
Introduction

Despite being a significant form of pollution, noise 
pollution continues to be overlooked in numerous 
modern cities across the globe [1]. However, according 
to Fallah-Shorshani et al. [2] in recent years the issue 
of noise caused by traffic is becoming increasingly 
concerning. Because of that it requires a comprehensive 
and coordinated effort from all stakeholders to 
effectively address it and achieve the desired outcome 

of acceptable noise levels in different areas of the city 
[3]. Also, it should be noted that ambient noise and air 
pollution frequently appear together since they stem 
from identical origins, namely traffic [4], which is even 
more concerning because previous studies confirmed 
spatial connection between noise caused by traffic and 
air pollution [5]. In recent years, there has been an 
intensive development of air traffic, which in the areas 
located on the routes of airlines, and especially at airport 
locations, has led to environmental burdens to the upper 
tolerable limits. Although the aviation sector brings 
significant economic and social benefits [6] to the state, 
it also affects the increase in noise pollution and local 
air quality, as well as climate change [7]. The further 
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growth of the aviation sector is directly conditioned by 
its efficient response to today’s major environmental 
challenges. The answers to these challenges must be 
environmentally sustainable and innovative, which 
is the only way to increase the competitiveness of the 
aviation sector in the global market [7]. The aviation 
sector is not fully comparable with other economic 
sectors, because the reduction of factors that affect 
environmental pollution in aviation is more difficult to 
achieve [8]. A full scientific understanding of the impact 
of aviation on the environment is an essential basis for 
discussing informed policy and for developing effective 
mitigation measures, which achieve the desired result in 
a cost-effective way.

Noise near airports is generated by aircraft 
movements, engine testing and other noise sources at 
airports, “en-route” aircraft flying and breaking the 
sound wall of supersonic aircraft [8]. The anxiety, which 
residents feel about a certain level of noise generated 
by air traffic, is greater than the anxiety caused by 
other means of transport [7]. Because of all the above, 
the fundamental goal of incorporating noise modeling 
in the process of evaluating environmental impact is 
to estimate the amount of noise that will be produced 
by a specific activity in the surrounding area [9]. This 
problem is especially pronounced when airports are 
located in the immediate vicinity of residential areas, 
hospitals and schools, as in the case of Mitiga Airport, 
which was the reason for conducting the research 
presented in this paper. 

Geographic information system (GIS) has gained 
significant popularity and emerged as a pivotal 
evaluation tool in the field of ecological environment 
evaluation [10]. Because of that GIS was used during 
the research for generating noise maps [11] and 
graphical interpretation of the most polluted areas, 
based on measured noise levels (Lden) before and after 
the introduction of corrective measures and the creation 
of distribution maps. Graphical representation of 
these results in GIS is enabled by applying the Inverse 
Distance Weighting (IDW) interpolation technique. The 
IDW method is based on the assumption that the variable 
being mapped becomes less influential as the distance 
from its sampled location increases. It is particularly 
effective for the interpolating phenomena that exhibit 
a strong correlation with distance, such as air quality, 
water flow, and noise levels [12]. The decision to use 
IDW over alternative methods like Kriging was made 
on the assumption that IDW would result in a closer 
resemblance between the values of sample points and 
the values projected onto the cells [13]. This assumption 
is based on the idea that as a sample point gets closer 
to the cell being projected, the value of that cell would 
increasingly reflect the value of the sample point [13]. 
In contrast, Kriging estimates the intensity of unknown 
variables, without necessarily reducing intensity with 
distance [13]. Also, according to Ghojogh Nejad et al. 
[14], the IDW interpolation method better presents the 
mean values of the measured noise levels, compared to 

the Kriging method used to generate a map based on 
the maximum values of the measured noise levels. For 
this reason, the IDW interpolation technique was used 
in this study.

According to Olayode et al. [15], artificial 
neural networks (ANNs) can be characterized as 
a mathematical framework capable of conducting 
simulation analyses on the functional and structural 
components of biological neural networks. Neural 
networks can be described as mathematical systems 
that are capable of learning in a nonlinear manner [16]. 
Mansourkhaki et al. [17] believe that ANNs can be used 
more successfully comparing to traditional methods of 
data analysis and modeling [18]. Thanks to the latest 
progress in machine learning and the widespread 
access to enormous data collections, it is now feasible 
to create neural network models that can anticipate 
aviation noise based on the flight paths of airplanes [19].  
In urban areas, traffic is the most prominent contributor 
to noise pollution which has a detrimental impact on 
human well-being, both physically and mentally, as well 
as work productivity [20]. Now, it is possible to create 
a predictive method by utilizing a range of detection 
devices to gather traffic data and incorporating historical 
traffic patterns and other significant variables [21]. Since 
ANN was already used in predicting air pollution [22], 
and it is also crucial to develop models that accurately 
predict the noise generated by air or road traffic [20], 
this was the reason why, in the final part of this paper, 
ANNs were used to assess the reliability of predicting 
noise levels generated by air traffic. 

