
Introduction

Ever-increasing warming of the climate system 
is now evident from observations of global average 
temperature rise of air and sea, widespread melting of 
snow and ice, and global average sea level rise [1, 2]. 
Meanwhile the Intergovernmental Panel on Climate 
Change (IPCC) Fourth Assessment Report concluded 
that most of the observed increase in global average 
temperature since the mid-20th century is likely due to 
increased concentrations of anthropogenic greenhouse 
gases [3, 4]. Available data show that human activities 
have caused an increase in global greenhouse gas 
emissions since the era of industrialization, such as an 

increase of 70% during 1970-2021 [5, 6]. Carbon dioxide 
serves as the most important anthropogenic greenhouse 
gas, with a rise of about 80% during 1970-2021 [7, 8].

As the concentration of greenhouse gases in the 
atmosphere has increased in recent years, the problem 
of carbon emissions has become an increasing threat 
to the survival of mankind and the development of 
social economy, and has become a major concern for 
all sectors of society [9, 10]. According to statistics, the 
extensive use of fertilizers, pesticides and fossil energy 
in agricultural production has made agriculture the 
second largest source of carbon emissions, in addition 
to a substantial number of carbon dioxide released in 
the industrial process [11, 12]. In China, the carbon 
emissions caused by agricultural production account for 
17% of the total national emissions, with a significant 
impact [13, 14]. On the one hand, with the emergence 
of various functions of agricultural industry, such as 
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grain production, ecological balance and social stability,  
it is increasingly important to ensure the unshakable 
status of agriculture as the foundation of the national 
economy [15, 16]. On the other hand, it is necessary  
to further explore the agricultural carbon source  
and its amount and quantify the loss of ecological 
and economic benefits caused by agricultural carbon 
emissions in order to respond to the development 
requirements of “transforming agricultural development 
mode” [17, 18]. This plays a greatly significant basic 
role in ensuring agricultural food security, maintaining 
the agricultural ecological environment, formulating 
agricultural carbon emission reduction indexes for 
government departments to push forward the process of 
agricultural low-carbon, with both theoretical and policy 
significance [19, 20]. 

Many scholars have conducted research on 
agricultural carbon emissions, mainly focusing on the 
following aspects: Firstly, driving factors of agricultural 
carbon emissions: For instance, the research shows that 
the influencing factors of agricultural carbon emissions 
include rural population, economic development level, 
agricultural technology factors, agricultural industrial 
structure, urbanization level, rural investment, per 
capita disposable income of farmers, etc. [21-25]. The 
research shows that fertilizer, irrigation power and 
agricultural film are the main factors affecting the 
growth of carbon emissions at the micro level, while 
economic factors are the key factors affecting the 
growth at the macro level [26]. The research shows that 
the degree of affluence and population effect are the 
main driving factors of agricultural carbon emissions 
[27]. Secondly, spatial-temporal dynamic changes of 
agricultural carbon emissions: For instance, spatial 
autocorrelation and coupling coordination model is 
adopted to evaluate the coupling coordination and 
spatial-temporal dynamic evolution of agricultural 
carbon emissions and agricultural modernization in 
China from 2010 to 2020 [28]. The spatial-temporal 
dynamics of the carbon footprint of major crops in 
China is studied to evaluate the carbon footprint per unit 
area (CFA) and carbon footprint per unit yield (CFY) of 
eight crops from 1990 to 2019 using the carbon footprint 
method based on the life cycle [29]. The Epsilon Based 
Measure-Global Malmquist-Luenberger (EBM-GML) 
model is adopted to measure China’s agricultural green 
technology progress (AGTP) and discuss its dynamic 
evolution characteristics in the space-time dimension 
[30]. Thirdly, carbon emission sources in agricultural 
production: For instance, the research shows that crops 
including wheat, corn, sugarcane, cotton, pearl millet, 
sesame, etc. and land use in Pakistan are the main 
carbon emission sources in agricultural production [31]. 
The research shows that chemical fertilizers, pesticides, 
agricultural film, agricultural diesel and cultivation are 
five carbon emission sources in agricultural production 
[32]. The research shows that agricultural materials, 
rice planting, soil N2O, livestock breeding and straw 
burning are the five carbon sources of agricultural 

