.765 0.713 0.659 0.611 0.562 0.519 0.479 0.447

20 0.934 0.896 0.857 0.792 0.746 0.689 0.641 0.591 0.532 0.492 0.450 0.419

30 0.904 0.894 0.830 0.792 0.733 0.682 0.639 0.580 0.524 0.491 0.438 0.399

TP

1 0.773 0.684 0.611 0.544 0.501 0.477 0.403 0.397 0.374 0.350 0.321 0.304

5 0.707 0.617 0.547 0.492 0.449 0.413 0.383 0.357 0.335 0.315 0.299 0.284

10 0.654 0.570 0.506 0.447 0.405 0.370 0.340 0.316 0.294 0.276 0.260 0.247

20 0.513 0.440 0.384 0.326 0.300 0.272 0.253 0.234 0.212 0.197 0.183 0.173

30 0.478 0.399 0.296 0.262 0.233 0.217 0.196 0.182 0.161 0.151 0.136 0.124

AP

1 0.754 0.698 0.654 0.605 0.532 0.499 0.473 0.421 0.398 0.387 0.364 0.352

5 0.739 0.658 0.591 0.538 0.495 0.459 0.427 0.398 0.373 0.350 0.330 0.313

10 0.687 0.609 0.548 0.491 0.449 0.414 0.382 0.355 0.330 0.309 0.290 0.274

20 0.548 0.478 0.424 0.368 0.341 0.313 0.291 0.270 0.245 0.228 0.211 0.199

30 0.508 0.432 0.329 0.295 0.266 0.247 0.224 0.208 0.187 0.175 0.157 0.143
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it was discovered that the three topographic drivers, 
including cultivated land and elevation, slope and 
slope orientation, increased with larger spatial scales.  
This is because the spatial autocorrelation coefficient has 
a similar variable at a location in the spatial field to the 
variable at its neighboring location. For some specific 
spatial information, there is a certain level of spatial 
dependence in itself, and different spatial scales are 
adopt to smooth them. When the spatial scale increases, 
the more information it incorporates relatively, the 
greater the similarity to neighboring variables, and 
the higher the similarity coefficient. In addition, these 
13 driving factors, such as the distance from roads, 
railroads, water, and total population, show a decreasing 
trend with the increase of scale. There are two reasons 
for this. On the one hand, the spatial information about 
these influencing factors is largely determined by the 
difference between the location information and another 
variable. On the other hand, the increase of scale 
has no impact on the change to location information 

about another variable, but the difference to the real 
information can become increasingly significant, which 
reduces the spatial correlation coefficient reflected by 
it continuously. In the present study, it is demonstrated 
that weight values and spatial scales are the significant 
factors affecting the clustering results during overall 
clustering analysis. Therefore, it is necessary to conduct 
local cluster analysis on the regional characteristics of 
spatial structure and the drivers of cultivated land.

Local Clustering Analysis of Cultivated Land

According to the LISA clustering map shown in 
Fig. 2, the clustering areas of cropland at each scale are 
similar, with high-high clustering areas concentrating in 
the central, southern and eastern parts of the study area, 
but less cropland in the western and northwestern parts. 
Besides, there are a few “islands” observed at the edge 
of the study area. Notably, the 1 km grid is too dense. 
Also, due to insufficient resolution, the grid boundary 

Table 2. Continued.

