Original Research

Empirical Study of Industrial Green Development Level of Oil and Gas Resource-Based Prefecture-Level Cities in China Based on Entropy Weight-TOPSIS Model

Sun Fei¹, Sun Chongliang²*, Li Youjun³

¹School of Economics and Management, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
 ²Daqing Oilfield Design Institute Ltd., Daqing, Heilongjiang 163712, China
 ³Institute of Petroleum Economics and Management, Northeast Petroleum University, Daqing, Heilongjiang 163318, China

Received: 2 February 2023 Accepted: 29 April 2023

Abstract

The industrial green development of oil and gas resource-based cities is a way towards "green industry" and an essential process in industrial development. Based on the actual situations of oil and gas resource-based cities, the entropy weight-TOPSIS model is used to measure the industrial green development levels of oil and gas resource-based cities in China during 2004-2018, and the evolution trend and characteristics of the industrial green development of the oil and gas resource-based cities were evaluated from two perspectives of overall system and sub-system. The results demonstrate that the industrial green development levels of the oil and gas resource-based cities are generally low and vary significantly among cities; According to the variation of the industrial green development levels of the oil and gas resource-based cities show a similar variation trend over the 15 years; The ranking of the sub-system nearness degrees of the industrial green development levels of different oil and gas resource-based cities in China varies greatly over the 15 years. In view of the findings, we recommend that cities increase investments in environmental protection projects, introduce clean production, and establish foundations of industrial green development.

Keywords: oil and gas resource-based city, industrial green development level, nearness degree, entropy weight-TOPSIS model, resource consumption intensity

^{*}e-mail: sunchongliang@petrochina.com.cn

Introduction

According to Plan for Industrial Green Development (2016-2020) (Ministry of Industry and Information Technology of the People's Republic of China, 2016), promoting green growth and implementing new green policies are common choices of major global economies, and promoting green development is an inevitable way to enhance international competitiveness. Nevertheless, China's industry has not yet escaped from the development mode of "high input, high consumption, and high emission", with low resource and energy utilization efficiency and prominent ecological and environmental issues [1]. Oil and gas resource-based cities are resource-based cities with oil and gas extraction and processing as their mainstay industries, and resource extraction and related industries take a great part in their industrial structure. Therefore, the development of these cities is limited by serious ecological environmental issues. For instance, oil field development can cause air pollution in oil and gas resource-based cities, and the pollutants mainly include SO₂ and dust, which can also pollute soil, and the pollutants contain large amounts of NaCl, NaOH, and Na₂CO₃, which can deteriorate the physical properties of soil and even make soil unable to grow plants. Therefore, with the worsening of the resource environment in China and under the constraints of resource-environmental carrying capacity, it is inevitable for the oil and gas resource-based cities to walk toward industrial green development.

Industrial green development is the crucial way to promote the high-quality development of China's economy. It can change the mode of industrial economic growth and make it change to the direction of "two low and one high", namely "low emission, low input, high output" [2]. The green development of industry should aim at eradicating poverty, improving employment, and achieving sustainable development of industry. In the process of industrial production, it also should improve industrial energy efficiency, reduce pollution, and reduce carbon emissions. Therefore, the measurement of industrial green development level should be considered from the aspects of economy, environment, society, science and technology, etc. [3-4].

With regard to the construction of the evaluation index system of industrial green development level, many scholars selected various relevant indicators from five aspects of green production, green emissions, green protection, green innovation, and green quality and efficiency in combination with the requirements of modern industrial green development, and finally built the evaluation index system of industrial green development level after repeated screening [5]. On the basis of previous studies, some scholars have drawn on some of the indicators in the Green Development Indicator System (2016) formulated by the National Development and Reform Commission. And after selection, they have built an evaluation indicator system for the level of industrial green development, which mainly covers the indicators of industrial growth level, industrial research and development intensity, government support, industrial energy consumption level, pollution control efficiency and other aspects [6-7]. At present, level evaluating of the industrial green development are still focused on quantitative analysis methods, such as entropy method, TOPISI method [8], dynamic panel system GMM estimation method [9], factor analysis model synthesis, k-means clustering analysis method, etc. and the green development level and supply-side power structure of industry are evaluated in Hebei Province, the Yangtze River Economic Belt of our country.

To sum up, the research on the evaluation index system of industrial green development level mainly focuses on the evaluation from the perspective of development, ecological environment, economic resource consumption, social life, etc. with the constructed index system generally including resources and environment, social progress, ecological civilization, scientific and technological innovation and other indicators, which are combined with economic development indicators to jointly measure the level of industrial green development level. While the research on evaluation methods of industrial green development level focuses on TOPISIS method, entropy method, dynamic panel system GMM estimation method, factor analysis method, k-means clustering analysis and other methods. From the perspective of research objects, most of the research is carried out in regions or individual provinces, with less research on resource-based cities, and less research on oil and gas cities. Therefore, it has certain practical significance for this paper to take oil and gas cities as the research object, uses entropy weight-TOPSIS model to measure the level of industrial green development of oil and gas cities, and evaluates the evolution trend and characteristics of industrial green development of oil and gas cities from the two aspects of total system and subsystem.

Materials and Method

Data Source

Considering the availability and comparability of data from various cities, this paper selects 2004-2018 as the research period, and selects China's prefecture-level oil and gas cities as the empirical evaluation object. There are 18 prefecture-level oil and gas cities in China, of which Hami, Qingyang, Zhaotong and Fushun have serious lack of research index data. Therefore, this paper collected the index data of 14 prefecture-level oil and gas cities in the eastern, central and western regions (Table 1) for research. The data comes from the EPS database, China Urban Statistical Yearbook and the official website, and the OLS trend analysis method is used to fill in the missing data.

Region	Province	Oil and gas city	City level
	Heilongjiang	Daqing	City at prefecture level
	Hebei	Tangshan	City at prefecture level
Eastern	Liaoning	Panjin	City at prefecture level
	Shandong	Dongying	City at prefecture level
	Jilin	Songyuan	City at prefecture level
	Inner Mongolia	Ordos	City at prefecture level
Central	Ilener	Nanyang	City at prefecture level
	Henan	Puyang	City at prefecture level
		Nanchong	City at prefecture level
	Sichuan	Luzhou	City at prefecture level
Wastern		Dazhou	City at prefecture level
Western	Charace i	Yan'an	City at prefecture level
	Shaanxi	Yulin	City at prefecture level
	Xinjiang	Karamay	City at prefecture level

Table 1. Distribution areas and types of oil and gas cities in China.

Entropy Weight-TOPSIS Model

The level evaluation of industrial green development needs to follow the idea of system analysis [10]. And this article intends to adopt the entropy weight TOPSIS model. TOPSIS model is a distance comprehensive evaluation method, which defines a measure in the target space and calculates the weighted distance between a certain evaluation object and a positive ideal solution and a negative ideal solution to measure the degree to which the target is close to the positive ideal solution and away from the negative ideal solution, thereby evaluating the level of industrial green development. The combination of TOPSIS model and entropy method is called entropy weight TOPSIS model. The entropy method is used to determine the weight, relying on the objective value of indicators, avoiding subjective judgment, and the results are objective, which can objectively and comprehensively reflect the dynamic changes in the green development level of oil and gas city industry. The basic steps of entropy weight TOPSIS model are as follows [11].