Due to all the above, the purpose of this research is 
to assess and reduce noise levels after the introduction 
of certain corrective measures to reduce the impact of 
noise at the specific airport Mitiga (Tripoli) in Libya, 
in order to present the distribution of noise levels in 
research and mark the most critical grids using various 
GIS techniques. Finally, the technique of  ANNs, 
multilayer perceptron (MLP) was applied in order to 
assess the reliability of predicting the level of noise 
generated by air traffic, and the results were compared 
with the results of multiple linear regression (MLR) 
models to confirm the reliability of noise level prediction 
using ANN method.

Materials and Methods  

A model for estimating, reducing and predicting 
noise emissions has been created in order to enable 
the most efficient management of this environmental 
pollutant. The model consists of seven steps (Fig. 1).

The first step was defining the research goal – 
estimating, reducing and predicting noise emissions 
caused by aircrafts. The second step was collecting and 
creating data sets – in this step noise emissions were 
measured at three locations within the research area, 
before and after the introduction of measures to reduce 
noise emission generated by air traffic. The third step 
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was creating study area boundary map and attribute 
table of all measured points in GIS – in this step a 
database was created in GIS, which contains all the 
necessary data on measuring points and measured noise 
emission (Lday, Levening, Lnight and Lden) before and after 
the application of reduction measures. The fourth step 
was generating spatial distribution maps for calculated 
Lden using IDW method in GIS – in this step the IDW 
method in GIS was used for creating interpolation maps 
of the research area with measuring points, in order to 
graphically present the distribution of noise emissions 
before and after the introduction of certain corrective 
measures. The fifth step was generating grid map based 
on zonal statistical analysis – in this step the investigated 
area was divided into 16 grids (4x4) and zonal statistics 
applied to the data before and after the introduction of 
certain measures. The sixth step was generating grid 
maps for noise emission cut of in GIS – the results of 
zonal statistics were used to calculate the noise level 
in each control grid before and after the application  
of reduction measures, based on which the mapping 
of grid according to the level of noise pollution was 
performed. Finally, the seventh step was predicting 
noise emission level – in this step ANNs have been used 
to assess the reliability of predicting noise levels in the 
research area.

Research Area

The area of research is Mitiga International Airport 
in Libya (13o16’40”E, N32o53’40”N, elevation 11 m) 
(Fig. 2). This airport is located in the municipality of 
Tripoli, the capital of Libya. The planes operating on 
these routes are Airbus 320, Airbus 319, Airbus 321, 
Airbus 332, Boing 738, Boing 734, CRJ9 and ERJ145. 
The runway has an asphalt surface and has a length of 
3,400 m. Near the airport are Mitiga Military Hospital 
(13o16’08”E, 32o54’25”N, elevation 10 m) and Halim 
Al Saadia Elementary School (13o16’12”E, 32o53’29”N, 
elevation 11 m). 

In the period when the noise level was measured, 
there were an average about 43 landings and take-
offs per day. Noise level measurement was carried out 
in the period of June, July, August 2021, and cases of 
approximately the same engine power were analyzed. 
Phase 1 was from June 1 to July 15, 2021, and Phase 2 
from July 16 to August 31, 2021. The total number of 
flights in the observed period is: June 1,363; July 1,364 
and August 1,242. 

Therefore, measurements were made continuously 
for 3 months, 24 hours a day (except for the school 
location). The measurement was carried out in the period 
from June 1 to August 31, 2021, because it was observed 

Fig. 1. Noise emission assessment and prediction model.
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that in that period, although the traffic frequency was 
not the highest in 2021, it was the highest in previous 
years. It was not possible to perform longer-term 
measurements, because this research was conducted 
only as a part of the student’s doctoral dissertation. As 
a result, the obtained Lden values are more conservative 
and higher than the actual ones. The noise level was 
measured with three sensors of the same type, which 
were placed at locations M1, M2 and M3 (Fig. 2).