TP

1 0.773 0.684 0.611 0.544 0.501 0.477 0.403 0.397 0.374 0.350 0.321 0.304

5 0.707 0.617 0.547 0.492 0.449 0.413 0.383 0.357 0.335 0.315 0.299 0.284

10 0.654 0.570 0.506 0.447 0.405 0.370 0.340 0.316 0.294 0.276 0.260 0.247

20 0.513 0.440 0.384 0.326 0.300 0.272 0.253 0.234 0.212 0.197 0.183 0.173

30 0.478 0.399 0.296 0.262 0.233 0.217 0.196 0.182 0.161 0.151 0.136 0.124

GDP/pc

1 0.601 0.553 0.475 0.400 0.339 0.321 0.287 0.251 0.221 0.197 0.165 0.146

5 0.569 0.436 0.351 0.292 0.250 0.219 0.193 0.173 0.158 0.147 0.139 0.133

10 0.525 0.405 0.332 0.272 0.234 0.204 0.178 0.159 0.143 0.131 0.122 0.116

20 0.468 0.373 0.311 0.244 0.213 0.181 0.157 0.137 0.118 0.107 0.098 0.093

30 0.496 0.433 0.329 0.295 0.249 0.221 0.196 0.178 0.159 0.145 0.129 0.118

PD

1 0.652 0.500 0.432 0.365 0.301 0.275 0.231 0.198 0.165 0.154 0.146 0.139

5 0.611 0.453 0.351 0.288 0.245 0.213 0.188 0.169 0.154 0.143 0.136 0.132

10 0.576 0.422 0.330 0.265 0.225 0.195 0.171 0.152 0.136 0.125 0.118 0.113

20 0.504 0.390 0.314 0.239 0.207 0.174 0.151 0.132 0.113 0.101 0.093 0.089

30 0.401 0.308 0.205 0.177 0.136 0.122 0.101 0.088 0.072 0.064 0.055 0.051

GDP/pf

1 0.566 0.500 0.455 0.421 0.355 0.288 0.276 0.242 0.220 0.211 0.188 0.174

5 0.524 0.460 0.405 0.356 0.313 0.276 0.244 0.217 0.196 0.180 0.168 0.159

10 0.465 0.403 0.355 0.310 0.275 0.243 0.214 0.189 0.168 0.153 0.140 0.131

20 0.435 0.384 0.342 0.285 0.252 0.218 0.192 0.169 0.143 0.129 0.115 0.107

30 0.423 0.381 0.322 0.291 0.254 0.226 0.197 0.173 0.145 0.131 0.111 0.099

CL/pc

1 0.550 0.443 0.356 0.308 0.242 0.200 0.156 0.112 0.101 0.097 0.092 0.090

5 0.450 0.349 0.271 0.209 0.161 0.130 0.110 0.098 0.092 0.090 0.089 0.089

10 0.372 0.281 0.216 0.158 0.119 0.094 0.077 0.068 0.064 0.064 0.064 0.064

20 0.291 0.223 0.180 0.128 0.101 0.059 0.059 0.050 0.044 0.043 0.043 0.042

30 0.240 0.196 0.138 0.112 0.082 0.064 0.045 0.038 0.036 0.032 0.032 0.030
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and the study results are not clearly observable. 
Therefore, the scale boundary is hidden. Despite the 
high consistency shown by the overall characteristics 
of the cultivated land agglomeration areas with spatial 
scale changes, there are certain differences in the 
specific spatial location and the degree of detailed 
expression. In general, the larger the scale, the more 
insignificant the figure, the smaller the number of 
significant agglomerations, and the less obvious they 
are. Conversely, the smaller the scale, the more obvious 
the agglomeration, the larger the number of significant 

agglomeration, and the more significant its local spatial 
differences.

In addition, slope was taken as the study object  
to illustrate the characteristics of local clustering  
map for the driving factors of cultivated land (Fig. 3). 
The study area is a highland mountainous region, the 
northern, western and northwestern parts of which are 
dominated by mountains with steeper slopes. They 
are shown as red agglomeration areas in the figure. 
Specifically, the central and eastern parts are dominated 
by alluvial plains with relatively flat terrain and gentle 

Fig. 2. Local clustering of multi-scale cultivated land spatial features.

Fig. 3. Local clustering of multi-scales slope spatial features.
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slopes. They are shown as blue agglomeration areas in 
the figure. By comparing the spatial distribution pattern 
with that of cultivated land, it can be found out that 
the spatial distribution pattern and scale characteristics 
of slope are closely correlated and similar to those 
of cultivated land. There are different spatial 
characteristics in different geographic aggregation 
areas, indicating a certain spatial heterogeneity  
in the spatial distribution characteristics of slope.  
As the spatial scale varies, change occurs accordingly 
to the resolution (granularity) of slope clustering maps 
at different spatial scales, which is similar to that of 
spatial multi-scale cultivated land spatial characteristics 
clustering. Scale is inversely related to resolution.  
That is to say, the smaller the scale, the more detailed  
the representation, and the more accurate the 
information provided for a specific spatial geographic 
location.

Spatial Autoregressive Model Analysis

The aforementioned analysis fails to clarify the 
spatial autocorrelation between slope direction, the 
distance from the road and the distance from the water 
system. With these three factors excluded, the standard 
error, T-value (t-Statistic), P-value (Probability), and 
parameters such as LIK (Log likelihood), AIC (Akaike 
info criterion), and SC (Schwarz criterion) were used to 
construct the classical linear regression model of spatial 
and temporal evolution of cultivated land in the study 
area as well as the spatial autoregressive-based spatial 
lag model and spatial error model for comparison of the 
analytical results.

