
Introduction

Climate change and its environmental impacts have 
become a worldwide topic [1]. Global warming is one 
of the most concerning climate issues, which results 
from the growing concentration of greenhouse gases 
in the atmosphere [2]. Unfortunately, the greenhouse 
effect not only poses a great threat to natural resources 
but also harms public health, which has an adverse 

effect on ecological sustainability and human survival 
[3, 4]. China, the biggest carbon emitter, has been 
committed to achieve the “carbon peak” by 2030 and 
“carbon neutrality” by 2060 [5, 6]. Given that China is 
a developing country, reducing carbon emissions may 
inevitably compromise its economic development goals 
[7]. Notably, total factor carbon productivity (TFCP) is 
a specific embodiment of decoupling between economic 
development and carbon emissions. Hence, it is feasible 
and practical for developing countries to achieve green 
and low-carbon development through boosting TFCP  
[8, 9].
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In this digitalization era, the digital economy 
supported by the advanced technologies has developed 
rapidly, which has a crucial marginal utility [10]. 
Notably, the significant enhancement of the digital 
economy has introduced a new production factor, that 
is, data resources. Undoubtedly, the magnification and 
multiplication effects of new production factor play 
a prominent role in boosting economic development 
[11, 12]. Not only does the digital economy help 
to boost new industries and models, but also it is 
conductive to accelerating the process of industrial 
digitalization and digital industrialization [11]. The 
boom of the digital economy, therefore, is becoming a 
significant impetus for China’s economic development 
[13]. In terms of its environmental impact, the digital 
economy is believed to provide a solid basis for 
environmental management [14, 15]. More importantly, 
the digital economy has gradually penetrated in the 
environmental domain and played an essential role in 
coping with thorny environmental issues. Considering 
the importance of the digital economy for green and 
sustainable development, China has formulated some 
digital economy development policies, such as “Made 
in China 2025”, “Internet +,” and “Digital China.”  
These strategies are beneficial to integrate the digital 
economy with economic and ecological fields and 
realize sustainable economic development. Significantly 
in this post-epidemic era, realizing high-speed  
and green development has become a more critical topic 
[9].

Given that the digital economy has become an 
essential support for energy conservation and carbon 
reduction, it is worth studying the impact of the digital 
economy on green and low-carbon development. 
Therefore, this paper intends to investigate the 
relationship between the digital economy and TFCP, 
further revealing its spillover and mediating effects. The 
marginal contributions of this study can be summarized 
as the following two aspects. (1) Although existing 
studies abound in examining the relationship between 
the digital economy and carbon emissions, few studies 
focus on the “win-win” effect of the digital economy on 
economic development and carbon reduction. Therefore, 
this paper innovatively incorporates the digital 
economy and TFCP into the same research framework, 
exploring the impact of the digital economy on green 
and low-carbon development. (2) This paper not only 
aims to explore the direct impact of the digital economy 
on TFCP, but also intends to reveal its spatial and 
mediating effects on TFCP to enrich existing research 
framework. Specifically, this paper examines the spatial 
spillover effect of the digital economy on TFCP and 
further reveals the in-depth mechanism of the impact of 
the digital economy on TFCP from the perspective of 
energy intensity, which is of great importance to boost 
green economy effectively.

The remainder of this paper is as follows: Section 2 
shows the literature review and theoretical assumptions. 
Section 3 presents the methods and materials. Section 

4 lists the empirical results. Section 5 summarizes  
the main conclusions and policy guidance.

Literature Review and Theoretical Assumptions

Literature Review

In terms of TFCP, its measurement is a heated field 
in the academia. Some academics build an input-output 
system to analyze the impact of production factors on 
TFCP comprehensively [16, 17]. On one hand, some 
scholars apply the stochastic frontier analysis (SFA) 
to evaluate the environmental efficiency, which needs 
setting the production function before analysis [18, 19]. 
On the other hand, the data envelopment analysis (DEA) 
is more widely used to measure the environmental 
efficiency [20, 21], including the global Malmquist-
Luenberger [9], global super efficiency Epsilon-Based 
method [22], directional distance functions [23], and 
non-directional distance functions [7, 24, 25]. After 
measuring TFCP, some scholars attempt to find its 
affecting factors. Previous research has examined the 
influence of urbanization [18], industrial structure [26], 
technological innovation [25], digital finance [7], and 
digital investment [9].

In terms of the digital economy, Tapscott firstly 
introduced the concept of the digital economy, a 
socioeconomic model driven by digital technologies 
[27]. However, unfortunately, there has yet to be a 
consensus on the concept of the digital economy 
in both academia and industry. From a narrow 
perspective, the digital economy consists of ICT, digital 
technologies, and digital data [28]. Comparatively, from 
a broad perspective, some scholars insist that the digital 
economy involves both digital technologies and the 
digitalization of traditional technologies and industries 
[29]. Subsequently, many researchers attempted to 
measure the level of digital economy. In the Chinese 
context, most academics build an evaluation system to 
calculate the digital economy index through the entropy 
method, whereas an accepted indicator system for 
calculating the regional digital economy is still lacking. 
Different researchers select various indicators to build 
an evaluation system. Specifically, Li et al. established 
an index system including three sub-indictors: the 
informatization, internet, and digital transaction 
development [30]. Also, considering the availability of 
city-level data, Zhang et al. built a comprehensive index 
system consisting of three sub-indicators: fundamentals 
of digital industry, digital innovation capability, and 
digital application degree [22].