carbon emissions [33]. Fourthly, the relationship 
between agricultural carbon emissions and economic 
development: For instance, the research shows that 
the development of China’s agricultural economy has 
brought about an overall increase of 2% in agricultural 
trade [34]. With the development, the intensity of 
agricultural carbon emissions has decreased by 0.1%. 
The research shows that the agricultural economic 
growth of Henan Province in China in the past 20 years 
was realized at the cost of increased agricultural CO2 
emissions [35]. The research shows that carbon dioxide 
emissions will increase by 0.61% for every 1% rise in 
agricultural economic growth in Nepal [36]. Fifthly, 
analysis of regional differences in agricultural carbon 
emissions: For instance, the regional differences in 
agricultural carbon emissions efficiency are analyzed in 
China’s seven major agricultural regions [37]. A dynamic 
analysis is conducted on the agricultural carbon emission 
efficiency of provinces along the “the Belt and Road” in 
China, which showed that there are significant regional 
differences in agricultural carbon emission efficiency 
levels among various regions [38]. A regional analysis 
of farm carbon emissions is conducted in the United 
States, assessing carbon emissions from crop production 
to partial milk supply chains of farms in five production 
regions in the United States [39]. In general, there are 
increasingly abundant studies on agricultural carbon 
emissions and increasingly extensive research content, 
methods and scope. However, there are few studies 
on prediction model and demonstration of regional 
agricultural carbon emissions, which is insufficient to 
guide for the reduction of regional agricultural carbon 
emissions and the healthy development of regional 
agricultural ecology.

Fujian Province, as an economic zone on the west 
side of the Straits, has the necessary water and heat 
conditions to develop agricultural production due to its 
geographical location, good climate and developed water 
system in the southeast coast, owning great advantages 
in developing ecological agriculture with its own 
characteristic [40]. However, the proportion of cultivated 
land in Fujian Province is small, of which most is 
terraced and sloping land, known as “Eighty percent 
of mountains, ten for water and land each”, and lack 
of fertility and organic matter content in the soil [41].  
In order to alleviate the contradiction between population 
growth and limited cultivated land area, Fujian Province 
has invested more human and material resources in the 
agricultural production, such as multiple cropping of 
cultivated land, ploughing, and fattening in recent years. 
A substantial number of human activities have led to its 
much higher agricultural carbon emissions than other 
regions, greatly enhancing the carbon source effect of 
agricultural production [42]. Therefore, the research 
of agricultural carbon emissions in Fujian Province is 
conducive to inspiration for the formulation of policies 
and standardization of irrational agricultural practice 
so as to promote the sustainable development of Fujian 
agriculture [43].
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With Fujian Province as an example, considering 
the agricultural population, economic development, 
scientific and technological progress and other factors 
affecting the agricultural carbon emissions in Fujian 
Province, this paper builds a PLS-SA-AdaBoost 
prediction model combining partial least squares 
(PLS), simulated annealing algorithm (SA) and 
adaptive boosting algorithm (AdaBoost), and verifies 
the effectiveness of the combined prediction model 
through demonstrative methods. At the same time, 
under the five scenarios set in the paper, it predicts the 
future agricultural carbon emissions in Fujian Province, 
which is of great practical significance to the reduction 
of agricultural carbon emissions while increasing 
agricultural production in Fujian Province as well as the 
development of low-carbon agriculture.

The innovative points of this paper are as follows:
(1) A combined prediction model based on machine 

learning is given for the prediction problem of 
agricultural carbon emissions, and the effectiveness of 
the model is empirically verified on agricultural data in 
Fujian Province.