OLS Regression Model

In the least squares model, GDP per capita, 
population density and cultivated land per capita were 
identified as insignificant (p>0.05). Also, by discounting 
those variables, an OLS model was constructed for 
cultivated land (Table 3).

According to the t-values, the most significant 
factors affecting cultivated land pattern in the study 
area include slope, the distance from villages, and the 
distance from railroads. By contrast, the less significant 
influencing factors include elevation, the distance from 
towns, and GDP per farmer.

The same method was adopted to construct the 
OLS models of cultivated land at 5 km, 10 km, 20 km, 
and 30 km scales, the results of which are as follows: 
R2 = 0.424526, LIK = 661.335 at the 5 km scale; 
R2 = 0.482097, LIK = 510.390 at the 10km scale; 
R2 = 0.576697, LIK = 203.302 at the 20 km scale; 
and R2 = 0.550092, LIK = 94.276 at the 30km scale. 
R2 was treated as a goodness-of-fit indicator to evaluate 
the OLS regression model. It was discovered that  
the R2 value is the largest at the 20 km scale. When 
LIK is used as the evaluation index, the OLS model at  
the 1 km scale is significantly better than at the other 
scales.

Spatial Lag Model

It was verified that these five factor variables, 
including the distance from town, total population, 
agricultural population, GDP per capita, and population 
density, were insignificant in the spatial lag model. 

Table 3. Ordinary Least Squares Model of 1km Scale Cultivated Land.

Impact factor Regression coefficients Standard error T-value P-value

Constant 0.670765 0.04577 14.65610 0.00000

E -2.84E-05 9.57E-06 -2.96705 0.00303

S -0.02203 0.00084 -26.29450 0.00000

A 0.00071 0.00016 4.57700 0.00000

D-RO -1.24E-05 1.28E-06 -9.68755 0.00000

D-RR -2.12E-06 2.04E-07 -10.41440 0.00000

D-CR 6.80E-07 1.20E-07 5.68816 0.00000

D-D -7.61E-07 8.45E-08 -9.00235 0.00000

D-RI -9.34E-06 1.46E-06 -6.39757 0.00000

D-T -1.20E-06 3.08E-07 -3.89488 0.00010

D-V 3.60E-06 2.24E-07 16.04930 0.00000

TP -0.00218 0.00047 -4.68501 0.00000

AP 0.00440 0.00053 8.37750 0.00000

GDP/pf -1.82E-05 4.58E-06 -3.97625 0.00007

Note: R2 = 0.395104, LIK= 922.781.
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Besides, with these five variables discounted, a spatial 
lag model was established for cultivated land in the 
study area (Table 4).

The same method was applied to construct a spatial 
lag model for cultivated land at 5 km, 10 km, 20 km and 
30 km scales, respectively. The results are as follows: 
R2 = 0.587329 and LIK = 744.321 at the 5 km scale; 
R2 = 0.616045 and LIK = 604.616 at the 10 km scale; 
R2 = 0.663959 and LIK = 220.018 at the 20km scale; 
and R2 = 0.671084 and LIK = 104.564 at the 30 km 
scale. It was discovered that the 30 km scale is the 
optimal if R2 is used for evaluation and the 1km scale is 
the optimal if LIK is used for evaluation.

Spatial Error Model

Similarly, after the removal of the distance to town, 
total population, agricultural population, GDP per 
capita, population density, cultivated land per capita as 
six insignificant factor variables, a spatial error model 
of cultivated land in the study area was constructed 
(Table 5).

The same method was adopted to respectively 
construct the spatial error models of cultivated land at 
5 km, 10 km, 20 km and 30 km scales, the results of 
which are as follows: R2 = 0.626523, LIK = 860.007658 
at the 5 km scale; R2 = 0.649617, LIK = 627.590531 at 
the 10 km scale; R2 = 0.693935, LIK = 224.320452 at 
the 20 km scale; and R2 = 0.649589, LIK = 100.760601 
at the 30 km scale. It can be seen from above  
that the goodness of fit evaluation of the spatial error 
model is similar to that of the spatial lag model. It is the 

optimal at the 20 km scale if R2 is used for evaluation 
and the optimal at the 1 km scale if LIK is used for 
evaluation.