Since the digital economy includes essential factors 
affecting energy consumption and carbon emissions, 
pioneers have investigated the environmental effects 
of the digital economy from multiple perspectives [31], 
especially in the field of carbon reduction. In fact, 
substantial studies have examined the impact of the 
digital economy on carbon emissions; however, scholars 
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still disagree with their nexus. Firstly, some researchers 
consider that the digital economy leads to more carbon 
emissions. Constructing a well-rounded input-output 
framework, Zhou et al. confirmed that the carbon 
contribution of digital economy is becoming more and 
more prominent [32]. Also, Zhang et al. concluded 
that the digital economy development increases carbon 
emissions [22]. Secondly, some scholars argue that 
the digital economy development is beneficial to cut 
carbon emissions. Based on mechanism analysis,  
Zhu et al. found that the digital economy is conductive 
to carbon reduction through promoting technological 
innovation and upgrading industrial structure [33].  
Yu et al. also concluded that the digital economy helps 
to lower carbon emissions [34]. Moreover, Zhang  
et al. confirmed that the digital economy plays an 
essential role in green development. Finally, some 
academics insist that the nexus between the digital 
economy and carbon emissions is nonlinear [35]. 
Considering the spatial effects, Li and Wang found 
that the digital economy’s direct and indirect impacts 
on carbon emissions show an inverted U-shaped nexus 
[36].

In summary, although some academics have 
investigated the relationship between the digital 
economy and carbon emissions, few studies consider the 
impact of the digital economy on economic development 
and carbon reduction. Some pioneers have explored this 
research topic. Applying China’s provincial data from 
2009 to 2019, Han et al. found that the digital economy 
development plays a significant role in boosting TFCP 
[37]. Likewise, Liu et al. used China’s provincial 
data from 2011 to 2019 and confirmed the significant 
positive direct and spillover relationship between the 
digital economy and TFCP [38]. Consequently, it is 
worth studying the impact of the digital economy on 
TFCP. Employing China’s provincial data from 2012 
to 2019, this paper aims to study the direct and spatial 
effects of the digital economy on TFCP and further 
reveal its impact mechanism, thus providing theoretical 
support for green economic development in developing 
countries.

Theoretical Assumptions

In this digital epoch, the digital economy has been 
dramatically integrated with life and production and 
contributed to achieving low-carbon transformation, 
thus helping to TFCP improvement. With reference 
to existing literature, the impacts of the digital 
economy on TFCP can be manifested in three aspects. 
Firstly, the digital industrialization, represented by 
information technology and digital services, is friendly 
to environmental sustainability due to its green 
attributes. There is no doubt that the digital industries 
are much greener than traditional ones, which exerts 
more favorable impact on green development [39]. 
Secondly, industrial digitalization, supported by the 

digital technologies and data resources, has gradually 
integrated with the conventional industries, which helps 
these industries to transform into an environmental-
friendly stage while maintaining high-speed output 
growth [40]. Finally, the carbon trading market, relying 
on digital innovation and application, helps to promote 
green technology innovation. Weng and Xu revealed 
that the boom of the digital economy is conductive 
to coping with thorny problems that obstruct the 
development of carbon emission trading market [41]. 
Therefore, motivated by the significant environmental 
effects of digital economy, some academics conducted 
empirical research to analyze their relationship and 
confirmed that the digital economy can significantly 
improve TFCP [22, 37, 38]. In summary, this paper puts 
forth the hypothesis 1:

H1. The digital economy development contributes to 
enhancing TFCP. 

The spatial effects of the digital economy on TFCP 
may be summarized as the following three points. 
Firstly, the boom of the digital economy contributes 
to speed up the flow of information and human capital 
and cultivate new industries, which improves the 
resource allocation efficiency in a specific area and 
its neighboring areas [31]. Secondly, the development 
of the digital economy breaks through the space-time 
boundary of traditional transactions and promotes the 
regional collaboration strategies through the spatial flow 
of information and digital technologies [22]. Finally, 
because of the collaboration and interaction between 
local and adjacent governments [42], local governments 
may inevitably formulate similar but competitive 
policies for the digital economy development, which 
can also explain its spatial spillover effect. In short, this 
paper puts forward the hypothesis 2:

H2. The impact of the digital economy on TFCP has 
positive spillover effects.