Given that airborne noise has an impact on the 
health of people living near the airport, as it affects 
sleep disorders, cardiovascular diseases, including 
hypertension, altered cognitive abilities in children, 
preterm birth, hormonal disorders [23, 24, 25], and 
higher risk of metabolic syndrome  [26], the research 
idea was to determine the noise level in the area that 
would include these three locations and to implement 
measures to reduce noise levels in accordance with 
the measurement results, the effect of which would be 
determined by a new set of noise measurements, at the 
same locations.

Measuring of the Noise Level

During three-month period (from June until 
September in 2021.) noise levels were measured at three 
locations near the runway threshold 10 (13°16.22’E, 
32°53.75’N) (Fig. 2):  

 – M1 (measuring spot 1) - at Mitiga Airport, where the 
airport staff is about 1,500 m away from the runway 
threshold 10 (13o16’40”E, N32o53’40”N),

 – M2 (measuring spot 2) - in the military hospital 
Mitiga, which is at a distance of 1,225 m from the 
runway threshold 10 (13o16’08”E, 32o54’25”N) and

 – M3 (measuring spot 3) - Halima Al Saadia Primary 
School, which is 550 m from the runway threshold 
10 (13o16’12”E, 32o53’29”N).
Measurement of noise levels at all three locations 

was done for the peak load of the airport (the largest 
number of take-offs and landings of aircraft that 
generate high noise levels). Also, the measurements were 
performed in two phases: (1) before the introduction of 
noise reduction measures and (2) after the introduction 
of noise reduction measures. 

These measures were implemented as a test for this 
research, which lasted from July 16 to August 31, 2021. 
The airport authorities have built barriers made of brick 
and aluminum. All airlines that used the airport in the 
specified period, as well as ATC (air traffic control), 
participated in the introduction of the measures.

The impulse precision sound level meter B&K 2209, 
manufactured by Brüel & Kjær, was used to measure 
the noise level, and the measurement was performed 
during three periods, during the day (from 7 h to 19 h), 
in the evening (from 19 h to 23 h) and at night (from  
23 h to 7 h) at the airport and hospital, while at  

Fig. 2. International airport Mitiga with measuring spots.



Assessment and Predictions of Air Traffic Noise... 1313

to 0 dB. Besides, in reality outdoor noise value at night  
is never 0 dB. This is why we used the limit value for 
Lnight = 50 dB. Although, if the noise was measured 
during the night period in the measuring spot M3, the 
values would certainly be higher than 50 dB, as well as 
the calculated Lden values. 

It was assumed that the noise at the M3 measuring 
point at night would be greater than 50 dB because  
it is close to the runway, and the noise level measured 
at the M2 measuring point is the farthest from the 
runway before and after the introduction of noise 
reduction measures, was greater than 50 dB. Also, 
it is a well-known fact that the noise is decreasing by 
increasing the distance. The sensitivity analysis was 
done separately for the measurement results before 
and after the introduction of noise decrease measures.  
The value for the M3 measuring point at night was 
increased by 10 and 20% to get the value for Lnight 
as closest to the mean noise value measured at the 
measuring point M2 at night which according to 
the results in Table 1 was 58.04 dB.The results have 
shown that in this case values for Lnight would be 55 
dB (increased by 10%), and 60 dB (increased by 
20%), and the calculated mean values for Lden would 
be 70.78 dB and 71.80 dB, respectively. The same 
analysis was done for the measurements after the 
application of noise decrease measures. However, since 
the mean noise level at measuring point M2 at night 
(Table 2) in this case was 51.34 dB, it was necessary  
to increase noise at the M3 measuring point at night  
by 2.5 and 5%, thus the new values for Lnight would be 
51.25 dB (increased for 2.5%) and 52.5 dB (increased 
for 5%). New calculated mean Lden values for the 
M3 measuring point were 58.64 dB and 59.45 dB, 
respectively. As can be seen, the sensitivity analysis has 
shown that by increasing the Lnight values, the Lden values 
will also be higher. However, the influence of increased 
Lnight values on mean Lden values at the M3 measuring 
point will not be so big, as can be seen by comparing 
with the results for calculated mean Lden values at  
the M3 measuring point (Tables 1, 2).

Geographic Information System

Fig. 2 shows a map with three locations where noise 
was measured (measuring points M1, M2 and M3). 
This map was created in GIS, using the QGIS software 
package (version 3.6). Since GIS has a very powerful 
spatial analysis capabilities [30, 31], it was used to 
create layers that contain all the necessary information 
for segmenting grids based on the boundaries of the 
research area. The research area consisted of 4x4 grids 
covering an area of 5.968 square kilometers. It has 
also been considered dividing the area into different 
numbers of grids but the results were not significantly 
different. In order to generate noise levels per grid, 
the measured noise values (Lday, Levening and Lnight) were 
used to calculate the 24-hour noise (Lden) measured  
at three locations and these results were then used  

the school location, the measurement was performed 
only during two periods, during the day and in the 
evening (the measurement was not done at night, 
because at the time the school was closed).  