If the sample size of the study is m and the relevant evaluation index is n, the original evaluation matrix of the sample is:

$$(X_{ij})_{m \times n} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ & & \ddots & & \ddots \\ & & \ddots & & \ddots \\ & & \ddots & & \ddots \\ X_{m1} & X_{m2} & \dots & X_{mn} \end{bmatrix}_{m \times n}$$
(1)

(1) Data standardization

Each indicator represents different evaluation types and has different dimensions. In order to perform unified operation on all indicators, the extreme value method is selected to process the relevant data. The formula is as follows:

Positive indicator (the larger the better type):

$$V_{ij} = \frac{X_{ij} - \min(X_j)}{\max(X_j) - \min(X_j)}$$
(i = 1, 2, ..., m; j = 1,2, ..., n)
(2)

Negative indicator (the smaller the better type):

$$V_{ij} = \frac{\max(X_j) - X_{ij}}{\max(X_j) - \min(X_j)}$$
(i = 1, 2, ..., m; j = 1, 2, ..., n)
(3)

(2) Calculating entropy weight

$$\omega_{j} = \frac{1+k \times \sum_{i=1}^{m} (\frac{V_{ij}}{\sum_{i=1}^{m} V_{ij}}) \ln(\frac{V_{ij}}{\sum_{i=1}^{m} V_{ij}})}{\sum_{j=1}^{n} [1+k \times \sum_{i=1}^{m} (\frac{V_{ij}}{\sum_{i=1}^{m} V_{ij}}) \ln(\frac{V_{ij}}{\sum_{i=1}^{m} V_{ij}})]})$$

(j is the number of indicators, j = 1, 2, ..., n; i is the number of samples, i = 1, 2, ..., m)

(3) Build weighted decision matrix

The index weight vector w_j determined by entropy weight method is considered in the decision matrix, and the weighted normalized decision matrix $R = (R_{ij})_{m \times n}$ is calculated. The weighted decision matrix $\mathbf{R} = (\mathbf{R}_{ij})_{m \times n}$ is obtained by multiplying each row of matrix V by its corresponding weight \mathbf{w}_i , that is $\mathbf{R} = (\mathbf{R}_{ij})_{m \times n} = \mathbf{w}_i^* \mathbf{V}_{ii}$.

$$\boldsymbol{R} = \begin{bmatrix} R_{11} & R_{12} & \dots & R_{1n} \\ R_{21} & R_{22} & \dots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ R_{m1} & R_{m2} & \dots & R_{mn} \end{bmatrix} = \begin{bmatrix} V_{11}\omega_1 & V_{12}\omega_2 & \dots & V_{1n}\omega_n \\ V_{21}\omega_1 & V_{22}\omega_2 & \dots & V_{2n}\omega_n \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ V_{m1}\omega_1 & V_{m2}\omega_2 & \dots & V_{mn}\omega_n \end{bmatrix}$$
(5)

(4) Determine positive and negative ideal solutions

The positive ideal solution is the optimal index value of each index, that is, the most preferred scheme. While the negative ideal solution is the worst index value of each index, that is, the least preferred scheme. Let R^+ represent positive ideal solution and R^- represent negative ideal solution, then there is:

$$R^{+} = \{\max R_{i1}, \max R_{i2}, \max R_{i3} \dots \max R_{in}\} \quad i=1, 2, \dots, m$$
$$R^{-} = \{\min R_{i1}, \min R_{i2}, \min R_{i3} \dots \min R_{in}\}$$
(6)

Rij is the weighted normalized value of index j of the ith sample; Rj+and Rj - are the most preferred and least preferred values of the jth index in the evaluation.

(5) Calculate relative closeness η_i

$$\eta_{i} = \frac{\sqrt{\sum_{i=1}^{m} (R_{ij} - R_{j}^{-})^{2}}}{\sqrt{\sum_{i=1}^{m} (R_{ij} - R_{j}^{+})^{2}} + \sqrt{\sum_{i=1}^{m} (R_{ij} - R_{j}^{-})^{2}}}$$

$$(i = 1, 2, ..., m)$$
(7)

Where, η_i represents the closeness of the index to the optimal solution, $0 \le \eta_i \le 1$. The larger the value of η_i , the closer to the optimal solution, indicating the higher the level of industrial green development in the region; On the contrary, the closer to the worst solution, the lower the level of industrial green development in the region. When $\eta_i = 1$, the level of industrial green development is the highest, reaching the optimal state of industrial green development of industrial green development; When $\eta_i = 0$, the green development of industry is in a highly disordered state [4].

Establishment of Index System

In this study, an evaluation index system of industrial green development level of oil and gas resource-based cities is developed on the basis of previous reported industrial green development evaluation index system [12-15], Green Development Index System (2016) issued by National Development and Reform Commission, the current policy orientation, the representativeness of the selected indicators, and the availability of each indicator. Specifically, the developed system consists of one objective layer (overall system), four criterion layers (sub-systems), and 19 evaluation indexes, wherein the influence directions of the three layers of indicators are labeled, as shown in Table 2.

Study Area

Based on the National Plan for Sustainable Development of Resource-based Cities (2013-2020) and the List of 262 Resource-based Cities in China, referring to the oil and gas cities defined in the existing literature, this paper defines a total of 29 oil and gas cities in China (see Table 3), including 8 in the east, 5 in the center, and 16 in the west. Among them, 18 cities are prefecture-level cities. And Xinjiang has the largest distribution of oil and gas cities, with 7 oil and gas cities, accounting for about 1/4 of the country.

In order to measure the efficiency of industrial green development in oil and gas cities better, the time selected for this study are 15 years from 2004 to 2018. Considering the comparability of data of each city, this paper takes prefecture-level oil and gas cities as the object of empirical evaluation, and there are 18 prefecture-level cities among 29 oil and gas cities, as shown in Table 3 and Fig. 1. Due to the serious lack of data on research indicators in Hami, Qingyang, Zhaotong and Fushun, considering the availability of data, this paper collects the indicator data of 14 representative oil and gas cities in the eastern, central and western regions for the study. The data are obtained from EPS database, China City Statistical Yearbook, provincial and municipal statistical yearbooks and official websites, and this paper uses OLS trend analysis to fill in the missing data.

Results and Discussion

Evolution Trend and Characteristics of Overall System of Industrial Green Development Level

The weight of each evaluation index was calculated, and the entropy weight-TOPSIS model was used to calculate the nearness degrees of industrial green development levels of different oil and gas resourcebased cities in China, and the variation trend of the nearness degrees was plotted (Fig. 2, Table 4) to analyze its evolution trend and characteristics.