(2) The machine learning prediction model proposed 
in this paper has a better prediction accuracy compared 
with other models on agricultural data in Fujian 
Province.

(3) The combined prediction model proposed in 
this paper is used to forecast the trend and range of 
agricultural carbon emissions in Fujian Province under 
multiple scenarios over the next nine years.

Material and Methods

Partial Least Squares (PLS)

Partial Least Squares (PLS) was first proposed by 
Wolf and Alban, which provides a method of multi-to-
multiple linear regression modeling [44]. Especially 
when there are a substantial number of variables  
which is in multiple correlations, and a relatively 
small number of observed data, the model built 
with partial least squares regression has advantages 
not found in traditional methods such as classical 
regression analysis. Partial least squares regression 
is a new regression analysis method widely used in 
the analysis and prediction of engineering technology  
and economic management, multiple regression analysis 
and modeling.

Adaptive Boosting (AdaBoost)

The Adaptive Boosting (AdaBoost) is an algorithm 
that starting from a weak learning algorithm and 
iteratively learning to obtain a series of weak learners, 
and then combining these weak learners to construct 
a strong learner [45]. The key is to change the 
probability distribution of the training data, call 
the weak learning algorithm according to different  

training data distribution, and then integrate the 
weak learners under a certain weight to get the strong  
learners.

Simulated Annealing (SA)

Simulated Annealing (SA) is a stochastic 
optimization algorithm in essential, which refers to 
the annealing process of solid substances in physical 
processes, and then extends to similar combinatorial 
optimization problems [46]. The annealing cooling 
process is to cool the heated liquid through parameter 
control, and finally form an ideal regular solid. During 
the cooling, the purpose of parameter control is to keep 
the liquid in a stable state. In case of a sharp drop in 
temperature and other conditions, the uniform fixation 
cannot be formed in the end.

PLS-SA-AdaBoost Model

In order to improve the training accuracy of the 
prediction model, this paper constructs a PLS-SA-
AdaBoost combined model for predicting regional 
agricultural carbon emissions in Fujian Province based 
on partial least squares (PLS), simulated annealing 
(SA) and adaptive boosting (AdaBoost). Wherein, PLS 
is applied to perform dimensionality reduction of the 
original input data, so as to remove the multicollinearity 
in the original input data; SA is adopted for parameter 
optimization to find the optimal parameter when the 
model is trained using the regional agricultural carbon 
emission data of Fujian Province; AdaBoost is used for 
model training, model prediction and model evaluation. 
The combined prediction model constructed is shown in 
Fig. 1.

In order to evaluate the prediction effect and the 
degree of advantages and disadvantages of the model, 
indexes including mean square error (MSE), mean 

Fig. 1. PLS-SA-AdaBoost combined prediction model.
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absolute error (MAE), root mean square error (RMSE), 
mean absolute percentage error (MAPE) etc. are used in 
this paper. The equation of each evaluation index is as 
follows:

                       (1)

                  (2)

                   (3)

           (4)

Wherein: N is the number of sample data, y is the 
true value of regional agricultural carbon emissions 
in Fujian Province, ŷ is the predicted value of regional 
agricultural carbon emissions in Fujian Province.

Index System Construction

Ehrlichg and Hdlden first proposed the impact 
population affluence technology (IPAT) model of 
environmental impact in the early 1970s [47]. As the 
model fail to reasonably reflect the impact of human 
factors on the environment, Dietz et al. have improved 
the model and constructed the stochastic impacts by 
regression on population, affluence and technology 
(STIRPAT) model [48]. 

Due to few factors affecting carbon emissions for 
IPAT model to examine, when this paper explores the 
index system that affects agricultural carbon emissions 
in Fujian Province, the model is expanded combined with 

the actual situation of agriculture in Fujian Province in 
terms of the number of agricultural employees, per capita 
agricultural GDP level, agricultural mechanization 
level, disposable income of rural residents, agricultural 
industrial structure, energy efficiency of agricultural 
production and area under mechanized cultivation, on 
the basis of influencing factors of agricultural carbon 
emissions from economic development, scientific and 
technological progress, and population. The expanded 
model form is:

 (5)

Wherein, a, b, c, d, e, f, g, h represents coefficient; μ 
is the model error.