One of the goals of this paper is to determine the 
spatial distribution of 24-hour noise emissions (Lden) 
generated by air traffic at Mitiga Airport (Tripoli, 
Libya) using GIS methodology, in order to identify 
noise pollution levels in relation to the location of Mitiga 
Military Hospital and Halim Al Saadia Elementary 
School located near this airport. Due to the fact that 
noise was measured at three measuring points, during 
the day, evening and night, 24-hour noise emissions 
(Lden) had to be calculated using “the following formula 
[27, 28]:

  (1)

where:
 – Ld  is the A-weighted long-term average sound level 

determined over all the day periods of the year,
 – Le is the A-weighted long-term average sound level 

determined over all the evening periods of a year, 
and

 – Ln is the A-weighted long-term average sound level 
determined over all the night periods of a year” [27, 
page 252]. 
Mihajlov and Prascevic [27] used noise indicators 

Ld, Le and Ln to present daily, evening and night noise 
indicators (Lday, Levening and Lnight).

The Guideline Development Group (GDG) of the 
World Health Organization (WHO) has suggested that 
the noise levels produced by aircraft should be reduced 
to levels below 45 dB Lden and 40 dB Lnight during night 
time as it can have negative effect on health and sleep 
[29]. The GDG has also expressed its confidence in the 
fact that exposure to noise levels below 45 dB Lden can 
lead to an increased risk of annoyance [29]. We noticed 
that these threshold values are about 10 dB lower than 
the threshold values in the EU member states, so we 
increased the WHO limit values for Lden and  Lnight by  
10 dB and conducted this research with a limit value of 
Lden = 55 dB and Lnight = 50 dB.   

Noise at the school location was measured only 
during the day and evening, because the school does 
not work at night, so when calculating the Lden value 
for a given location for Lnight, a limit value of 50 dB 
was taken into account. The pupils are not affected by 
noise during the night, since the school is closed, but 
the people living near the school are. Since the aim of 
our research was to assess the noise impact on pupils 
who are attending school near Mitiga airport, not the 
people living nearby, we did not measure noise during 
the night at the measuring spot M3, but we assumed that 
it was within the limit value (50 dB), and the sensitivity 
analysis have shown that the results for Lden  would not 
differ much in case that the values for Lnight are equal 
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in zonal statistics in GIS. The spatial distribution 
of noise emission was calculated using the IDW 
interpolation method, and the previously calculated Lden 
values for all three measuring points. IDW interpolation 
method [32] was used in this study to show the spatial 
distribution [33] of noise emission. The IDW method 
generates maps that offer valuable information for 
monitoring purposes, even when only a small number 
of monitoring units are available [34]. This is one of 
the simplest methods based on the assumption that the 
value at an uncompressed point can be approximated 
as a weighted average of values within points within 
certain distances or from a given number of the nearest 
points (usually 10 to 30) [35]. The weights are usually 
inversely proportional to the distance [27], which leads 

to estimation in an unspecified location. Therefore, the 
interpolation is calculated as follows [36]: 

       (2)

where m represents the number of the nearest points, r 
location, and p represents the parameter [36].

After applying the IDW interpolation method and 
creating spatial distribution maps [37] of noise emission 
and obtained average Lden values per grid, using zonal 
statistics as table tool in GIS, deviations from the limit 
value in each grid were calculated, assuming that the 
limit value for Lden is 55 dB. 

Table 1. Descriptive statistics of the measured noise emission caused by aircrafts before the introduction of measures.

Measuring spot Parameter Min Max Mean Skewness Kurtosis

M1

Lday 69.40 81.80 76.41 -0.150 -1.280

Levening 71.00 84.40 78.11 -0.030 -1.434

Lnight 68.30 81.00 74.82 -0.113 -1.462

Lden 76.07 87.90 82.00 -0.064 -1.526

M2

Lday 52.90 66.20 60.21 -0.068 -1.416

Levening 56.80 67.50 62.10 0.057 -1.564

Lnight 51.00 62.50 58.04 -0.625 -1.516

Lden 59.02 70.30 65.53 -0.439 -1.562

M3

Lday 60.00 73.20 68.72 -0.748 -1.396

Levening 63.90 76.40 70.85 -0.299 -1.406

Lnight / / / / /

Lden 63.28 75.29 70.35 -0.521 -1.432

Table 2. Descriptive statistics of the measured noise emission caused by aircrafts after the introduction of measures.