Since the digital economy has developed rapidly, 
the penetration of the digital economy in enterprises 
plays a critical role in reducing the energy intensity (EI) 
through promoting green technology innovation and 
introducing new production factor [43]. Moreover, the 
digital economy development can help the enterprises 
transform to a greener production stage and increase 
the output of unit energy, which contributes to TFCP 
improvement. In the Chinese context, based on the 
provincial panel data from 2012 to 2019, Guo et al. 
concluded that there is significant negative relationship 
between the digital economy and EI [44]. In addition, 
applying the panel data of 277 cities from 2011 to 
2019, Zhang et al. found that the digital economy is 
conductive to boosting carbon emission performance 
through lowering the EI [22]. Therefore, this paper 
proposes the hypothesis 3:

H3. The development of the digital economy can 
boost TFCP through reducing EI.



Wan S., et al.3812

Materials and Methods  

Measurement of Total Factor Carbon Productivity

This paper employs the non-radical directional 
distance function (NDDF) to measure TFCP. The 
NDDF, proposed by Zhou et al. [45], is a relatively new 
DEA model and overcomes the limitation in measuring 
efficiency by considering the proportion of expected 
and unexpected outputs. It is set in the following form:

(1)

where ωT = (ωK, ωL, ωE, ωY, ωC)T represents the weight 
vector of input and output, g = (gK, gL, gE, gY, gC) 
denotes the directional vector of input and output, 
and β = (βK, βL, βE, βY, βC)T ≥0 is the slack variable, 
measuring the inefficiency of input and output. 
Specifically, this paper considers the capital stock (K), 
energy consumption (E), and labor (L) as inputs, GDP 
(Y) as desirable output, and carbon emissions (C) as 
undesirable output. Moreover, following the practice 
of Zhang and Choi [46], the calculation results can be 
solved by linear programming as follows:

(2)

where the weight and directional vectors can be set in 
different ways. Given that there are three inputs, one 
desirable output, and one undesirable output, this paper 
sets the weight vector to ωT = (1/9, 1/9, 1/9, 1/3, 1/3)T and 
the directional vector to g = (-K, - L, -E, Y,- C), which 
is based on previous studies [45-47]. Following existing 
literature [45, 48], this paper describes the TFCP as the 
average efficiency, therefore, it can be formulated as 
follows:

    (3)

where βK
*, βL

*, βE
*, βY

*, and βC
* are the optimal solution 

to Eq. (2). The efficiencies are between 0 and 1. 
Specifically, the closer the TFCP is to 1, the higher the 
TFCP is.

Measurement of Digital Economy

This paper measures the digital economy level 
through the improved entropy method. Firstly, 
the threshold method is used to standardization. 
Considering that all indicators are positive indicators, 
this paper applies the following formula:

             (4)

where vij is the original data of the j-th indicator in 
the i-th province. xij is the standardized data. k and q 
can be set based on the transformed data distribution 
interval. Given that all data would be logarithmically 
processed before empirical analysis, the interval is set 
between 1 and 2, therefore, k and q are both taken as 1. 
However, with the panel data of China’s provinces, the 
traditional entropy method fails to capture the dynamic 
features of the digital economy. This paper, therefore, 
applies the improved entropy method to make the digital 
economy index comparable across the year. Unlike the 
conventional method, the improved one considers the 
time dimension. This paper sets 2012 as the baseline 
year and standardizes the data with the following 
equation:

               (5)

where vij1 denotes the original data of the j-th indicator of 
the i-th province in the baseline year. After standardizing, 
the measurement indicators can be comparable between 
years. The maximum and minimum scores in the non-
baseline year, notably, may be greater than two or less 
than one, reflecting the dynamic changes of the digital 
economy. Finally, after obtaining the entropy value and 
weight, this study calculates the digital economy (DE) 
index as follows:

 
(6)

where wj denotes the weight of j-th indicator and DEit  
represents the level of the digital economy in the i-th 
province and t-th year. Obviously, the larger the DE 
index, the higher the digital economy level.

Model Construction

Motivated by the STIRPAT model framework, this 
study constructs the benchmark model to study the 
effect of the digital economy on TFCP.

   (7)

where TFCPit and DEit denote the level of TFCP and the 
digital economy in province i in year t. Xit represents 
a set of the control variables, such as population and 
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and this paper calculates it through the perpetual 
inventory method [9, 51]. Labor is characterized by the 
total number of employees in the local region [7, 52]. 
Additionally, energy is measured by the total energy 
consumption of each province in tons of standard 
coal [37]. Output indicators include both desired and 
undesired outputs. Specifically, the desired output is 
each province’s real gross regional product, and the 
undesired output is each province’s CO2 emissions.

The core explanatory variable is the digital 
economy. Considering the broad sense of the digital 
economy and the availability of data, this paper builds 
a multi-dimensional index system to measure it from 
four dimensions, including digital infrastructure, digital 
industrialization, industrial digitization, and digital 
innovation, respectively. The selection of all indicators 
is based on existing literature [7, 22]. Furthermore, 
the improved entropy method is utilized to capture the 
dynamic changes of the digital economy. The indicators 
are listed in Table 1.