As shown in Fig. 1, the nearness degrees of industrial green development levels of oil and gas resource-based cities in China fall in the range of 0.1-0.8, particularly in the range of 0.2-0.5. Among the oil and gas resource-based cities in China, Karamay, Dongying, Daqing, and Ordos have a relatively high industrial green development level; Dazhou, Luzhou, Nanchong, and Tangshan have a relatively low industrial green development level. According to the variation trend of the industrial green development levels of the oil and gas resource-based cities, Karamay, Puyang,

Objective layer	Criterion layer	Index layer (unit)	Influence direction
		Energy consumption per unit industrial added value (tons of standard coal/10,000 yuan) (C1)	Negative
	Resource	Electricity consumption per unit industrial added value (kWh/10,000 yuan) (C2)	Negative
	consumption intensity (B1)	Water consumption per unit industrial added value (m3/10,000 yuan) (C3)	Negative
	intensity (D1)	Fixed asset investment consumption per unit industrial added value (no unit) (C4)	Negative
		Land area per unit industrial added value (km ² /100 million yuan) (C5)	Negative
		Wastewater discharge intensity per unit industrial added value (tons/10,000 yuan) (C6)	Negative
	Environmental impact and	SiO_2 and gas and dust emissions intensity per unit industrial added value (tons/yuan) (C7)	Negative
Industrial	treatment (B2)	Comprehensive utilization rate of general industrial solid waste (%) (C8)	Positive
green		Harmless treatment rate of domestic waste (%) (C9)	Positive
development level of oil and		Centralized treatment rate of sewage treatment plants (%) (C10)	Positive
gas resource- based cities		Industrial added value per capita (10,000 yuan/person) (C11)	Positive
(A)		Growth rate of industrial added value above designated size (%) (C12)	Positive
	Economic benefits and	Average profit of industrial enterprises above designated size (10,000 yuan/ enterprise) (C13)	Positive
	structure (B3)	Liabilities to assets ratio of industrial enterprises above designated size (%) (C14)	Negative
		Income profit margin of industrial enterprises above designated size (%) (C15)	Positive
		Share of the secondary industry in GDP (%) (C16)	
	Technological	Share of R&D expenditure in the main business income of industrial enterprises above designated size (%) (C17)	Positive
	innovation and investment	Average number of valid invention patents of industrial enterprises above designated size (patents/enterprise) (C18)	Positive
	(B4)	Number of valid invention patents of industrial enterprises above designated size per capita (patents/10,000 persons) (C19)	Positive

Table 2. Evaluation index system of industrial green development level of oil and gas resource-based cities.

Tangshan, and Dazhou show a similar variation trend over the 15 years, which is stable in general except for a peak in 2016; Daqing and Dongying show a fluctuating downward trend. The remaining cities show a fluctuating upward trend, among which Ordos, Yulin, Yan'an, Luzhou, Tangshan, and Nanyang show a rapid increase.

The reason why Karamay, Dongying, Daqing, and Ordos have high industrial green development levels is that the municipal governments paid great attention to technological innovation over the 15 years. Compared with other cities, Karamay and Dongying invested more in technological innovation over the 15 years; Although the investment in technological innovation in Daqing is not as high as that in Karamay and Dongying, Daqing has the highest proportion of scientific research and technical service personnel among all cities, and the number of patent applications shows a significantly increasing trend, indicating that Daqing has attached great importance to the construction of its scientific and technological innovation system; Ordos has taken measures to improve the innovation mechanism of enterprises in recent years and achieved significant success, and the proportion of scientific research and technical service personnel has increased significantly since 2013. Meanwhile, influenced by the reduced crude oil production, the crude oil production in Daging has been decreasing from 2004 to 2018. Also, the crude oil production in Dongying has been decreasing slightly since 2012, as a result of which the industrial green development levels of Daqing and Dongying are high but show a fluctuating downward trend in general. The industrial green development levels of Dazhou, Luzhou, and Nanchong are low, which may be because no effective measures have been taken in environmental management in Dazhou and Luzhou; in recent years, both cities have realized the problem and started to take relevant measures to manage the environmental problem, which have achieved some results. Meanwhile, the unit industrial added values of Luzhou and Nanchong are lower than other cities and show a slightly fluctuating trend, indicating a low degree of

Region	Province	Oil and gas city	City level
	Heilongjiang	Daqing	City at prefecture level
	Heb a:	Renqiu	County-level city
	Hebei	Tangshan	City at prefecture level
Eastan	Licenius	Panjin	City at prefecture level
Eastern	Liaoning	Fushun	City at prefecture level
	Shandong	Dongying	City at prefecture level
	Jilin	Songyuan	City at prefecture level
	Hainan	Dongfang	County-level city
	Inner Manaslia	Ordos	City at prefecture level
	Inner Mongolia	Xilinhot	County-level city
Central	Hener	Nanyang	City at prefecture level
	Henan	Puyang	City at prefecture level
	Hubei	Qianjiang	County-level city
		Nanchong	City at prefecture level
	Sichuan	Luzhou	City at prefecture level
		Dazhou	City at prefecture level
	<u>Charamari</u>	Yan'an	City at prefecture level
Western	Shaanxi	Yulin	City at prefecture level
	Comm	Qingyang	City at prefecture level
	Gansu	Yumen	County-level city
	Ningxia	Lingwu	County-level city
	Yunnan	Zhaotong	City at prefecture level
		Hami	City at prefecture level
		Shanshan	County
		Fukang	County-level city
	Xinjiang	Bayingolin	Autonomous prefecture
		Korla	County-level city
		Karamay	City at prefecture level
		Baicheng	County

Table 3. Distribution areas and types of oil and gas cities in China.

intensive land use among the oil and gas resource-based cities. This has a great impact on the industrial green development levels of the two cities, and compared with other oil and gas resource-based cities, the two cities still need further improvement in the scale of the industrial economy.

Evolution Characteristics of Sub-systems of Industrial Green Development Levels

The weights of different evaluation indicators were calculated, and the entropy weight-TOPSIS model was used to calculate the nearness degrees of resource consumption intensity, environmental impact and treatment, economic benefits and structure, and technological innovation and investment of different oil and gas resource-based cities in China (see Figs 3-6, Tables 5-12).

In the ranking of nearness degrees of resource consumption intensity, the first places in 2004-2018 are Dazhou (2004), Yan'an (2005-2006, 2008-2009, 2015, 2018), Daqing (2007), Yulin (2010-2014), Ordos (2016) and Karamay (2017), indicating that the resource consumption intensity of the cities is close to the optimal value. The last place is Nanchong (2004-2008, 2012), Tangshan (2009-2011), Panjin (2013-2016), Yulin (2014),

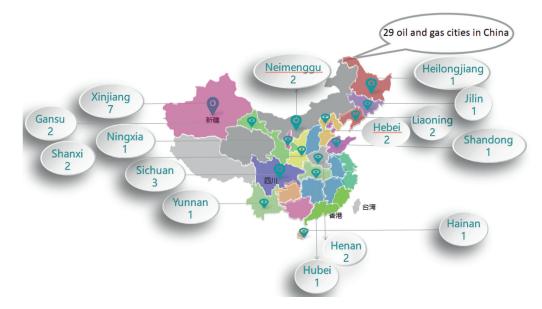


Fig. 1. Spatial Distribution Map of Oil and Gas Cities in China.

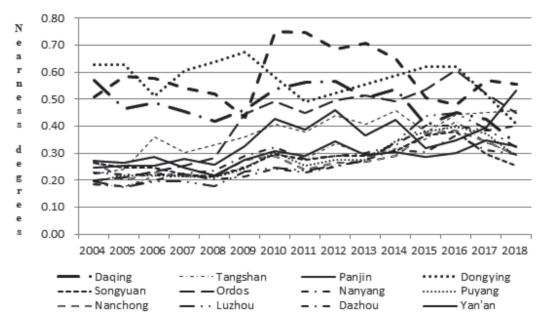


Fig. 2. Trend of nearness degrees of industrial green development levels of different oil and gas resource-based cities in China during 2004-2018.

and Nanchong (2018), indicating that the resource consumption intensity of the cities is large. The smallest extreme difference is 0.3769 (2009), and the largest is 0.5118 (2017). Also, the difference is basically stable between 2004 and 2016, but the difference increases significantly in 2017 and decreases slightly in 2018. Overall, different oil and gas resource-based cities in China show an insignificant difference in the resource consumption intensity before 2016, and after 2017, the difference between cities gradually increases.