Measuring spot Parameter Min Max Mean Skewness Kurtosis

M1

Lday 54.00 57.40 55.58 0.361 -1.514

Levening 54.00 57.42 55.62 0.354 -1.529

Lnight 53.40 57.35 55.30 0.110 -1.492

Lden 59.99 63.76 61.77 0.173 -1.506

M2

Lday 50.00 53.30 61.83 -0.280 -1.539

Levening 50.00 53.35 52.05 -0.445 -1.280

Lnight 49.00 53.25 51.34 -0.260 -1.601

Lden 55.72 59.65 57.90 -0.258 -1.583

M3

Lday 52.00 56.40 54.26 -0.033 -1.531

Levening 52.00 56.45 54.29 -0.033 -1.527

Lnight / / / / /

Lden 56.96 58.94 57.92 0.135 -1.525
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Artificial Neural Networks

ANN technology was used to assess the reliability 
of noise level prediction [17]. This technique was used 
within the SPSS software package (version 20) and on 
that occasion the MLP structure of the neural network 
was used as one of the most commonly used ANNs. 
MLPs include input layer, hidden layer and output 
layer [38], and in this study they were used to predict 
variations in noise levels. Each MLP had one output 
(Lday, Levening, Lnight, or Lden) and three inputs (engine 
power, take-off and landing runway distance, and air 
traffic volume) that were used to identify differences 
between noise measurement locations. The training, 
validation and testing phases play a crucial role in the 
field of machine learning [39]. During the training phase, 
the corpus was organized in a manner that aligns with 
the algorithms’ computational requirements. This allows 
the model to learn from their trial and error experiences. 
To ensure comprehensive training, the dataset was 
divided into three segments, so when defining MLPs, 
it was determined that 70% of the sample would be 
random selection for training, i.e., calibration model, 
20% for testing and 10% for model validation. Ratio 
70:20:10 was also used by other authors like Zhang et 
al. [40], Kowsher et al. [39] and Karpathy et al. [41]. 
As Kowsher et al. [39] stated the training segment, 
comprising 70% of the dataset, was utilized to train the 
models. The testing phase involved using the remaining 
20% of the dataset as a dedicated testing set to assess 
the models’ performance [39]. Lastly, 10% was set aside 
for validation, aiding the models in evaluating their own 
performance and facilitating iterative improvements 
during the training process [39]. A training dataset for 
an ANN can have any number of hidden layers, which 
can also have any number of neurons [42]. Until the sum 
of the square error of the training template reached the 
minimum, the training is performed. The MLP analysis 
in this research was done based on 198 samples (for 
training, testing and holdout) for all outputs except for 
Lnight (132 samples) because the measurement was not 
done during the night period. To assess how well the 
ANN models are performing in terms of precision, the 
criterion used is the root mean square error (RMSE). 
The RMSE is calculated using the following equation 
[16]: 

             (3)

where Oi is the observed value and Pi is the computational 
value. The n parameter represent the number of data.

Multiple Linear Regression

MLR method was also used in predicting noise 
pollution levels at Mitiga International airport in Tripoli, 
in order to compare the results achieved by ANN 
method with another traditional model like MLR. 

The equation for multiple linear regression for k 
variables used for calculating noise pollution levels in 
the research was [43]:

   (4)

where the dependent variable i.e. noise pollution levels 
(Lday, Levening, Lnight and Lden) is y; coefficients of the 
regression evaluation are β1, β2 and βk while β0 is the 
y-intercept (value of y when all other parameters are 
set to 0); xi values are independent variables (runway 
distance (RD), air traffic volume (ATV) and engine 
power (EP)); ei is model error.

Results and Discussion

Descriptive statistics for all measured noise 
emission values (Lday, Levening, Lnight and Lden) at all three 
measurement locations are shown in Table 1 and Table 2. 

In Table 1 Skewness values are negative for all 
noise indicators except for measuring spot M2 (for 
noise indicator Levening) where it is positive and greater 
than zero. Negative Skewness values mean that the 
noise emission has a longer left tail distribution, while 
positive and greater than zero Skewness values mean 
that the noise distribution of the test area is asymmetric.  
All Kurtosis values (Table 1) are negative, which 
means that the noise emissions also have a light-tailed 
distribution. Additionally, it should be noted that the 
noise was not measured at night at the measuring spot 
M3 (in both cases, before and after the introduction of 
measures), considering that the school is closed during 
night hours, so the descriptive statistical analysis was 
not made for noise indicator Lnight.