The mediating variable of this paper is the energy 
intensity represented by the ratio of total energy 
consumption to the real GDP. The control variables 
applied in this paper include population density [7, 53], 
economic development [9, 18, 54], urbanization level [9, 
18, 53, 54], and energy structure [9, 36]. Specifically, the 
permanent population at the end of the year per square 
kilometer is employed to measure population density 
(PD). Per capita real gross domestic product (GDPP) 
represents economic development. Moreover, the ratio 
of urban population to the total regional population 
is used to represent the level of urbanization (UL). 
The energy consumption structure (ES) is expressed 
by the proportion of coal consumption in total energy 
consumption. 

Due to the data availability, this paper selects the 
panel data of 30 provinces from 2012 to 2019 as the 
research samples. The data is mainly collected from 
China Emission Accounts and Datasets (CEADs), 
“China Statistical Yearbook”, “China Energy Statistical 
Yearbook”, “China Information Technology Statistical 
Yearbook” and “China Tertiary Industry Statistical 
Yearbook”. The digital finance index is derived from 
the official data published by the Institute of Digital 
Finance at Peking University [55]. In addition, the price 
data is deflated based on the price in 2012, and missing 
data is filled in by linear interpolation. Finally, this 
paper takes the natural logarithm of each variable to 
reduce the heteroscedasticity. The descriptive statistics 
are listed in Table 2.

Results and Discussion

Relevant Tests

Before estimating the panel regression model, 
some relevant tests are conducted to select the suitable 
model. Firstly, this paper adopts the correlation  

affluence. If the core coefficient α1 is significantly 
positive, the promotion effect of the digital economy 
on TFCP is identified. γ are the coefficients of control 
variables. ηt and vt are the individual fixed and time 
fixed effects. eit denotes the random perturbation term. 
α0 is the constant term.

The spatial error models (SEM), spatial lag models 
(SLM), and spatial Durbin models (SDM) are usually 
applied in spatial econometric analysis. Notably, the 
SDM, a more general method than the SEM or SLM, 
considers both spatial lag and spatial error [49]. Given 
that, this paper adopts the SDM to capture the spillover 
impact of the digital economy on TFCP.

     
(8)

where ρ and λ are the coefficients of spatial lag and 
spatial error, respectively. εit and μit denote the spatial 
auto-correlation error and stochastic error. θ and 
η are the spatial lag coefficients. Wij is the spatial 
weight matrix, measured by a composite matrix of the 
geographic inverse distance matrix and adjacent matrix. 

To examine the potential mediating mechanism, this 
paper adopts the three-step model proposed by Baron 
and Kenny [50].

 (9)

 (10)

   (11)

where EI is the mediating variable. Formula (9) 
examines the impact of digital economy on TFCP, which 
is consistent with the baseline model. Formula (10) 
identifies the relationship between the digital economy 
and mediating variable. Formula (11) introduces the 
mediating variable in the model and examines the 
relationship between the digital economy and TFCP 
again. Specifically, if the coefficient α1 is significantly 
positive and β1 and φ2 are significantly negative, the 
mediating effect of EI is confirmed. 

Variables and Data

The explained variable is total factor carbon 
productivity. With reference to Zhang and Liu [7], this 
paper adopts the NDDF method to measure TFCP. Input 
indicators include capital, labor, and energy. Capital 
is represented by the size of fixed asset investment, 
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and multicollinearity tests. Then, the Hausman test 
is used to test the appropriateness of the fixed effects 
model. Finally, some diagnostic tests are applied to 
reveal the characteristics of panel data. 

As shown in Table 3, the correlation coefficients 
of each variable are statistically significant at the 
significant level of 1%. Especially, there is a strong 
correlation between the core explanatory variable and 
explained variable. Furthermore, this paper applies the 

variance inflation factor (VIF) to test multicollinearity. 
The results are presented in the first column of Table 3. 
Notably, the values of VIF for each variable and mean 
VIF are all less than 10, demonstrating that there is 
no multicollinearity problem. Then, this paper adopts 
the Hausman test [56] and the results are shown in 
Table 4. The null hypothesis that the random effects 
model is more proper than the fixed effects model is 
rejected. This paper, therefore, selects the fixed effects 

Table 1. Indicators for measuring the digital economy level.

Main 
indicator Primary indicator Secondary indicator Tertiary indicator Unit

Digital 
Economy

Digital infrastructure

Communication level
Number of mobile phone users per 100 people %

Internet penetration rate %

Communication 
capability

Number of Internet domain names 104

Number of Internet broadband access ports 104

Length of fiber optic cable lines 104 km

Digital 
industrialization

Digital 
industry

Software business income 104 yuan

Total industrial output value of digital industry 106 yuan

Digital 
service

Information technology service income 104 yuan

Number of employees engaged in digital industry 104

Total amount of telecommunications business 106 yuan

Industrial
digitalization

Enterprise 
applications

Proportion of enterprises with e-commerce 
transaction %

Number of computers used per 100 people -

Inclusive applications

E-commerce transaction amount 106 yuan

Digital financial digitization index -

Express delivery volume 104

Digital innovation

Innovation input
Internal expenditure on R&D 104 yuan

Full-time equivalent of R&D personnel -

Innovation output

Number of patent applications granted -

Number of digital economy enterprises -

Number of new product development projects -

Table 2. Descriptive statistics.