In the ranking of nearness degrees of environmental impact and treatment, the first places in 2004-2018 are Karamay (2004, 2017), Yan'an (2005), Dongying (2006-2007), Panjin (2008-2010), Daqing (2011-2015), Songyuan (2015), and Dazhou (2018), indicating that these cities have a smaller environmental impact and achieve better treatment results than other cities; The last places are Dazhou (2004, 2010-2012), Luzhou (2005-5009, 2018), Tangshan (2013-2014), Yulin (2015, 2017), and Panjin (2016), indicating that these cities have a greater environmental impact and achieve fewer treatment results than other cities. The smallest extreme difference is 0.3918 (2018), and the largest is 0.7830 (2010). The results demonstrate that the difference between the environmental impact and treatment subsystem of different oil and gas resource-based cities

ø.	
)18	
ы	
to	
+	
õ	
50	
Ш	
Ĕ	
cities	
Ë	
ed	
as	
<u>-</u>	
ġ	
urce	
5	
ŝ	
ñ	
as	
ã	
p	
anc	
oil	
in	
/el	
Ð,	
tl	
ent	
me	
d	
lo	
/el	
dev	
SU	
ĕ	
50	
ц	
пa	
st	
lu	
inc	
÷	
ō	
ee	
gree	
- 60 60	
q	
Ą	
Di l	
E.	
XC	
Ĕ	
Ţ	
õ	
ts	
ul	
esi	
ŭ	
nc	
Ĕ	
la	
n	
аlс	
ũ	
Table	
abl	
Ë	

City	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Daqing	0.5700	0.4640	0.4869	0.4538	0.4182	0.4617	0.5380	0.5606	0.5659	0.5034	0.5372	0.4042	0.4501	0.4239	0.3335
Tangshan	0.1862	0.1746	0.2161	0.2201	0.2159	0.2500	0.2937	0.2791	0.3355	0.2943	0.3149	0.3520	0.4193	0.3384	0.2970
Panjin	0.2707	0.2626	0.2877	0.2446	0.2160	0.2766	0.3058	0.2910	0.3448	0.2920	0.3055	0.2872	0.3001	0.3483	0.3250
Dongying	0.6270	0.6274	0.5128	0.6070	0.6371	0.6742	0.5813	0.4892	0.5209	0.5549	0.5868	0.6185	0.6200	0.5158	0.4082
Songyuan	0.2651	0.2445	0.2449	0.2202	0.2134	0.2477	0.2959	0.2741	0.2909	0.2894	0.3091	0.3663	0.3781	0.2967	0.2537
Ordos	0.2004	0.2117	0.2313	0.2551	0.2824	0.4448	0.4908	0.4479	0.4972	0.5121	0.4905	0.5337	0.6073	0.5222	0.4474
Nanyang	0.1846	0.1792	0.2006	0.2251	0.2339	0.2880	0.3227	0.2776	0.2901	0.3000	0.3285	0.4015	0.4002	0.3825	0.4004
Puyang	0.1957	0.2177	0.2179	0.2139	0.2114	0.2442	0.3028	0.2534	0.2752	0.2756	0.3428	0.3796	0.3987	0.3744	0.2890
Nanchong	0.2722	0.2010	0.2280	0.2129	0.2131	0.2743	0.2898	0.2404	0.2646	0.2668	0.2880	0.3714	0.3821	0.3426	0.2935
Luzhou	0.1972	0.1741	0.1948	0.1974	0.1760	0.2305	0.2461	0.2355	0.2520	0.2729	0.3411	0.4386	0.4480	0.3903	0.3210
Dazhou	0.2291	0.2196	0.2226	0.2195	0.2024	0.2154	0.2424	0.2269	0.2504	0.2741	0.3118	0.3043	0.3655	0.3119	0.2969
Yan'an	0.2461	0.2529	0.2550	0.2784	0.2567	0.3248	0.4275	0.3859	0.4606	0.3660	0.4226	0.3174	0.3456	0.3930	0.5323
Yulin	0.2219	0.2425	0.3589	0.3032	0.3320	0.3608	0.4087	0.3784	0.4383	0.4072	0.4589	0.3781	0.4423	0.4515	0.4576
Karamay	0.5095	0.5854	0.5756	0.5396	0.5182	0.4328	0.7499	0.7470	0.6860	0.7065	0.6502	0.5045	0.4805	0.5687	0.5534

in China is increasing first and then decreasing (see Fig. 4). Hence, the oil and gas resource-based cities have made practical efforts in environmental treatment in recent years and taken relevant measures to reduce the differences between cities.

In the ranking of nearness degrees of economic benefits and structure, the first places in 2004-2018 are Karamay (2004-2008, 2010-2011, 2014, 2017-2018), and Ordos (2009, 2012-2013, 2015-2016), indicating that these oil and gas resource-based cities have better economic development than other cities over the 15 years; The last places are Yulin (2004-2006), Puyang

(2007-2011), Nanyang (2012), Nanchong (2013, 2018), Panjin (2014, 2016), Yan'an (2015), and Songyuan (2017), indicating that the economic development of these oil and gas resource-based cities is poorer than other cities and needs improvement in these years. The smallest extreme difference is 0.3643 (2017), and the largest is 0.6557 (2005), and the difference shows a decreasing and then increasing trend (see Fig. 5, Table 9, Table 10), suggesting that the gap between the oil and gas resource-based cities in China in terms of economic development is gradually widening. Hence, the economic development of some oil and gas resource-

3553

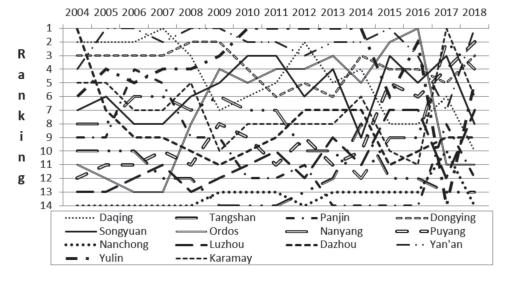


Fig. 3. Ranking of nearness degrees of resource consumption intensity of oil and gas resource-based cities in China during 2004-2018.

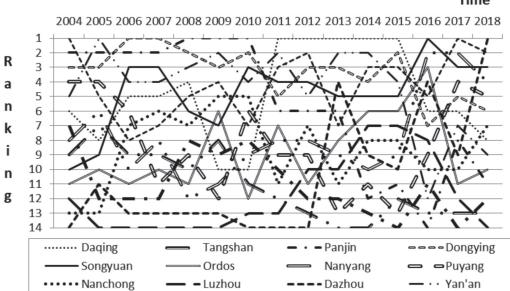


Fig. 4. Ranking of nearness degree of environmental impact and treatment of oil and gas resource-based cities in China during 2004-2018.

Time

Time

Time

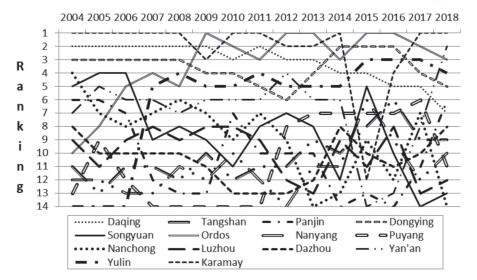


Fig. 5. Ranking of nearness degree of economic benefits and structure of oil and gas resource-based cities in China during 2004-2018.