The seven indexes selected in this paper that affect 
agricultural carbon emissions in Fujian Province can 
reflect the changing trend of regional agricultural carbon 
emissions. The category, variable content, symbol, unit 
and other information of these indexes are illustrated in 
detail in tables, as shown in Table 1:

Data Processing

Since the selected data sample is composed of 
seven different indexes characteristic variables, various 
indexes characteristics owns various dimensions and 
dimensional units. It is necessary to normalize the data 
in order to eliminate the dimensional impact between 
different indicators to enable comparability of different 
data indexes without affecting the results of data 
analysis. Min-max standardization method is selected in 
the experiment of this paper. 

Table 1. Factor Variables and Symbolic Meaning.

Category of Indicators Meaning of Variables Symbol Unit Supporting 
Literature

Agricultural population Number of rural populations P One hundred million 
people [49]

Economic development Agricultural GDP per capita A Ten thousand yuan/person [49]

Progress in science and 
technology Total power of agricultural machinery T Gigawatt [50]

Progress in science and 
technology

Energy efficiency in agricultural production,
 diesel use/total output value of agriculture, 

forestry, husbandry and fishery
E % [49]

Economic development
Agricultural industrial structure,

 plantation output value/total agricultural 
output value

S % [49]

Economic development Per capita disposable income of rural residents N Ten thousand yuan/person [50]

Progress in science and 
technology

Area cultivated by machine tillage in the 
current year J 1 million hectares [50]

Regional agricultural 
carbon emissions

Total agricultural carbon emissions in the 
region I Ten thousand tons [50]
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The agricultural carbon emission and annual growth 
rate of Fujian Province are shown in Fig. 2. 

The agricultural carbon emission intensity and 
annual growth rate of Fujian Province are shown  
in Fig. 3.

Multicollinearity Test

Multicollinearity refers to the existence of 
correlation among explanatory variables in the model. 
In the prediction of actual agricultural carbon emissions, 
explanatory variables tend to own somewhat correlation, 
and multicollinearity is a common problem existing 
in multiple regression models. A new index variance 
inflation factor variance inflation factor (VIF) [51] 
can be constructed by using the decision coefficient to 
judge multicollinearity. In the multiple linear regression 
model, the variance inflation factor of the ith explanatory 
variable is:

          (6)

In which, Ri
2 is the determinable coefficient 

obtained by performing linear regression between the ith 
explanatory variable taken as the explained variable and 
the other k – 1 explanation variables.

The larger the variance inflation factor, the closer 
Ri

2 is to 1, the stronger the collinearity between the ith 
explanatory variable and other explanatory variables. 
If the value of VIFi is greater than 10, it indicates that 
there is severe multicollinearity between explanatory 
variables. Table 3 shows the multicollinearity test results 
of various indexes of agricultural carbon emissions in 
Fujian Province, which can be seen that the VIFj  value 
of most indexes is greater than 10, indicating that there 
is serious severe between indexes.

Results and Discussion

Sample Original Data

This paper takes the agricultural production status 
of Fujian Province from 2000 to 2021 as the research 
object, of which the data are obtained by the calculation 
and sorting of records from the Fujian Statistical 
Yearbook, the China Rural Statistical Yearbook and 
the China Agricultural Yearbook. There are many 
indexes variables that affect the agricultural carbon 
emissions in Fujian Province, including the three 
factors of agricultural population, economic growth, 
and technological progress. In this paper, the per capita 
agricultural GDP level, the disposable income of rural 
residents, and the agricultural industrial structure are 
selected as the representatives for economic growth; 
the level of agricultural mechanization, the energy 
efficiency of agricultural production, and the area 
under mechanized cultivation are selected as the 
representatives for the basic aspects of technology. The 
descriptive statistical results of the original variables are 
shown in Table 2.