Variable Abbreviation Obs Mean Standard deviation Min Max

Total factor carbon productivity lnTFCP 240 -0.277 0.238 -0.83 0

Digital economy lnDE 240 0.467 0.313 0.031 1.910

Energy intensity lnEI 240 -0.082 0.507 -1.105 1.231

Population density lnPD 240 5.469 1.296 2.067 8.278

Economic development lnGDPP 240 1.313 0.386 0.631 2.315

Urbanization level lnUL 240 4.059 0.195 3.592 4.495

Energy structure lnES 240 4.404 0.587 0.916 5.506



The Impact of Digital Economy on Total Factor... 3815

model. Furthermore, as presented in Table 4, this paper 
successively tests the presence of the heteroskedasticity, 
autocorrelation, and cross-sectional dependence [57-59]. 
The results indicate that there exist heteroskedasticity, 
autocorrelation, and cross-sectional independence. 
Hence, this paper estimates the two-way fixed effects 
model with Driscoll and Kraay standard errors to 
obtain robust results [60]. Finally, the Moran’s I index 
is adopted to conduct spatial correlation test. Table 5 
lists Moran’s I values and statistic tests of TFCP. The 
results show that Moran’s I statistics are all significantly 
positive, signifying a positive spatial correlation of 
TFCP. 

Direct Effect

Considering that the digital economy is a 
comprehensive concept and includes many aspects, this 
paper attempts to investigate its overall impact on TFCP, 
further studying its impact at the subdivision level. 
Consequently, referring to the secondary indicators of 
the digital economy index, the index is disaggregated 
into four sub-indicators. Table 6 displays the impact 
of the digital economy and its sub-indicators on TFCP. 
The results show that the estimation coefficient of 
lnDE is significantly positive at the significance level 
of 1%, signifying that the digital economy contributes 
to improving TFCP; thus, H1 is verified. The results 
are consistent with the conclusions drawn by Zhang 
et al. [22]. Specifically, for every 1% increase in the 
digital economy, TFCP enhances by 0.230%. As 
reported in Table 6, all sub-indicators have significant 
positive effects on improving TFCP. Notably, digital 
infrastructure exerts the most substantial impact on 
TFCP, which may because digital infrastructure is the 
solid foundation for other dimensions. The finding also 
coincides with the conclusions drawn by Tang et al. [61].

Spatial Effect

Following the practice of Elhorst [49], this paper 
conducts some model selection tests to choose an 
appropriate spatial model, including the robust Lagrange 
multiplier (LM) tests, Hausman tests, LR tests and Wald 
tests. Table 7 indicates that robust LM tests are rejected 
at 1% significance level, demonstrating that the spatial 

Table 3. Correlation and multicollinearity tests.

Table 4. Results of diagnostic tests.

Table 5. Moran’s I index of TFCP.

Variables VIF (1) (2) (3) (4) (5) (6)

(1) lnTFCP - 1.000

(2) lnDE 1.59 0.496*** 1.000

(3) lnPD 1.76 0.657*** 0.491*** 1.000

(4) lnGDPP 5.51 0.593*** 0.553*** 0.628*** 1.000

(5) lnUL 4.54 0.441*** 0.544*** 0.527*** 0.879*** 1.000

(6) lnES 1.36 -0.496*** -0.388*** -0.352*** -0.493*** -0.437*** 1.000

Mean VIF 3.72 - - - - - -

Notes: *** signify significance at 1% level.

Test Statistic P value

Hausman test   24.66 0.000

Modified Wald test for GroupWise heteroskedasticity 1507.42 0.000

Wooldridge test for autocorrelation in panel data   26.74 0.000

Frees’ test of cross-sectional independence    1.53 0.000

Year Moran’s I index

2012  0.407***

2013 0.293**

2014  0.325***

2015 0.315**

2016  0.465***

2017  0.444***

2018  0.501***

2019  0.622***

Notes: ** and *** signify significance at 5%, and 1% level.
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models are superior to the static models. Additionally, 
Table 8 represents the Hausman tests in three fixed 
effect models. The null hypothesis that the random 
effect model is superior to the fixed effect model is 
rejected in three models. So, the fixed effect models are 
more appropriate. Finally, this paper examines whether 
the SDM can be simplified to SLM or SEM through LR 
and Wald tests. Table 8 shows that all the statistics pass 
the significance test, signifying that the null hypothesis 
that SDM can be simplified to SLM or SEM is rejected. 

In summary, the fixed effect SDM is used for the 
empirical analysis. 

Then, this paper selects the appropriate spatial 
model according to the log-likelihood and R2. From the 
results shown in Table 9, the two-way fixed effect model 
is superior to the other models. The empirical analysis, 
therefore, is according to the SDM with spatial and time 
fixed effects. 