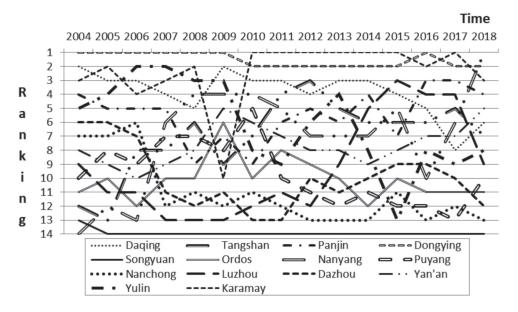


Fig. 6. Ranking of nearness degree of technological innovation and investment of oil and gas resource-based cities in China during 2004-2018.

based cities is good, while the economic development of some other cities is not optimistic, which will also directly affect the industrial green development levels of these cities.

In the ranking of nearness degrees of technological innovation and investment, the first places in 2004-2018 are Dongying (2004-2009, 2016), Karamay (2010-2015, 2017), and Nanyang (2018), and the last places are Nanyang (2004) and Songyuan (2005-2018). The smallest extreme difference is 0.4807 (2006), and the largest is 0.9230 (2004), and the difference first decreases, then gradually increases, and then decreases (see Fig. 6 Table 11, Table 12). The results demonstrate that different oil and gas resource-based cities in China differ greatly in terms of technological innovation and investment, but the difference is decreasing. Hence, promoting technological innovation and investment has become a common way for oil and gas resource-based cities to seek industrial green development, and all cities are taking active measures to increase technological innovation investment and enhance technological innovation capability.

According to Fig. 2-5 (from Table 4 to Table 12), the ranking of the sub-system nearness degrees of industrial green development levels of different oil and gas resource-based cities in China varies significantly from year to year, and differences exist for the four indicators, and the differences vary, which is due to the uneven economic development, social progress, and natural environment of different

×.
201
5
6
20
om
Ĥ
ies
cit
sed
-ba
-e-
our
res
gas
anc
lio
.u
sity
ens
int
ion
duins
con
e S
urc
eso
)f r
ee (
цб.
/ de
mity
xin
pro
of J
lts
esul
u r
utio
ulâ
alc
of c
зв С
ıkiı
Ran
5.
ble
Tał

City	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Daqing	2	2	2	1	3	7	9	5	2	5	4	8	8	9	10
Tangshan	10	10	10	12	12	14	14	14	13	12	8	12	12	13	13
Panjin	6	6	4	5	6	6	12	12	11	14	14	14	14	8	12
Dongying	3	3	3	3	2	2	4	9	5	6	3	4	4	5	3
Songyuan	7	9	8	8	6	5	3	3	9	4	6	3	5	3	8
Ordos	11	12	13	13	8	4	5	4	4	3	5	2	1	11	11
Nanyang	8	8	9	9	7	6	7	L	10	10	12	6	6	2	4
Puyang	12	11	11	10	11	8	6	11	6	11	10	5	9	4	2
Nanchong	14	14	14	14	14	13	13	13	14	13	13	13	13	10	14
Luzhou	13	13	12	11	13	12	11	10	12	6	11	7	7	12	7
Dazhou	1	7	6	6	10	11	10	6	7	7	7	11	10	6	6
Yan'an	4	1	1	2	1	1	2	2	3	2	2	1	3	7	1
Yulin	6	4	5	4	4	3	1	1	1	1	1	6	2	14	5
Karamay	5	5	7	7	5	10	8	8	8	8	6	10	11	1	9
Explanation proximity in	: The rankin Oil and Ga	g of the calc s Resource-l	Explanation: The ranking of the calculation results of resource consumption intensity closeness in Table 5 is derived from Table 6 "Calculation Results of Resource Consumption Intensity proximity in Oil and Gas Resource-based Cities"	ts of resourc	e consumptio	on intensity (closeness in	Table 5 is de	erived from 1	able 6 "Calc	ulation Resu	ults of Resou	rce Consum]	ption Intensi	ty

••••	sittes.
-	-based (
	esource.
	gas 1
-	and
5	ty in oil and
•	ty In (
•	Ē
	Intensit
•	
	<u> </u>
د	or resource
1	results
	Calculation
	0.0
E	lable

Karamay	0.8143	0.7825	0.7422	0.6372	0.7295	0.5761	0.6004	0.5942	0.5984	0.6357	0.6893	0.5077	0.5575	0.8240	0.6730
Yulin	0.8048	0.8217	0.7572	0.7022	0.7475	0.7568	0.8404	0.8376	0.8195	0.8369	0.8281	0.6327	0.7199	0.3122	0.6839
Yan'an	0.8407	0.8916	0.8790	0.8090	0.8372	0.8365	0.8327	0.8121	0.8036	0.7870	0.7436	0.7486	0.7050	0.6511	0.9035
Dazhou	0.9194	0.7654	0.6775	0.6082	0.6414	0.5728	0.5636	0.5662	0.6083	0.6594	0.6739	0.4844	0.6079	0.6177	0.5604
Luzhou	0.5503	0.5246	0.5302	0.5177	0.4908	0.5516	0.5596	0.5609	0.5413	0.5752	0.5644	0.5771	0.6341	0.5369	0.6272
Nanchong	0.4566	0.4738	0.4476	0.4289	0.4442	0.4640	0.4734	0.4601	0.4134	0.4562	0.4090	0.4196	0.4937	0.5878	0.4455
Puyang	0.5926	0.5988	0.6379	0.5844	0.5800	0.6080	0.5841	0.5573	0.5911	0.5501	0.5670	0.6446	0.6365	0.7613	0.7356
Nanyang	0.7907	0.7527	0.7519	0.6556	0.6609	0.6892	0.6291	0.6157	0.5841	0.5648	0.4452	0.5535	0.6081	0.8043	0.6953
Ordos	0.5961	0.5872	0.5037	0.4549	0.6436	0.7195	0.7428	0.7257	0.7157	0.7480	0.6919	0.7162	0.7425	0.5797	0.5208
Songyuan	0.7940	0.7777	0.7227	0.6343	0.6820	0.7186	0.7625	0.7436	0.6876	0.7277	0.6592	0.7010	0.6687	0.7953	0.5715
Dongying	0.8646	0.8695	0.8457	0.7997	0.8075	0.7915	0.7486	0.7044	0.7032	0.6906	0.7156	8669.0	0.6783	0.6894	0.7172
Panjin	0.7605	0.7325	0.7841	0.6686	0.6427	0.6041	0.5350	0.5380	0.5708	0.4240	0.3949	0.3621	0.3300	0.6237	0.5118
Tangshan	0.7225	0.6490	0.6460	0.4786	0.5003	0.4596	0.4317	0.4595	0.5377	0.5413	0.6629	0.4408	0.5508	0.5023	0.4665
Daqing	0.8948	0.8695	0.8668	0.8205	0.7918	0.6849	0.7143	0.7213	0.8148	0.7132	0.7144	0.5577	0.6125	0.6525	0.5398
Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018