Table 2. Statistical Result of the Original Sample Data.

Min Max Mean Std

P 0.127 0.198 0.162 0.022

A 0.213 1.502 0.692 0.423

T 0.873 1.384 1.151 0.161

E 0.060 0.254 0.138 0.061

S 0.366 0.415 0.394 0.012

N 3.230 23.229 10.112 6.368

J 0.405 1.131 0.767 0.277

I 429.134 684.656 542.870 71.617

Fig. 2. 2020-2021 Agricultural Carbon Emission and Annual 
Growth Rate of Fujian Province.

Fig. 3. 2020-2021 Agricultural Carbon Emission Intensity and 
Annual Growth Rate of Fujian Province.
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Partial Least Squares (PLS) for Dimensionality 
Reduction

Multiple collinearities in the model can be 
eliminated by dimensionality reduction. In this paper, 
PLS is adopted to reduce the dimensionality of the 
index system of the original data. Same as principal 
component analysis, PLS also achieves dimensionality 
reduction by extracting principal components, i.e., the 
original variables are converted to produce a few new 
variables. These new variables are linear combinations 
of the original variables. At the same time, these new 

variables should represent the data structure of the 
original variables as much as possible and miss as 
little information as possible. In addition, the new 
variables, also known as principal components, are 
not related to each other, namely orthogonal. Five new 
principal components t1, t2, t3, t4 and t5 are obtained after 
dimensionality reduction through PLS. 

Next, the new principal component after 
dimensionality reduction will be used as the input data, 
with which the SA-AdaBoost model are used to predict 
the agricultural carbon emissions in Fujian Province. 

SA-AdaBoost Model Prediction

SA-AdaBoost Parameter Setting

In this paper, SA is used to find the optimal hyper-
parameter in the AdaBoost. The two hyper-parameters to 
be optimized in AdaBoost are maximum n_estimators, 
and learning_rate of weak learners, of which the value 
range of n_estimators is {90, 91, 92, ......, 220}, and the 
value range of learning_rate is {0.01, 0.02, 0.03, ......, 1}. 
The agricultural carbon emission data of Fujian Province 
is input into the combined prediction model using  
a 10-fold cross-validation to find the optimal  
hyper-parameter of the model under the data set, so that 

Table 3. Multicollinearity Test.

Variable VIF

x1 219.257

x2 1022.393

x3 27.815

x4 2.742

x5 36.259

x6 13.769

x7 549.279

Table 4. Fitting Result of PLS-SA-AdaBoost Model for Training Set.

Year Actual value
(10000 tons)

Predicted value
(10000 tons)

Absolute error
(10000 tons)

Rate of error
(%)

2000 684.656 685.341 0.685 0.001

2001 658.735 660.053 1.319 0.002

2002 645.989 647.282 1.293 0.002

2003 598.338 597.142 1.195 0.002

2004 607.286 599.646 7.640 0.013

2005 593.396 591.619 1.778 0.003

2006 580.852 579.691 1.161 0.002

2007 570.419 568.142 2.277 0.004

2008 562.216 564.256 2.040 0.004

2009 557.633 560.612 2.979 0.005

2010 547.834 547.186 0.648 0.001

2011 539.503 541.574 2.071 0.004

2012 527.830 524.672 3.157 0.006

2013 518.542 519.061 0.519 0.001

2014 509.993 508.974 1.019 0.002

2015 500.114 505.029 4.916 0.010

2016 488.029 489.006 0.977 0.002

2017 475.429 474.479 0.950 0.002

2018 462.871 460.562 2.309 0.005
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the mean square error index can reach the minimum. 
Run the SA-AdaBoost program, and the optimal 
parameter combination is obtained: n_estimators: 108, 
learning_Rate: 0.50, and at this time the mean square 
error is the smallest: 0.0034. 