In Table 2 Skewness values are positive for measuring 
spot M1 (for all noise indicators), while negative for 
measuring spots M2 (for all noise indicators) and M3 
(for all noise indicators except noise indicator Lnight).  
The Kurtosis values are all negative.

Considering that the maximum noise emission level 
for all four parameters was 81 dB and higher, it was 
determined that it is necessary to take certain measures 
to reduce the noise emission levels caused by air traffic. 
In this sense, after the first phase of measurements, the 
following measures were introduced to reduce noise 
emissions:
 – Engine power was reduced during take-off (from 

92.8% and 83% to 83% and 80%, respectively);
 – Engine power at landing remained at 38%, but the 

speed of the aircraft was reduced to the lowest 
possible;

 – An aluminum partition has been installed at one  
end of the runway threshold 10, towards the hospital. 
The thickness of this barrier is 2 mm, the length  
is 750 m, and the height 2 m. The aluminum barrier 
is 232 m away from the hospital;

 – Another, brick partition was set up towards the 
school, almost parallel to the runway. The thickness 
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of the masonry partition is 40 cm, the length  
is 825 m, and the height 4 m. The masonry barrier  
is 26 m away from the school; 

 – The flight procedures in the take-off phase (on 
departure) have been changed. On departure 
there are two noise abatement procedures where 
a stepped departure climb is being used. They are 
called “NADP 1” and “NADP 2” (Noise Abatement 
Departure Procedures). NADP 1 is used where there 
are noise sensitive areas close to the airport and is 
used to alleviate noise in an area further away, say 
+25 km from the start of roll on the airport runway. 
The restriction to two noise abatement departure 
procedures was agreed at the ICAO (International 
Civil Aviation Organization) in order to minimize 
confusion internationally at the appropriate 
procedure to use for the lessening of noise for people 
on the ground. Essentially the two noise abatement 
procedures are:

 – NADP 1: Aircraft to climb to 800’+ and then reduce 
thrust. Keep flaps lowered in take-off mode and 
continue climbing as fast as possible to 3,000’. Then 
retract flaps, increase thrust and go on their way;

 – NADP 2: Aircraft to climb to 800’+ and then reduce 
thrust. Withdraw flaps at that point and continue at 
a decreased rate of climb until 3,000’ Then increase 
climb and thrust and go on their way.

 – The NADP 1 procedure was applied in the research.

Application of GIS

After all measurements were performed both before 
and after the introduction of corrective measures to 
reduce noise levels, at all three locations, the data were 
entered into the GIS database for further analysis.  
First, based on the entered data on measured values 
and the application of the IDW interpolation method 
(Equation 2), maps of noise emission distribution were 
created before and after the introduction of corrective 
measures (Fig. 3).

It is noted that the noise level was significantly 
higher before the introduction of corrective measures  
(Fig. 3a), with the lowest noise emission values (from 
59.02 dB to 70.30 dB) recorded in the military hospital 
(M2), while in the school area (M3) recorded values 
were between 63.28 dB and 75.29 dB. The highest 
values of noise emission were measured in the area of 
the airport (M1) and ranged from 76.07 dB to 87.90 dB. 
After the introduction of corrective measures (Fig. 3b), 
the noise emission values in the hospital area (M2) 
ranged from 55.72 dB to 59.65 dB, in the school area 
(M3) between 56.96 dB and 58.94 dB. The highest noise 
level was still in the area of the airport (M1) and ranged 
between 59.99 dB and 63.76 dB. 

The distribution maps shown in Fig. 3 indicate that 
the area around Mitiga Airport and the population living 
in that location are still exposed to noise above 55 dB. 
According to Souza & Zannin [44] exposure to noise 
above 55 dB can reflect the health of the population 

living nearby [45]. Also, Baloye and Palamuleni [46] 
stated that noise sensitivity zones with noise level 
between 50 dB and 60 dB are considered risky, between 
60 dB and 65 dB moderately risky, between 65 dB and 
70 dB highly risky, between 70 dB and 75 dB dangerous, 
between 75 dB and 80 dB highly dangerous, while noise 
levels above 80 dB are extremely dangerous. 

After creating maps of spatial distribution of noise 
emissions, the investigated area was divided into 16 
grids and zonal statistics as table tool in GIS was applied 
for calculating deviations from the limit value for each 
grid. Then these deviations were entered into the GIS 
database and maps were created showing the deviations 
from the limit values per grid. Deviations from the 
limit values were calculated for Lden before and after the 
introduction of corrective measures (Fig. 4).