5	018
C	0
2	4
è	70
	шo
د	H S
•	citie
-	eq
	as
	resource-b
	Ino
	gas
-	and
-	011 8
	Ξ
	lce
	mai
	Dven
	ದ ದ
	an
	pact
	al imp
	men
	ront
•	IIVI
c	ot e
	ee
_	<u>e</u> g
	nity d
	Imi
	roxin
	ыр
÷	Its
	est
	onr
	latio
-	lcu
c	t ca
	1 <u>6</u> 0
	nkın
ç	Kat
t	
-	able
E	-

City	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Daqing	9	8	5	5	4	10	10	1	1	1	1	1	9	9	8
Tangshan	6	7	6	6	10	8	11	12	13	14	14	12	13	13	13
Panjin	2	2	2	2	1	1	1	9	9	9	12	11	14	8	11
Dongying	3	3	1	1	2	3	2	5	3	3	4	2	L	5	9
Songyuan	10	6	3	3	9	L	3	4	4	5	5	5	1	3	3
Ordos	11	10	11	10	11	9	12	7	11	~	6	9	3	11	10
Nanyang	8	9	10	8	12	11	6	8	8	6	10	6	2	2	4
Puyang	4	4	9	11	6	12	9	6	6	13	11	13	6	4	5
Nanchong	13	13	7	9	L	5	5	11	7	11	8	8	10	10	7
Luzhou	12	14	14	14	14	14	13	13	10	10	7	7	8	12	14
Dazhou	14	11	13	13	13	13	14	14	14	4	6	10	4	6	
Yan`an	5	-1	4	4	3	2	4	2	5	2	2	4	12	7	6
Yulin	7	12	12	12	8	6	8	10	12	12	13	14	11	14	12
Karamay	1	5	8	7	5	4	7	3	2	7	3	3	5	-	2
Explanation Governance	i: The rankin : Closeness i	ng of the calc n Oil and Gé	sulation resul as Resource-	Explanation: The ranking of the calculation results of environm Governance Closeness in Oil and Gas Resource-based Cities".	mental impa	ict and gover	rnance closer	ness in Table	e 7 is derived	from Table	8 "Calculati	Explanation: The ranking of the calculation results of environmental impact and governance closeness in Table 7 is derived from Table 8 "Calculation Results of Environmental Impact and Governance Closeness in Oil and Gas Resource-based Cities".	f Environme.	ntal Impact ¿	put

	Dazhou
	Luzhou
	Nanchong
ased cities.	Puvang
s resource-ba	Nanvang
oximity in oil and gas	Ordos
pi	Songvuan
t and governance	Dongving Songvuan
ironmental impact	Paniin
s of environn	Tangshan
ulation results	Daging
ole 8. Calcu	Year

- E I	n results	of environm	ental impact	Table 8. Calculation results of environmental impact and governance proximity in oil and gas resource-based cities.	ce proximity	in oil and gas	s resource-bas	sed cities.						
Daqing Tangshan	Tangsh	lan	Panjin	Dongying	Songyuan	Ordos	Nanyang	Puyang	Nanchong	Luzhou	Dazhou	Yan'an	Yulin	Karamay
0.8028 0.6798	0.679	~	0.9155	0.8718	0.6715	0.5834	0.7085	0.8638	0.5151	0.5156	0.3893	0.8043	0.7224	0.9669
0.7366 0.7608	0.760	8(0.9283	0.9084	0.7290	0.6246	0.7729	0.8696	0.5210	0.4442	0.5557	0.9380	0.5518	0.8633
0.8044 0.7444	0.74	4	0.9077	0.9276	0.8882	0.5819	0.7223	0.8003	0.7825	0.4609	0.4787	0.8449	0.5638	0.7654
0.8521 0.7271	0.72	271	0.9083	0.9326	0.8813	0.6874	0.7463	0.6178	0.8160	0.3949	0.4988	0.8564	0.5883	0.8144
0.8370 0.6	0.6	0.6851	0.8961	0.8952	0.7731	0.6710	0.6578	0.7232	0.7714	0.3775	0.4089	0.8424	0.7234	0.7954
0.6012 0.7	0.7	0.7396	0.9011	0.8645	0.7416	0.7688	0.5840	0.5645	0.8131	0.2603	0.2763	0.8899	0.6496	0.8321
0.7203 0.6	0.6	0.6755	0.9562	0.9239	0.8860	0.4767	0.7353	0.7812	0.7997	0.2043	0.1732	0.8711	0.7394	0.7793
0.9284 0.4	0.4	0.4327	0.6680	0.7521	0.7547	0.5901	0.5379	0.5076	0.4984	0.4319	0.3913	0.8690	0.5042	0.8514
0.9294 0.	0	0.4585	0.7377	0.8176	0.7742	0.5189	0.6101	0.5642	0.6514	0.5281	0.4519	0.7387	0.5183	0.8335
0.9386 0.4	0.4	0.4466	0.6624	0.7578	0.6859	0.6002	0.5804	0.4865	0.5538	0.5758	0.7482	0.8466	0.5273	0.6041
0.9440 0.3	0.0	0.3924	0.4601	0.7612	0.6883	0.6769	0.4986	0.4766	0.6045	0.6090	0.5234	0.8707	0.4454	0.8209
0.9208 0.4	0.	0.4829	0.4907	0.7982	0.7466	0.7047	0.5851	0.4618	0.5980	0.6023	0.5040	0.7745	0.3828	0.7934
0.6704 0.	0	0.4167	0.3321	0.6600	0.9433	0.7176	0.7381	0.5507	0.5421	0.5966	0.6831	0.5028	0.5204	0.6722
0.6525 0.	0.	0.5023	0.6237	0.6894	0.7953	0.5797	0.8043	0.7613	0.5878	0.5369	0.6177	0.6511	0.3122	0.8240
0.6578 0.	0.	0.4911	0.5826	0.6939	0.7880	0.5930	0.7652	0.7233	0.6914	0.4255	0.8172	0.6572	0.5237	0.8010
														1

0 2018.	
n 2004 t	
ties from	
based ci	
resource-b	
and gas)
es in oil a	
structure	
its and :	
ic benef	
f econom	
degree o)
roximity	و
results of p	-
lation re	
f calcul	
unking o)
ole 9. Ra	
Tab]	

City	2004	2005	2006	City 2004 2005 2006 2007 2008		2009	2010	2011	2009 2010 2011 2012 2013 2014	2013	2014	2015	2016	2017	2018
Daqing	2	2	2	2	2	2	3	2	3	3	4	4	5	5	7
Tangshan	11	13	11	11	12	10	12	11	11	6	10	8	9	6	6
Panjin	6	9	7	12	13	13	7	10	10	10	14	13	14	11	6
Dongying	3	3	3	3	3	4	4	5	6	4	2	2	2	4	5
Songyuan	5	4	4	6	8	6	11	8	7	8	12	5	10	14	13
Ordos	10	8	5	4	5	1	2	3	1	1	3	1	1	2	3
Nanyang	12	12	13	13	11	12	10	12	14	11	11	6	6	12	10
Puyang	13	6	12	14	14	14	14	14	8	7	7	7	7	6	11
Nanchong	4	7	8	7	6	7	6	7	6	14	13	6	12	7	14
Luzhou	6	11	6	8	6	8	8	6	12	13	6	11	8	13	12
Dazhou	8	10	10	10	10	11	13	13	13	12	8	10	11	10	8
Yan'an	7	5	9	9	7	6	6	9	4	6	6	14	13	8	2
Yulin	14	14	14	5	4	5	5	4	5	5	5	3	3	3	4
Karamay	1	1	1	1	1	3	1	-	7	7	1	12	4	1	1
Explanation Closeness or	t: The rankin f Oil and Ga	g of the calc s Resource 1	Explanation: The ranking of the calculation result. Closeness of Oil and Gas Resource Based Cities".	ts of econon.	nic benefits a:	nd structural	closeness ir	ו Table 9 is כ	Explanation: The ranking of the calculation results of economic benefits and structural closeness in Table 9 is derived from Table 10 "Calculation Results of Economic Benefits and Structural Closeness of Oil and Gas Resource Based Cities".	Table 10 "Ci	alculation R	esults of Eco	nomic Benel	fits and Struc	tural