Tables 3 and 5 show an analysis on the regression 
coefficients, standard errors, T-values (Z-values) 
and P-values of the driving factors for the relevant 
parameters of the constructed models at multiple spatial 
scales. It can be found out that 13 of the 16 influencing 
factors pass the significance test in the OLS model, 11 in 
the spatial lag model, and 10 in the spatial error model. 
It indicates that the influencing factors used in this 
paper have impact on the distribution of spatial pattern 
of cultivated land in the study area. Overall, the spatial 
error model is more sensitive to the variability of the 
driving factors, followed by the spatial lag model and 
the OLS model. By analyzing the regression coefficients 
of each driver, it was found out that all the factors in 
the 2 models were negatively correlated except for 
4 factors, showing positive correlation: the distance 
from villages, average slope direction, agricultural 
population, and the distance to rural roads. Meanwhile, 
except for the constant term, the absolute magnitude of 
the drivers of the three models shows that topographic 
factors and human activities are more influential on the 
pattern formation of cultivated land.

It was also discovered that the average slope was 
negative in all three models and the absolute value 
was the largest in both the OLS and error models. 
This is because the cultivated land was distributed in 
the areas with less slope, the gentler the more suitable 
for cultivated crops, but also susceptible to human 
exploitation.
 

Table 4. Lag Model of 1km Scale Cultivated Land.

Impact factor Regression coefficients Standard error Z-value P-value

λ 0.584616 0.0154711 37.7877 0.00000

Constant 0.613218 0.04795 12.78970 0.00000

E -4.26E-05 8.55E-06 -4.98803 0.00000

S -0.01575 0.00078 -20.15570 0.00000

A 0.00054 0.00013 4.08816 0.00004

D-RO -8.87E-06 1.09E-06 -8.11068 0.00000

D-RR -7.96E-07 1.73E-07 -4.60806 0.00000

D-CR 2.71E-07 1.01E-07 2.69312 0.00708

D-D -4.26E-07 7.52E-08 -5.67091 0.00000

D-RI -4.26E-07 7.52E-08 -5.67091 0.00000

D-V 1.93E-06 2.02E-07 9.58138 0.00000

GDP/pf -3.54E-05 3.81E-06 -9.29544 0.00000

AP 0.00440 0.00053 8.37750 0.00000

CL/pc -0.02455 0.00530 -4.62782 0.00000

Where R2 = 0.567574, LIK = 1363.54.
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Analysis of Geographically Weighted Regression 
Model

Through the GWR, there is a better fit of the land 
class in different geographical locations and the weight 
of each influencing factor in different locations can 
be known [11]. Table 6 and Fig. 3. show the spatial 
distribution of cropland as simulated using the spatial 
multiscale GWR model. The probability of spatial 
distribution of cultivated land mainly ranges between 0 
and 30%.

From Table 6 and Fig. 4, it can be seen clearly that 
the cultivated land is distributed mostly in the east of 
central China, not the southwest and northwest. When 
the probability distribution ranges between 31% and 
45%, the simulated probability exceeds the statistical 
probability and shows an increasing trend with the 
increase of scale, indicating that the simulated cultivated 
land in this probability interval increases the probability 
of cultivated land distribution to a certain extent and 
expands the occupied area of cultivated land; when the 
statistical probability ranges between 46% and 60% or 
61% and 100%, the simulated probability is lower than 

the statistical probability and shows a decreasing trend 
with the increase of scale, indicating that the simulated 
cultivated land reduces the probability of cultivated 
land distribution, thus reducing the occupied area of 
cultivated land. To sum up, the bandwidth increases 
with spatial scale and the simulation probability of the 
GWR model rises, while the spatial resolution of the 
relative cultivated land patch declines significantly.

Model Accuracy Comparison Analysis

Comparison of Goodness-of-Fit

From the calculation results in Tables 3 and 6, it 
can be seen that the largest regression coefficient is 
the spatial error model, followed by the OLS, and the 
spatial lag model. It is possibly because that some of the 
prediction results obtained by the spatial lag model are 
based on the prediction of spatial autoregression.