SDM can reveal the relationship between the digital 
economy and TFCP; unfortunately, the estimated 
coefficients of explanatory variables may not reflect 
the marginal effects on TFCP [62]. Referring to Lesage 
and Pace [62], this study, therefore, further decomposes 
the marginal effects of SDM. The results in Table 10 
show that the direct and spillover effects of the digital 
economy on TFCP are all significantly positive. 
Specifically, the direct effect of lnDE is 0.129, signifying 

Table 6. Benchmark model results.

Variable (1) (2) (3) (4) (5)

DE Infrastructure Digital Industry Innovation

lnDE 0.230***

(0.0529)

lnInfrastructure 0.230**

(0.0871)

lnDigital 0.226***

(0.0634)

lnIndustry 0.169***

(0.0339)

lnInnovation 0.138***

(0.0374)

lnPD 0.491 0.834 0.626 0.517 0.710

(0.422) (0.448) (0.408) (0.434) (0.419)

lnGDPP 0.504*** 0.409*** 0.506*** 0.504*** 0.519***

(0.127) (0.0874) (0.115) (0.137) (0.114)

lnUL 0.953*** 0.664*** 0.780*** 1.036*** 0.819***

(0.0896) (0.0950) (0.0826) (0.0970) (0.113)

lnES -0.0721*** -0.0791*** -0.0531*** -0.0776*** -0.0776***

(0.0183) (0.0224) (0.0135) (0.0184) (0.0221)

Constant -7.232** -7.794** -7.365** -7.665** -7.875**

(2.651) (2.453) (2.434) (2.763) (2.642)

Regional fixed Yes Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes Yes

N 240 240 240 240 240

R2 0.591 0.573 0.587 0.589 0.576

Notes: Figures in () are the Driscoll and Kraay standard errors. *, **, and *** signify significance at 10%, 5%, and 1% level. 

Table 7. Results of robust LM tests.

Test Statistic P value

Robust LM spatial lag    15.827 0.000

Robust LM spatial error   217.221 0.000
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that a 1% increase in the digital economy directly leads 
to a 0.129% improvement in a local province’s TFCP. 
The finding confirms the H1 again. Moreover, the 
indirect effect of lnDE is 0.241, suggesting that every 
1% increase in the digital economy in adjacent provinces 
results in a 0.241% enhancement in a local province’s 

TFCP. Interestingly, the spillover impact is much 
higher than the direct one, signifying that the digital 
economy has substantial positive spillovers on TFCP; 
therefore, H2 is proved. The possible reason behind this 
spatial effect is that the digital economy is conductive 
to shortening the space-time distance and accelerating 

Table 8. Results of Hausman test, LR tests and Wald tests.

Table 9. Spatial effect results.

Table 10. Marginal effects of digital economy on TFCP.

Test
Statistic

Spatial fixed effects Time period fixed effects Spatial and time fixed effects

Hausman test 36.09*** 27.80*** 160.86***

LR test (spatial lag) 17.68*** 42.85*** 10.72*

LR test (spatial error) 18.09*** 47.24***   5.65***

Wald test (spatial lag) 18.02*** 47.98*** 10.68*

Wald test (spatial error) 16.41*** 50.39***  16.31***

Notes: *, **, and *** signify significance at 10%, 5%, and 1% level. 

(1) (2) (3)

Variable Spatial fixed effects Time fixed effects Spatial and time fixed effects

lnDE 0.0787 0.154*** 0.117*

(0.0780) (0.0495) (0.0671)

W*lnDE -0.0919 0.155** 0.210**

(0.0936) (0.0754) (0.0980)

Control variables Yes Yes Yes

W*Control variables Yes Yes Yes

rho 0.555*** 0.0103 0.150**

(0.0519) (0.0952) (0.0731)

sigma2_e 0.00474*** 0.0163*** 0.00335***

(0.000445) (0.00149) (0.000307)

N 240 240 240

Log-L 289.485 153.280 342.699

R2 0.259 0.563 0.511

Notes: Figures in () are the standard errors. *, **, and *** signify significance at 10%, 5%, and 1% level. 

Variable Composite matrix Inverse matrix

Direct effect Indirect effect Total effect Direct 
effect Indirect effect Total effect

lnDE 0.129* 0.241** 0.370*** 0.152** 0.500** 0.652***

(0.0671) (0.0963) (0.0913) (0.0609) (0.196) (0.188)

Notes: *, **, and *** signify significance at 10%, 5%, and 1% level.
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the technological innovation, therefore boosting the 
spillover effect of TFCP. It is argued that the spatial 
weight matrix can influence the estimated results of 
spatial models. Consequently, this paper employs an 

inverse distance matrix to conduct robustness checks. 
As reported in Table 10, the spatial effect of the digital 
economy on TFCP is significantly positive, proving the 
robustness of H2.