As can be seen in Fig. 4a), before the introduction 
of corrective measures less than 20% deviations was on 
the following grids: 672 (19.94%), 771 (18.43%) and 772 
(16.91%), between 20% and 25% deviations was on the 
grids: 471 (22.05%), 472 (21.96%), 473 (22.55%), 474 
(24.32%), 571 (21.65%), 572 (21.88%), 573 (23.22%), 
671 (20.02%) ) and 673 (24.54%), while over 25% of 
the deviations were on the grids: 574 (26.28%), 674 
(30.21%) and 774 (31.96%). Regarding deviations after 
the introduction of corrective measures (Fig. 4b), less 
than 6% of deviations were on the following grids: 471 
(5.48%), 472 (5.19%), 473 (5.58%), 571 (5.58%), 572 
(5.37%), 671 (5.68%), 672 (5.73%), 771 (5.53%) and 772 
(5.22%), between 6% and 9% deviations were on the 
grids: 474 (6.65%), 573 (6.10%), 574 7.70%), 673 (7.33%) 
and 773 (7.45%), while more than 9% of the deviations 
were still on the grids: 674 (9.66%) and 774 (10.50%).

All deviations from the limit value of noise levels 
used in the research, before and after the introduction of 
measures to reduce noise levels caused by air traffic are 
shown in Table 3.

As can be seen from Table 3, after the application 
of certain measures to reduce noise levels caused by air 
traffic, a significant reduction in noise emissions was 
achieved, but it is also noticeable that it is necessary 
to introduce additional measures to keep noise levels 
within limits, i.e. below 55 dB.

For this reason, the following additional measures 
have been proposed, which can be applied in the 
research area:
 – planting trees in the immediate vicinity of the school 

and military hospital,
 – implementation of the so-called green roofs on both 

buildings,
 – thicker facade of buildings and replacement of 

windows and doors (sound insulation), etc.
 –

Application of ANNs

In order to assess the reliability of predicting the 
emission of the examined parameters (Lday, Levening, Lnight 
and Lden), i.e., to achieve the second goal of the research, 
the method of ANNs, i.e., MLP was used. Input, i.e. 
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independent variables of this model included: engine 
power (%), runway distance (m) and air traffic volume, 
while the dependent variables included noise emission 
parameters (Lday, Levening, Lnight and Lden).

The results of ANN analysis for all four outputs 
(Lday, Levening, Lnight, or Lden) are presented in Table 4.

The results in Table 4 show that in all cases, ie. for 
all four outputs (Lday, Levening, Lnight, or Lden) RMSE values 
are lower than 1 which implies a higher coefficient of 
determination (Figs 5-8). RMSE is a performance 
metric that provides information about the short-
term efficiency of a model. It measures the difference 
between predicted values and observed values, with 
a lower RMSE indicating a more accurate evaluation. 
On the other hand, the coefficient of determination (R2) 

measures the variance explained by the model, reflecting 
the reduction in variance when using the model. R2 
ranges from 0 to 1, with a value close to 1 indicating a 
model with strong predictive ability and a value close to 
0 indicating a model that is not effective in analyzing 
the data. These performance metrics, RMSE and R2, 
are reliable measures of the overall predictive accuracy 
of a model [47]. Accuracy metrics are commonly used 
in ANNs to assess the quality of predictions. Beside 
Mean square error (MSE), mean absolute error (MAE), 
mean absolute percentage error (MAPE), and symmetric 
mean absolute percentage error (SMAPE), RMSE is 
widely used accuracy metrics in various fields such as 
weather forecasting, medical, and engineering [48]. 
RMSE, specifically, measures the average magnitude 

Fig. 3. Lden distribution maps: a) noise before corrective measures (Lden_NB) and b) noise after corrective measures (Lden_NA).
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of error between predicted and actual values. It can 
be visualized as the average vertical distance from the 
actual value to the corresponding predicted value on a 
fitted line. In simple terms, RMSE is the square root of 
MSE. Similar to MSE, the range of RMSE is from 0 to 
positive infinity, and a smaller RMSE value indicates 
a higher accuracy of the prediction model. However, 
unlike MSE, the units of RMSE are the same as the 
original units, making it more easily interpretable [48].

The assessment of the reliability of the prediction 
using MLP showed that changes in noise emission 
during the day (Lday) in the study area resulted in a 
coefficient of determination of 0.996 (Fig. 5a). As can 
be seen on Fig. 5a, the distinction between the actual 

values and the predicted values was in range of -2.04  
to +1.32 dB. Significance analysis (Fig. 5b) showed that 
air traffic volume has the greatest impact on predicting 
Lday variations.