For the traditional models of typical linear 
regression, R2 can be used as an evaluation indicator of 
the goodness of fit. However, it may not be suitable for 
spatial autoregressive models as the value output from 

Impact factor Regression coefficients Standard error Z-value P-value

Constant 1.14819 0.05938 19.33550 0.00000

E -0.000129 1.50E-05 -8.60044 0.00000

S -0.02630 0.00105 -25.01700 0.00000

A 0.00053 0.00016 3.38410 0.00071

D-RO -1.16E-05 1.46E-06 -7.92372 0.00000

D-RR -1.87E-06 4.63E-07 -4.04799 0.00005

D-CR 5.98E-07 2.78E-07 2.15094 0.03148

D-D -8.98E-07 1.92E-07 -4.67352 0.00000

D-RI -9.43E-06 1.64E-06 -5.75370 0.00000

D-V 2.84E-06 4.89E-07 5.79491 0.00000

GDP/pf -3.98E-05 6.07E-06 -6.54361 0.00000

LAMBDA     0.674875   0.014626      46.1409 0.00000

Where R2 = 0.607962, LIK = 1473.349989.

Table 5. Spatial Error Model of 1km Scale Cultivated Land.

Table 6. Comparison of Spatial Distribution Probability of Cultivated Land in Multi-scale GWR Model.

Probability 
interval

0.5 km×0.5 km
Statistical probability

Simulated probability

1 km×1 km 5 km×5 km 10 km×10 km 20 km×20 km 30 km×30 km

0-15 43.79 42.66 41.29 37.63 39.51 41.30

16-30 17.65 18.52 20.16 27.03 28.32 29.71

31-45 14.20 15.39 16.70 18.53 20.63 21.74

46-60 12.68 12.32 11.43 11.27 9.79 6.52

61-100 11.68 11.11 10.43 5.54 1.75 0.72
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spatial autoregressive models is a pseudo R2 value [31]. 
Currently, LIK, AIC, and SC are commonly used to 
evaluate spatial autoregressive models for the goodness 
of fit (Table 7).

As shown in Table 7, the LIK value of the spatial 
error model is the largest while the AIC and SC values 
are the smallest at the same scale. At the 1km scale,  
the LIK value is the largest while the AIC and SC 
values are the smallest, i.e., the LIK value decreases  
as the scale increases while the AIC and SC values  
rise as the scale decreases. That is to say,  
the spatial error model performs best in the goodness 
of fit. Overall, the spatial autoregressive based model 
outperforms the OLS model in terms of explanatory 
power.

Below is a comparison of the parameters simulated 
by the spatial multi-scale spatial autoregressive 
model and the GWR model to analyze the advantages 
and disadvantages of various models as well as the 
regularities of scaling (Table 8).

In Table 8, the spatial multi-scale model is 
comparatively analyzed using three modeling 
parameters: R2, AIC and residual square, the results of 
which are as follows:

(1) R2 indicates the proportion of the variance of 
the dependent variable used in the regression model. 
Besides, the larger the value, the higher accuracy. 
According to Table 8, at the same scale, the models 

are in the following order by magnitude: GWR 
model>spatial error model>spatial lag model>OLS 
regression model.

(2) The smaller the AIC value, the closer the model 
reflects the prediction is closer to the true value, while 
a larger value is less effective. As can be seen from 
Table 8, at the scales of 1 km, 5 km and 10 km, AIC is 
ranked as follows: OLS model>GWR model>spatial lag 
model>spatial error model; at the scales of 20 km and 
30 km, AIC is ranked as follows: OLS model>spatial 
lag model>spatial error model>GWR model. That is to 
say, the spatial error model performs best in carrying 
out simulation at the scales of 1 km, 5 km and 10 km, 
while the GWR model performs best at the scales  
of 20 km and 30 km. It can also be found out that the 
AIC values of each model increase with the scale.

(3) The sum of squared residuals is referred to as 
the sum of squares of the errors between the actual 
and measurement values, indicating the accuracy of 
the simulation by the model. The smaller the value, 
the higher accuracy of the model, and vice versa. From 
Table 8, it can be found out that each model tends to 
have a reduction in the sum of squared residuals as 
the scale increases. At the scales of 10 km and 30 km, 
the order of the sum of squared residuals is as follows:  
OLS model<spatial lag model<spatial error model< 
GWR model. However, it is exactly the opposite at the 
scales of 1 km, 5 km and 20 km.