Model Prediction

Take the data of agricultural carbon emissions in 
Fujian Province as the data set, divide the data from 
2000 to 2018 into training sets, the data from 2019 to 
2021 into test sets, train the combined prediction model 
PLS-SA-AdaBoost through the training set, and then 
perform the test for the test set with the combined 
prediction model to evaluate the prediction ability of the 
model.

The PLS-SA-AdaBoost combined prediction model 
is used to fit the training set. Table 4 shows the fitting 
result data of the combined prediction model for the 
training set, which can be seen a relatively good fitting 
effect. 

Fig. 4 shows the fitting display of the combined 
prediction model for the training set.

PLS-SA-AdaBoost combined prediction model is 
used to perform test on the test set, whose results are 
shown in Table 5. It can be seen that the average error 
rate of the PLS-SA-AdaBoost prediction model is 
0.022, and the predicted value is basically close to the 

true value, showing a relatively good prediction ability 
of the PLS-SA-AdaBoost model. Moreover, compared 
with the SA-AdaBoost not using PLS as well as PCA-
SA-AdaBoost model using principal component analysis 
(PCA) and SA, the PLS-SA-AdaBoost model shows 
the lowest error rate, which can be seen that PLS-SA-
AdaBoost shows better prediction performance than the 
other two models. And applying PLS and SA to optimize 
the model parameters is conducive to improving the 
prediction effect of the model.

In order to verify the effectiveness of the PLS-SA-
AdaBoost model proposed in this paper combining 
PLS, SA and AdaBoost, more models are added for 
comparison, including support vector regression (SVR), 
random forest (RF), feed forward networks (FFN), and 
models not using PLS but SA, using PCA and SA, using 
PLS and SA, of which measurement indexes of MSE, 
MAE, RMSE, MAPE, etc. are used for performance 
evaluation. The comparison results of the performance 
evaluation of each model are shown in Table 6. It can 
be found that all performance evaluation indexes of the 
PLS-SA-AdaBoost model show the best, indicating that 
the prediction effect of the PLS-SA-AdaBoost combined 
prediction model is the top.

Discussion

Scenario Analysis and Parameter Setting

This paper sets five different scenarios, namely 
high growth rate, average growth rate, low growth rate, 
minimum positive growth rate, maximum negative 
growth rate, etc. Then it uses PLS-SA-AdaBoost 
model to predict the agricultural carbon emissions of 
Fujian Province in 2022-2030 under these five different 
scenarios. 

Prediction of Agricultural Carbon Emissions 
in Fujian Province

According to the various scenarios set above, the 
PLS-SA-AdaBoost model built in this paper is used 
to predict the agricultural carbon emissions in Fujian 
Province, as shown in Fig. 5.

It can be seen from Fig. 6 that the predicted 
agricultural carbon emission of Fujian Province in 
Scenario 1 shows a trend of earlier decrease and later 
increase, from 5,178,500 tons in 2022 to 5,264,800 tons 
in 2030, with a rise of 1.66% in 9 years. In scenario 2, 

Table 5. Comparative Analysis of Model Prediction Results.

Fig. 4. Training Set Fitting Display. 