Mediating Effect

The above analysis confirms the direct and 
spatial spillover effect of the digital economy, but the 
intermediary effect is also worth studying. Table 11 
lists the results of the three-step method. Specifically,  
the results of formula (9) are shown in column (1) 
of Table 6. The results of formula (10) and (11) are 
presented in Table 11. The coefficient of lnDE is 
significantly positive in Table 6 while significantly 
negative in column (1) of Table 11. And the coefficient of 
lnEI is significantly negative in column (2) of Table 11. 
The results illustrate that the development of the digital 
economy is conductive to boosting TFCP through 
reducing the energy intensity, which confirms H3 
of this paper. Generally, the digital economy plays a 
crucial role in the economic mode transformation and 
energy conservation. The wide application of digital 
economy in life and production contributes to the 
decoupling between the economic development and 
energy consumption, thus lowering the energy intensity, 
which is consistent with the conclusion drawn by Zhang 
et al. [22]. At the same time, low energy density is 
conductive to TFCP improvement. Furthermore, to 
check the robustness of the mediating effect, this paper 

Table 11. Mediating effect results.

(1) (2)

lnEI lnCO2

lnDE -0.225*** 0.171**

(0.0270) (0.0523)

lnEI -0.262**

(0.0781)

Control variables Yes Yes

Constant -4.849*** -8.503**

(1.105) (2.652)

Regional fixed Yes Yes

Time fixed Yes Yes

N 240 240

R2 0.492 0.607

Bootstrap test (500 samples) 0.0664***

Notes: Figures in () are the Driscoll and Kraay standard 
errors. *, **, and *** signify significance at 10%, 5%, and 
1% level. 

Table 12. Heterogeneity effect results.

Variable (1)
Eastern

(2)
Central

(3)
Western

(4)
Northeastern

lnDE×D1 0.0688*

(0.0320)

lnDE×D2 0.163*

(0.0800)

lnDE×D3 -0.0488

(0.0307)

lnDE×D4 -0.119

(0.126)

Control variables Yes Yes Yes Yes

Constant -8.393** -8.748** -9.160** -8.026***

(2.972) (2.689) (2.949) (2.214)

Regional fixed Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes

N 240 240 240 240

R2 0.565 0.576 0.562 0.561

Notes: Figures in () are the Driscoll and Kraay standard errors. *, **, and *** signify significance at 10%, 5%, and 1% level. 
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adopts the Bootstrap test, and the results are shown in 
Table 11. The significant of the mediating effect is at the 
1% level, which confirms the robustness of H3.

Heterogeneous Effect

To further investigate the heterogeneous impact of 
the digital economy on TFCP, this paper divides the 
sample into four regions: eastern region, central region, 
western region, and northeastern region, respectively. 
Then, four dummy variables are introduced to examine 
the heterogenous effect. Specifically, if i∈eastern region, 
D1 = 1; if i∈central region, D2 = 1; i∈western region, 
D3 = 1; and i∈northeastern region, D4 = 1. As shown 
in Table 12, the impact of the digital economy on TFCP 
is significantly positive in Mid-Eastern China; however, 
this impact is not significant in other areas. The Mid-
Eastern China has a sound economic foundation and 
close regional cooperation strategies, accounting for 
its green and low-carbon development. Comparatively, 
in western and northeastern areas, the impact is not 
significant, possibly because of their backward digital 

infrastructure, underdeveloped digitalization level, and 
poor digital innovation.

Robustness test

(1) Substitution of the explained variable. This paper 
introduces the carbon intensity (CI), represented by 
ratio of carbon emissions to the real GDP, to replace 
TFCP. Column (1) of Table 13 illustrates that the digital 
economy can significantly decrease CI, which is the 
same as the favorable impact of the digital economy on 
enhancing TFCP. In addition, the estimated coefficients 
of the control variables have not changed significantly, 
which demonstrates the robustness of H1.

(2) Replacement of the core explanatory variable. 
Instead of the improved entropy method, this paper 
applies the factor analysis to measure the digital 
economy and conduct robustness test. Specifically, 
the factor score (lnDE_F) is applied to substitute the 
explanatory variable (lnDE). Again, Column (2) of 
Table 13 confirms the positive nexus between the digital 
economy and TFCP, proving the robustness of H1.

Table 13. Robustness test results.

Variable (1) (2) (3) (4)

lnCI lnTFCP SYS-GMM 2SLS

lnDE -0.0147*** 0.0853**

(0.00320) (0.0400)

lnDE_F 0.151***

(0.0371)

L.lnTFCP 0.784***

(0.0688)

lnIV 0.210**

(0.0982)

Control variables Yes Yes Yes Yes

Constant -0.000937 -8.564** 0.800***

(0.0741) (2.699) (0.295)

Regional fixed Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes

N 240 240 210 210

R2 0.279 0.567 0.546

AR (1) 0.005

AR (2) 0.395

P-value of Hansen 0.999

Under-identification test 19.082***

Weak identification test 46.467***

Notes: Figures in () are the Driscoll and Kraay standard errors in Model (1) and (2). Figures in () are the robust standard errors in 
Model (3) and (4). *, **, and *** signify significance at 10%, 5%, and 1% level
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(3) Replacement of the estimated method. To 
check the validity of the two-way fixed effects model, 
this paper employs the System Generalized Method 
of Moment (SYS-GMM) method to estimate the 
benchmark model. As presented in column (3) of Table 
13, the AR (1) and AR (2) tests illustrate that the first-
order serial correlation is not rejected, and the second-
order serial correlation is rejected. Also, the results 
of Hansen test reject the null hypothesis, signifying 
that the instrument variables are effective. Therefore, 
the SYS-GMM method is applicable to the baseline 
model. Column (3) of Table 13 indicates that the digital 
economy can significantly boost TFCP, proving the 
robustness of H1 again.