Fig. 4. Probability map of cultivated land spatial distribution of multi-scale GWR model.
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In general, with an increase in the scale, the 
values tend to be smooth and the goodness of fit of 
the simulation is enhanced. However, it also leads to 
a considerable difference between the actual location 
information and the data used in the constructed model, 
i.e., the residual sum of squares tends to increase.

Residual Spatial Autocorrelation Comparison 
Analysis

Allowing for the spatial autocorrelation between 
the residuals of each model, the residuals of the OLS 
model have a significant spatial autocorrelation.  

Table 8. Spatial Auto-regressive Model and GWR Model Simulation Parameters Comparison.

Indicators Scale OLS SL SE

LIK

1 km 922.78 1363.54 1473.35

5 km 661.335 744.321 860.01

10 km 510.39 604.62 627.59

20 km 203.30 220.02 224.32

30 km 94.28 104.56 100.76

AIC

1 km -1817.56 -2701.08 -2924.70

5 km -1439.26 -1956.88 -2051.57

10 km -1000.78 -1189.23 -1237.18

20 km -392.60 -424.04 -436.64

30 km -178.55 -197.13 -195.52

SC

1 km -1730.42 -2620.16 -2856.23

5 km -1254.86 -1844.76 -2011.28

10 km -952.39 -1140.84 -1193.63

20 km -368.42 -396.39 -415.91

30 km -165.48 -181.44 -187.68

Table 7. Spatial Multi-scale Cultivated Land Goodness Index Comparison.

Indicators Scale OLS SL SE GWR

R2

1 km 0.40 0.57 0.61 0.65

5 km 0.42 0.59 0.63 0.66

10 km 0.48 0.62 0.65 0.66

20 km 0.58 0.68 0.69 0.75

30 km 0.55 0.67 0.65 0.68

AIC

1 km -1817.56 -2701.08 -2924.70 -2564.36

5 km -1439.26 -1956.88 -2051.57 -1856.88

10 km -1000.78 -1189.23 -1237.18 -1012.62

20 km -392.60 -424.04 -436.64 -511.97

30 km -178.55 -197.13 -195.52 -244.35

Residual sum of 
squares

1 km 142.53 133.21 132.93 116.92

5 km 56.83 47.22 32.54 27.54

10 km 17.96 18.33 19.53 22.58

20 km 2.41 2.23 2.01 1.99

30 km 0.55 0.77 0.91 1.10
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In comparison, the spatial autocorrelation between the 
residuals of the spatial lag model and spatial error model 
tends to diminish. In addition, the residuals of the GWR 
are relatively better than those of the spatial error model 
and the spatial lag model (Fig. 5). Therefore, the GWR 
model is the optimal. 

Comparison of the Number and Spatial Scale 
of Impact Factors

Land use patterns are dependent on scale, the 
types and driving factors of which show spatial 
autocorrelation. By analyzing the four types of 

cultivated land models in the study area through their 
influencing factors (Table 9) at multiple scales in space, 
the following characteristics were identified:

(1) At the same scale, the number of influencing 
factor variables in each cropland model is OLS, spatial 
lag model, spatial error model, and GWR in descending 
order, and the overall number of factors in the classical 
linear regression model is larger than that in the 
spatial regression model and geographically weighted 
regression model.

(2) At different scales, the number of influencing 
factor variables of the same cultivated land model 
tends to decrease with the increase of scales, and the 
coefficients of the spatial lag model and spatial error 
model also follow this pattern.

(3) Even for the same cultivated land model at 
different scales, or for different cultivated land models 
at the same scale, there are significant variations in 
their influencing factor variables. In addition, there 
are common influencing factors in different models 
of cultivated land at the same scale. In general, the 
number of common influencing variables decreases as 
the scale increases. For example, at the 1km scale, the 
common driving factors are average elevation, average 
slope, average slope direction, the distance from road, 
the distance from railroad, the distance from rural 

Fig. 5. Residuals of spatial auto-correlation models.

Table 9. Comparison of Impact Factors Number of Cultivated Land Models in Different Scale.