Year Actual value PLS-SA-
AdaBoost

Rate
of error SA-AdaBoost Rate

of error
PCA-SA-
AdaBoost

Rate
of error

2019 446.733 455.982 0.021 465.979 0.043 465.573 0.042

2020 437.617 442.500 0.011 469.108 0.072 468.291 0.070

2021 429.134 443.393 0.033 475.429 0.108 468.291 0.091
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the agricultural carbon emission of Fujian Province is 
predicted to show a slow fall, from 5,206,600 tons in 
2022 to 5,098,000 tons in 2030, a decrease of 2.09%  
in 9 years, with an average annual decline rate of 
0.26%. In Scenario 3, the predicted agricultural carbon 
emissions in Fujian Province shows a relatively rapid 
decline, from 5,101,300 tons in 2022 to 4,591,400 tons in 
2030, a fall of 9.99% in 9 years, with an average annual 
decline rate of 1.31%. In Scenario 4, the agricultural 
carbon emission of Fujian Province is also predicted 
to show a slow decline trend, from 5,243,700 tons in 
2022 to 5,064,600 tons in 2030, a decrease of 3.41% in 9 
years, with an average annual decline rate of 0.43%. In 
Scenario 5, the predicted agricultural carbon emission 
Fujian Province also shows a slow fall trend, from 
5,125,200 tons in 2022 to 5,069,600 tons in 2030, with 

a decrease of 1.08% in 9 years and an average annual 
decline rate of 0.14%. In conclusion, the agricultural 
carbon emissions of Fujian Province of China will 
fluctuate between 5,264,800 tons and 4,591,400 tons in 
2030 according to the prediction under five different 
scenarios.

It can be seen from the prediction results under 
these five scenarios that in order to control the future 
agricultural carbon emission level of Fujian Province 
and enable the green, environmental protection and 
healthy development of Fujian’s agriculture, Fujian 
Province should try to carry out local agricultural 
production activities according to scenarios 3, 4 and 5, 
that is, the indexes including the number of agricultural 
employees, per capita disposable income of rural 
residents, and the area under mechanized cultivation 
should be controlled at the average growth rate, low 
growth rate and negative growth rate. In this way, the 
level of agricultural carbon emissions in Fujian Province 
can be effectively controlled, which is conducive to the 
healthy and sustainable development of agricultural 
ecology in Fujian Province.

Conclusions

This paper constructs the PLS-SA-AdaBoost 
combined prediction model to compare its performance 
with other machine learning, neural network and other 
models and conduct demonstrative research on the 
agricultural carbon emissions data of Fujian Province 
with this combined model so as to predict the agricultural 
carbon emissions of Fujian Province from 2022 to 2030 
under five set scenarios. The following conclusions can 
be drawn through demonstrative research:
1. Agricultural carbon emissions in Fujian are related 

to seven indexes such as the number of agricultural 

Table 6. Comparison Result of Each Model in Performance Evaluation.

Model MSE MAE RMSE MAPE

GA-SVR 0.02660 0.1628 0.1631 2.6780

PCA-GA-SVR 0.02209 0.1480 0.1486 2.4349

PLS-GA-SVR 0.02363 0.1530 0.1537 2.5167

GA-RF 0.01666 0.1286 0.1291 2.1149

PCA-GA-RF 0.00368 0.0584 0.0607 0.9615

PLS-GA-RF 0.00766 0.0860 0.0875 1.4140

GA-AdaBoost 0.00570 0.0714 0.0755 1.1746

PCA-GA-AdaBoost 0.00464 0.0655 0.0681 1.0771

PLS-GA-AdaBoost 0.00338 0.0558 0.0581 0.9175

GA-FFN 0.98218 0.8709 0.9911 14.3118

PCA-GA-FFN 0.09741 0.2953 0.3121 4.8596

PLS-GA-FFN 5.01087 2.2290 2.2385 36.6422

Fig. 5. Prediction of Agricultural Carbon Emissions in Fujian 
Province from 2022 to 2030.
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workers, per capita disposable income of rural 
residents, and the area under mechanized cultivation. 
These seven indexes selected can predict the regional 
agricultural carbon emissions to a certain extent.

2. The error rate of PLS-SA-AdaBoost model in 
predicting agricultural carbon emissions in Fujian 
Province is much lower than that of AdaBoost model 
not using PLS but SA, as well as that using PCA and 
SA.
Compared with the other 11 machine learning and 

neural network models, the PLS-SA-AdaBoost model 
shows the best performance of measurement indexes 
of MSE, RMSE, MAE and MAPE, etc. in predicting 
agricultural carbon emissions in Fujian Province.
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