ies	
cit	
ğ	
ase	
-p	
ce	
JUL	
SSC	
S L(
ga	
þ	
l an	
f oil	
Ę	
s	
les	
Ser	
los	
tural cl	
ша	
сt	
truc.	
d sı	
ŭ	
S	
Sfit	
en	
Ã	
mic	
on	
on	
ec	
of	
ts o	
sul	
9	
tion	
atio	
nli	
alc	
Ű	
0.	
0	
ble	
<u>p</u>	

	Karamay	0.6442	0.7725	0.7914	0.7245	0.6963	0.6381	0.7874	0.6450	0.6299	0.6592	0.6423	0.3458	0.4882	0.5928	0.6570
	Yulin	0.1007	0.1168	0.1390	0.2802	0.3875	0.4616	0.3982	0.4133	0.4883	0.4428	0.5941	0.5155	0.5057	0.5240	0.5348
	Yan`an	0.2164	0.2498	0.2209	0.2792	0.2684	0.3664	0.3861	0.3267	0.4978	0.3860	0.4988	0.3104	0.3325	0.3849	0.5959
	Dazhou	0.2000	0.1781	0.1839	0.2050	0.2000	0.3010	0.1988	0.1671	0.2017	0.3064	0.4099	0.4109	0.3954	0.3724	0.3815
	Luzhou	0.1872	0.1756	0.1855	0.2516	0.2219	0.3518	0.2375	0.2127	0.2122	0.2933	0.4081	0.4030	0.4405	0.3124	0.3396
	Nanchong	0.3532	0.2161	0.1960	0.2649	0.2742	0.3647	0.2197	0.3236	0.2206	0.2329	0.3095	0.4316	0.3936	0.3979	0.2124
ities.	Puyang	0.1227	0.1938	0.1651	0.1446	0.1734	0.2109	0.1925	0.1658	0.2207	0.3554	0.4789	0.4562	0.4476	0.4050	0.3488
ource-based c	Nanyang	0.1296	0.1497	0.1577	0.1742	0.1921	0.2511	0.2195	0.1802	0.1985	0.3091	0.3261	0.4620	0.4281	0.3642	0.3586
l and gas reso	Ordos	0.1634	0.2051	0.2358	0.3004	0.3787	0.7374	0.5993	0.5392	0.6305	0.7418	0.6068	0.7501	0.7335	0.5508	0.5615
loseness of oi	Songyuan	0.2807	0.2516	0.2492	0.2303	0.2457	0.3291	0.2194	0.2252	0.3212	0.3414	0.3251	0.4665	0.4146	0.2285	0.2767
d structural c	Dongying	0.3855	0.4046	0.3862	0.3799	0.4108	0.5671	0.4231	0.3578	0.4263	0.5272	0.6083	0.6084	0.6094	0.4886	0.4113
ic benefits an	Panjin	0.2212	0.2450	0.2207	0.1907	0.1846	0.2179	0.2960	0.2039	0.2203	0.3191	0.1887	0.3306	0.1551	0.3642	0.4021
lts of econom	Tangshan	0.1423	0.1382	0.1706	0.1998	0.1862	0.3100	0.2112	0.1840	0.2160	0.3241	0.3865	0.4550	0.4573	0.3724	0.3806
culation resul	Daqing	0.6253	0.5752	0.5936	0.5886	0.5830	0.6702	0.5024	0.5436	0.5911	0.5944	0.5956	0.4751	0.4639	0.4643	0.4016
Table 10. Calculation results of economic benefits and structural closeness of oil and gas resource-based cities.	Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018

2018.
n 2004 to
sities fror
rce-based o
s resou
oil and ga
stment in
and inve
nnovation
ological i
of techno
ty degree
f proximit
results o
alculation
king of ca
: 11. Ranl
Table

City	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Daqing	2	3	3	4	5	2	3	3	4	3	3	4	5	8	9
Tangshan	12	13	8	8	9	6	7	4	3	5	9	9	6	5	7
Panjin	4	5	5	5	6	L	6	9	5	9	4	7	3	3	4
Dongying	1	1	1	1	1	1	2	2	2	2	2	2	1	2	2
Songyuan	13	14	14	14	14	14	14	14	14	14	14	14	14	14	14
Ordos	11	10	12	10	10	9	10	8	6	10	12	10	11	11	11
Nanyang	14	12	13	9	4	4	4	5	7	7	7	5	10	6	1
Puyang	10	8	6	7	7	8	5	10	11	12	11	12	12	13	10
Nanchong	7	7	6	12	11	12	11	12	13	13	13	11	13	12	13
Luzhou	6	11	11	13	13	13	12	11	12	6	5	3	4	4	6
Dazhou	9	9	7	11	12	11	13	13	10	11	10	6	6	10	12
Yan'an	8	6	10	6	8	5	6	7	8	8	6	8	7	7	5
Yulin	5	4	2	2	3	3	8	6	9	4	8	13	8	6	8
Karamay	б	2	4	3	2	10	-	-	1	1	1	1	2	1	3
Explanation investment (: The rankin closeness in	ig of the calc oil and gas 1	Explanation: The ranking of the calculation results of technological innovation and investment closeness in Table 11 is derived from Table 12 ,,Calculation results of technological innovation and investment closeness in oil and gas resource-based cities".	lts of technol ed cities".	logical innov	ation and inv	estment clos	seness in Tal	ble 11 is deri	ved from Tal	ble 12 "Calc	ulation resul	ts of technole	ogical innova	ation and