(4) Solving the endogeneity problem. To cope with 
the potential endogeneity issue between the digital 
economy and TFCP, this paper applies the instrumental 
variable regression. Using the research by Bartik  
as a guide [63], this study introduces the “Bartik 
instrument” variable. Specifically, the product of the 
digital economy level lagging by one period and the 
first order difference of national digital economy 
level (lnDEi,t–1×ΔlnDEi,t–1) to is used to construct the 
instrumental variable. Obtained from an average level 
of 30 provinces, the national digital economy level 
is not easily impacted by a province. Moreover, the 
difference item is exogenous to a single province. 
Consequently, this paper adopts the two-stage least 
square (2SLS) method based on the “Bartik instrument” 
variable to solve the endogeneity problem. Column (4) 
of Table 13 lists the relevant tests and regression results. 
Specifically, the statistics of the under-identification test 
and weak identification test are all significant at 1% 
level, signifying that the model can be identified, and 
no weak instrumental variable exists. The construction 
of this instrumental variable, therefore, is appropriate 
for empirical analysis. Moreover, the estimated 
coefficient of lnIV is significantly positive, thus proving 
the robustness of H1.

Conclusions

The digital economy has become an essential pillar 
of energy conservation and carbon reduction. Applying 
the panel data of China’s provinces from 2012 to 2019, 
this paper innovatively investigates the impact of the 
digital economy on total factor carbon productivity 
(TFCP) from multiple perspectives. The main 
conclusions are as follows: (1) The digital economy 
development is beneficial to boost TFCP. Moreover, this 
impact is significantly positive in Mid-Eastern China; 
however, the impact is not significant in other areas. 
(2) The effect of the digital economy on TFCP has a 
significant positive spillover effect. (3) Energy intensity 
plays a significant intermediary role in the impact 
of the digital economy on TFCP. Based on the above 
conclusions, this paper provides some practical policy 
implications.

(1) Chinese government should vigorously 
encourage the wide application of digital technologies 
in enterprises and promote the digital infrastructure 
construction. The application of digital technologies, 
such as cloud computing, artificial intelligence, and 
Internet of Things, can help the whole society to 
achieve green and low-carbon development. Therefore, 
the government should build a digital economy level 
evaluation system for different types of enterprises, thus 
providing appropriate financial and technical support 
for them. More importantly, the government should pay 
a closer attention to digital infrastructure construction, 
especially for the underdeveloped regions. The 
construction and upgrading of the digital infrastructure 
can build a solid foundation for the high-speed 
development of digital economy in a region, further 
stimulating its potential to achieve green transition. 

(2) Chinese government should effectively utilize 
the spatial effects of the digital economy to formulate 
regional collaboration policies for boosting TFCP. 
Specifically, local governments should formulate the 
strategies for developing the digital economy based 
on economic conditions and environmental recourses, 
entirely playing the positive externality of the digital 
economy. In the Mid-Eastern China, the government 
should not only promote the green technology innovation 
and economic model transition, but also focus on 
cultivate the green and low-carbon awareness and 
behaviors of residents through the “soft governance”, 
thus promoting TFCP comprehensively. In contrast, 
other regions should clearly realize the “Digital Gap” 
and properly reduce carbon emission reduction targets. 
Moreover, local government should strongly promote 
interregional cooperation with their neighboring regions 
and upgrade the digital infrastructure, boosting the 
TFCP step by step. 

(3) Chinese government should pay attention to the 
energy conservation and reduce the energy intensity. 
The traditional economic activities are closely related 
to high energy consumption; however, the attributes 
of the digital economy are associated with green and 
sustainable development. Specifically, the government 
should promote the digitalization in traditional high-
polluting industries, further helping them to transform 
to a low energy consumption stage. Moreover, the 
government should also accelerate the application of 
digital technologies in the carbon emission monitoring 
of enterprises. With the help of such technologies, 
relevant regulations should be formulated to strictly 
limit carbon emissions in energy-intensive industries, 
thus reducing the energy intensity.

This paper empirically investigates the impact of 
the digital economy on China’s TFCP, but scholars can 
make some improvements in future research. First, this 
paper employs the provincial-level panel data to conduct 
empirical analysis; however, there are tremendous 
internal disparities in China’s provinces. If data is 
available, scholars can apply China’s prefecture-level 
panel data to conduct empirical research. Secondly, this 
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paper takes the China’s provinces as the sample from 
a macro perspective. But limited by the data from a 
micro perspective, how the digital economy influences 
the TFCP of enterprises is worth studying in the future. 
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