Model Scale Variable number Coefficient P values

OLS

1 km 13 - -

5 km 11 - -

10 km 9 - -

20 km 6 - -

30 km 4 - -

SL

1 km 11 0.584616 0.00000

5 km 8 0.572160 0.00000

10 km 6 0.530487 0.00000

20 km 4 0.469405 0.00000

30 km 2 0.448854 0.00000

SE

1 km 10 0.674875 0.00000

5 km 8 0.668807 0.00000

10 km 5 0.659153 0.00000

20 km 2 0.595943 0.00000

30 km 1 0.553298 0.00000

GWR

1 km 9 - -

5 km 8 - -

10 km 6 - -

20 km 2 - -

30 km 1 - -
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road, the distance from ditch, the distance from water 
system, the distance from village and GDP per farmer. 
That is to say, topographic factors, traffic conditions 
and water conditions are the main influencing factors 
for cultivated land distribution at this scale. Differently, 
there are 6 common factors at the 5km scale, including 
average slope, the distance from road, the distance from 
railroad, the distance from ditch, the distance from 
village and GDP per farmer. At the 10km scale, there 
are three common factors: average slope, the distance 
from road and the distance from ditch. At the scales 
of 20km and 30km, each model has only one common 
driving variable, that is, average slope.

It is speculated that the above characteristics are 
attributable to the spatial pattern of cultivated land 
distribution and its scale size. The average slope is 
the only common variable at all scales, indicating 
that slope is the most significant influencing factor in 
the distribution pattern of cultivated land in the study 
area. It is also affected by the characteristics of the 
fragmented topography of the plateau.

For the selection of driving factors, the dependent 
variable and the independent variable data of the 
driving factor used in the OLS model, spatial lag 
model, and spatial error model are taken as the research 
object to focus on the global situation. The global model 
constructed in this study contains a larger amount of 
information, and the fit of the model produces a better 
effect on the whole. The GWR is localized, focusing on 
the local area, which may not lead to a high level of 
model fit. In spite of this, it performs better in taking 
into account the local characteristics of land use types 
and driving factors. Besides, it is advantageous in 
showing the spatial multi-scale characteristics, local 
non-smoothness and spatial pattern divergence of the 
spatial distribution of cultivated land. As revealed by the 
overall comparison of the advantages and disadvantages 

of the models, the GWR model is superior to the spatial 
error model, the spatial lag model is the second best, 
and the OLS model is the worst.

Comparison of Land Use Spatial Distribution 
Simulation

Based on two modeling methods including OLS 
Logistic and GWR Logistic, the simulation model was 
constructed through combination with the CLUE-S 
model. The spatial distribution patterns of land use in 
the study area in 2020 were simulated for comparison 
with the current situation of land use in 2020, 
respectively (Fig. 6).

According to an analysis of the above figure, the 
simulated spatial pattern of land use in the study area 
in 2020 based on a combination of OLS Logistic, GWR 
Logistic and CLUE-S models is highly consistent 
with the current land use map in 2020. The Kappa 
coefficients of OLS and GWR simulations are 0.886 and 
0.921 respectively, indicating that the results of the two 
simulations are coherent with the current state and that 
the model is effective. Apart from that, both can be used 
to predict the spatial pattern of land use in the future. 
In terms of accuracy, the CLUE-S model based on the 
improved GWR Logistic slightly outperforms the OLS 
Logistic CLUE-S model. After a further comparative 
analysis of the probability spatial distribution maps 
of the two models (Fig. 7), it was discovered that the 
probability spatial pattern distribution map of land 
use adaptation as simulated by the GWR Logistic 
model is more comparable to the real land use pattern 
distribution than if the simulation was performed by the 
OLS Logistic regression model. Besides, it performs 
better in reflecting the characteristics of spatial variation 
in the extent to which each driver affects land use 
types (Fig. 8). Based on the analysis shown in Fig. 8,  

Fig. 6. Status of land use in 2020(a) and simulation (b, c).
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the spatial instability of the driving factors was 
quantified through the regression coefficients of 
each raster cell. It was found out that the regression 
coefficient of the slope factor was higher in the blue 
area, the influence of which on the spatial distribution 
of cropland was clearly significant. It suggests a 
significant increase in the aggregation of cropland 
distribution in the area of gentle slope. Conversely, the 
regression coefficient of slope factor is low in the red 
area, and the steepness of slope makes little difference 
to the distribution probability of cultivated land and the 
extent to which aggregation diminishes. The spatial 
variation in the effects of other driving factors on land 
use types is similar, which will not be reiterated due to 
space limit.