Karamay	0.2768	0.3322	0.3218	0.2714	0.3151	0.1391	0.7637	0.8260	0.7436	0.7765	0.8108	0.7410	0.6130	0.6799	0.4474
Yulin	0.2241	0.2723	0.4589	0.2728	0.2515	0.2835	0.2820	0.1996	0.3165	0.3366	0.2874	0.1198	0.3023	0.3222	0.3074
Yan'an	0.1474	0.1350	0.1633	0.1571	0.1440	0.2247	0.3083	0.2668	0.2711	0.2543	0.2694	0.2366	0.3332	0.3366	0.3257
Dazhou	0.1883	0.1794	0.1759	0.1151	0.0931	0.0817	0.1398	0.1321	0.1891	0.1612	0.2107	0.1903	0.2770	0.2829	0.1607
Luzhou	0.1341	0.1090	0.1349	0.0849	0.0518	0.0645	0.1479	0.1424	0.1846	0.2438	0.3402	0.3854	0.4489	0.4720	0.2971
Nanchong	0.1871	0.1555	0.1888	0.0953	0.0933	0.0773	0.1782	0.1389	0.1522	0.1321	0.1227	0.1447	0.1032	0.1737	0.1109
Puyang	0.1339	0.1549	0.1706	0.1689	0.1762	0.1699	0.3278	0.1877	0.1867	0.1356	0.1732	0.1199	0.1161	0.1405	0.2793
Nanyang	0.0770	0.0906	0.1164	0.1691	0.2197	0.2580	0.3607	0.2723	0.2902	0.2676	0.2893	0.2478	0.2767	0.4072	0.5732
Ordos	0.1045	0.1092	0.1284	0.1257	0.1115	0.2102	0.2148	0.2663	0.2409	0.1845	0.1708	0.1795	0.2394	0.1979	0.2518
Songyuan	0.0804	0.0638	0.0792	0.0210	0.0100	0.0174	0.0314	0.0040	0.0099	0.0057	0.0000	0.0000	0.0049	0.0246	0.0367
Dongying	1.0000	0.9679	0.5598	0.7367	0.7589	0.7170	0.6916	0.5263	0.5671	0.5852	0.5942	0.6352	0.6429	0.6222	0.4879
Panjin	0.2251	0.1852	0.2823	0.1742	0.1409	0.2050	0.2571	0.2673	0.4068	0.2829	0.3404	0.2437	0.5096	0.6201	0.3493
Tangshan	0.0863	0.0755	0.1734	0.1682	0.1868	0.1597	0.2830	0.3021	0.4485	0.2894	0.2905	0.2450	0.3804	0.4104	0.3177
Daqing	0.4407	0.2726	0.3367	0.2448	0.2068	0.3155	0.4650	0.4361	0.4324	0.3412	0.4070	0.3529	0.4164	0.3339	0.3231
Year Daqing Tangshan Panjin Dongying Songyuan Ordos Nanyang Puyang	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018

oil and gas resource-based cities in China. In terms of the resource consumption intensity, different oil and gas resource-based cities in China show an insignificant difference before 2016 and the difference gradually increases after 2017; in terms of environmental impact and treatment, the sub-system difference first increases and then decreases; in terms of economic development, the difference between different oil and gas resourcebased cities in China is increasing; in terms of technological innovation and investment, although the difference between the cities is significant, the difference is decreasing. The difference between the oil and gas resource-based cities in China in environmental impact and treatment and technological innovation and investment is gradually decreasing, which verifies the overall increasing trend of the industrial green development levels of the oil and gas resource-based cities; the sub-system difference between the cities in resource consumption intensity and economic development is increasing, indicating that the resource consumption of some oil and gas resource-based cities still needs to be improved to enhance the overall economic strength of the cities. Since oil and gas resource-based cities are located throughout the eastern, central, and western regions of China, the advantages and disadvantages of each region are different in the context of prominent regional differences in China.

Conclusions

The development of oil and gas resource-based cities is constrained by their economic structures and other factors, and most of the cities are in an extensive economic development mode, in which mode low energy consumption and pollution are achieved through industrial green development. In this study, the entropy weight-TOPSIS model was used to measure the industrial green development levels of 14 oil and gas resource-based cities from 2004 to 2018, and the overall system and sub-system nearness degrees of the industrial green development levels of the oil and gas resource-based cities and their rankings were analyzed. The following conclusions are drawn:

1. The industrial green development levels of the oil and gas resource-based cities are generally low, and the difference between the cities is significant. The nearness degrees of the industrial green development levels of the oil and gas resource-based cities in China range from 0.2 to 0.5, which is obviously low. Specifically, the industrial green development levels of Karamay, Dongying, Daqing, and Ordos are relatively high, while the industrial green development levels of Dazhou, Luzhou, Nanchong, and Tangshan are relatively low.

2. According to the variation trend of the industrial green development levels of the oil and gas resourcebased cities, some cities show a similar variation trend over the 15 years while some cities fluctuate greatly in terms of the industrial green development level. For instance, Yulin, Yan'an, Ordos, and Nanyang show a rapid increase, while Dongying, Daqing, Nanchong, and Songyuan show a rapid decrease.

3. The four sub-systems of industrial green development level vary among different oil and gas resource-based cities in China. Specifically, the differences between different cities in resource consumption intensity and economic benefits and structure have been increasing in recent years, while the differences between different cities in environmental impact and treatment and technological innovation and investment have been decreasing in recent years.

Acknowledgments

This paper funded by the Chinese Social Sciences Fund: Research on mechanism analysis, efficiency measurement and path exploration of digital enabling low-carbon transformation on traditional energy industry (22BTJ046).

Conflict of Interest

The authors declare no conflict of interest.

References

- YANG R.F., LI N.N. Environmental Regulation and Green Industrial Development of China:Theoretical Analysis and Empirical Evidence. Journal of China University of Geosciences (Social Science Edition), 19 (05), 79, 2019.
- LI X.Z., GAO J.J. A Comparative Study on Spatial and Temporal Differences of Green Development Efficiency of China's Industry. Journal of Hangzhou Dianzi University (Social Sciences), 16 (04), 1, 2020.
- 3. WANG X.P., LI Y.M. Measurement and Differences of Industrial Green Development from the Perspective of Sustainable Development. Journal of Industrial Technological Economics, **39** (07), 83, **2020**.
- ZHANG C.X., MA C.W. Study on the evaluation index system of regional industrial green development level. TONG JI YU GUAN LI ZA ZHI, 36 (01), 108, 2021.
- MA Y., SUN X.Y. Study on the evaluation of green development level of provincial industry. Journal of Green Science and Technology, 23 (06), 277, 2021.
- ZHANG Y.K., CUI J.X. Evaluation of green development level of urban industry in shandong province. Journal of Lanzhou University of Finance and Economics, 35 (01), 33, 2019.
- HUANG J.P., LIU Z.J. Comprehensive Evaluation of China's Green Industrial Development. Journal of Hunan University of Technology(Social Science Edition), 25 (04), 61, 2020.
- WU C.Q., HUANG L. Research on the Performance and the Synergistic Effect of Green Development of Yangtze River Economic Belt's Industry. Journal of China University of Geosciences(Social Sciences Edition), 18 (03), 46, 2018.

- XU C.L., ZHUANG G.Y. Dynamic Structure and Spatio-Temporal Effect of Supply-side Reform on Industrial Green Development in China. SCIENTIA GEOGRAPHICA SINICA, 38 (06), 849, 2018.
- DIAO L.J., YAO J., AI Y.N. Comprehensive Evaluation of Industrial Green Development Based on SPA-TOPSIS Method. SHENG TAI JING JI ZA ZHI, 36 (09), 54, 2020.
- MOHTADI H. Environment Growth and Optimal Policy Design. Journal of Public Economics, 63 (1), 119, 1996.
- KUMAR S. Environmentally sensitive productivity growth: a global analysis using Malmquist-Luenberger index. Ecological Economics, 56 (2), 282, 2006.
- HESHMATI A. A sequential Malmquist-Luenberger productivity index: Environmentally sensitive productivity growth considering the progressive nature of technology. Energy Economics, **32** (06), 1345, **2010**.
- JOHN M.R., SERGEY P. Distributional Implications of Alternative U.S. Greenhouse Gas Control Measures, 10 (02), 111, 2012.
- GUENDALINA A. Three Dimensions of Green Industrial Policy in the Context of Climate Change and Sustainable Development. The European Journal of Development Research, 33 (2), 371, 2021.