Conclusions

Land use is highly scale-dependent, scale-
coupled and non-stationary in nature, showing spatial 
autocorrelation among various land use patterns 
at different spatial scales. Given different natural 

environmental factors and socio-economic factors 
affecting the formation and evolution of the spatial 
pattern of cultivated land, it is essential to develop  
a suitable model for the simulation and prediction as 
to the spatial distribution characteristics of cultivated 
land. In this paper, the spatial distribution of cultivated 
land is simulated and thoroughly analyzed by using  
a multi-scale model. By taking the Yunnan central urban 
agglomeration area, which is a typical representative 
mountainous area with relatively drastic land evolution, 
as the research object, the main conclusions are drawn 
as follows: 

(1) Spatial autocorrelation analysis is conducted 
with 16 driving factors on five scales: 1 km, 5 km, 
10 km, 20 km and 30 km. It is found out that spatial 
autocorrelation exists for both multi-scale land use 
patterns and driving factors, and that the spatial pattern 
of cultivated land and its driving factors are changing 
spatially. They show a greater spatial dependence 
when the weight distance is small and a higher 
spatial heterogeneity as the weight distance increases.  
The overall characteristics of cultivated land 
agglomeration areas are highly consistent at spatial 

Fig. 7. Comparison results of OLS Logistic and GWR Logistic regression.

Fig. 8. Spatial differentiation diagram of the impact of slope factor on cultivated land.
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scale, despite some differences in the specific spatial 
location and the degree of detail expression. The larger 
the scale, the more insignificant the agglomeration. 
Conversely, as the scale decreases, the more obvious the 
agglomeration and the more significant its local spatial 
variability.

(2) Comparative analysis of spatial multiscale 
models is performed using three model parameters: 
R2, AIC and the residual sum of squares. According 
to the comparison of R2, the GWR model achieves 
high accuracy and the OLS regression model performs 
worst in accuracy at the same scale. Besides, the 
overall accuracy is improved with the increase of 
scale. According to the comparison of AIC, the spatial 
error model produces the best simulation results at 
the scales of 1 km, 5 km and 10 km, while the GWR 
model performs best at the scales of 20 km and 30 km. 
Besides, the AIC value of each model rises with the 
increase of scale. As revealed by the comparison of 
the residual sum of squares parameters, as the scale 
increases, the accuracy of all models is decreasing.  
At the scales of 10km and 30km, the order of the 
residual sum of squares is as follows. The OLS model 
is the best, followed by the spatial lag model and the 
spatial error model, while the GWR model is the worst. 
At the scales of 1 km, 5 km and 20 km, it is exactly the 
opposite.

(3) Two models, namely, the spatial autoregressive 
model and the geographically weighted regression 
model, are adopted to perform simulation for predicting 
the spatial distribution pattern of cropland and the 
change of cropland. Since the local spatial object of 
cropland is taken as the study unit in the GWR model, 
the spatial local characteristics of cropland are more 
detailed to a certain extent. By taking into account 
the geospatial local characteristics and geospatial 
variability, the goodness of fit achieved by different 
spatial location models can be determined. Besides, it is 
possible to obtain the weights of each driver of land use 
with the change of spatial location. By comparing the fit 
and residual sum of squares of the spatial autoregressive 
model, it can be found out that the GWR model 
performs well in terms of local spatial characteristics, 
simulation accuracy and driving factor coefficients. 
By using this model, the spatial pattern of cropland in 
the study area in 2020 is simulated and compared with 
the actual distribution of cropland in 2020. The Kappa 
coefficient reaches 87.68%, which is 2.35 percent higher 
than that of the traditional OLS Logistic probability 
model. It evidences the applicability of the proposed 
model.

Since LUCC is a highly complex system, the study 
and identification of its model and driving factors 
have become a research hotspot. This paper is based 
on the selection of different models to explore the 
spatial distribution characteristics and factors in the 
evolution of cropland. Given many factors affecting the 
distribution and evolution of cropland in different time 
periods, the conclusions drawn in this paper are limited 

to partially reflecting the characteristics of cropland. 
Besides, different research scales can lead to variations 
in the magnitude of impact on the construction of 
models as well as the simulation and prediction of 
cropland. In addition, the formation and evolution of 
cultivated land are affected by many socio-economic 
factors and national policies, which makes it difficult 
to reflect them quantitatively to a certain extent. 
Therefore, the reasonable selection of appropriate 
influencing factors is crucial to the construction of 
the model. Therefore, the selection of scale and the 
quantification of influencing factors must be considered 
for the construction of model, so as to provide an 
effective theoretical reference and technical support for 
the protection of cultivated land and the formulation of 
national policy.
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