The assessment of the reliability of the prediction 
of noise levels in the evening (Levening) resulted in a 
coefficient of determination of 0.997 (Fig. 6a) and 
that the difference between the actual values and the 
predicted values was in range of -1.55 to +1.40 dB, while 
the significance analysis (Fig. 6b) showed that air traffic 
volume has the greatest impact on predicting Levening 
variations. 

The assessment of the reliability of the prediction of 
noise levels at night (Lnight) resulted in a coefficient of 

Fig. 4. Lden cut of scheme: a) noise before corrective measures (Lden_NB_cut off) and b) noise after corrective measures (Lden_NA_cut 
off).
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determination of 0.997 (Fig. 7a), and that the distinction 
between the actual values and the predicted values 
was in range of -1.34 to +1.24 dB, while analysis of 
importance (Fig. 7b), as with other examined parameters 
showed that air traffic volume has the greatest influence 
on predicting Lnight variations.

Finally, a 24-hour noise emission prediction 
reliability assessment (Lden) was performed, which 
showed that the coefficient of determination was 0.998 
(Fig. 8a), and that the difference between the observed 
and predicted values was in rang of -1.56 to +0.92 dB. 
The air traffic volume had the greatest impact  
on noise pollution, as Hamida et al., [49] also stated 
in their study. This was confirmed by a significance 
analysis (Fig. 8b).

Therefore, it can be concluded that the air traffic 
volume and the engine power have the greatest impact, 
while the distance from the runway has the least 
impact on the variations of the analyzed noise emission 
parameters. Also, as Mansourkhaki et al. [17] stated that 
the high coefficients of determination for all dependent 
variables (in this case Lday, Levening, Lnight and Lden) 
confirms the reliability of the ANNs in predicting noise 
pollution caused by air traffic.

Considering that ANN analysis results have 
indicated lower values of RMSE (Table 4) it can be 
concluded that the model used in this part of research is 
good for prediction of dependent variables (Lday, Levening, 
Lnight and Lden).

Application of MLR

Finally, MLR analysis was used for determining 
coefficients of determination also for all four dependent 
variables (Lday, Levening, Lnight and Lden). The independent 
variables used in this part of the research were the same 
as the ones used in ANNs (runway distance (RD), air 
traffic volume (ATV) and engine power (EP)). 

After applying MLR method (Equation 4) for 
predicting dependent variables, the developed noise 
prediction model is given in Equations (5-8).

(5)

 (6)

 (7)

(8)

According to Table 5, the correlation between 
independent variables (runway distance (RD), air traffic 
volume (ATV) and engine power (EP)) and dependent 
variables (Lday, Levening, Lnight and Lden) are 0.952, 0.951, 
0.949 and 0.952, respectively. The R Squared for the 
regression models for dependant variables (Lday, Levening, 
Lnight and Lden)  are 0.906, 0.904, 0.901 and 0.906, 
respectively. This results indicate that 90.6% of the Lday 
values, 90.4% of the Levening values, 90.1% of the Lnight 
values and 90.6% of the Lden values can be explained 

Table 3. Deviations of Lden from the limit values, before and after the introduction of corrective measures.

Grid no.
Noise cut of before corrective measures (%) Noise cut of after corrective measures (%)

Limit
(in %) (in dB) (in %) (in dB)

471 22.05 15.56 5.48 3.19 55

472 21.96 15.48 5.19 3.01 55

473 22.55 16.01 5.58 3.25 55

474 24.32 17.67 6.65 3.92 55

571 21.65 15.20 5.58 3.25 55

572 21.88 15.40 5.37 3.12 55

573 23.22 16.63 6.10 3.57 55

574 26.28 19.61 7.70 4.59 55

671 20.02 13.77 5.68 3.31 55

672 19.94 13.70 5.73 3.34 55

673 24.54 17.89 7.33 4.35 55

674 30.23 23.83 9.66 5.88 55

771 18.43 12.43 5.53 3.22 55

772 16.91 11.19 5.22 3.03 55

773 24.04 17.41 7.45 4.43 55

774 31.96 25.83 10.50 6.45 55



Nasr A.A., et al.1320

Fig. 5. Graphical representation of a) actual compared to predicted Lday emission values and b) importance analysis.

ANN for Lday

Training 138 samples

Sum of Squares Error 0.260

RMSE (training) 0.043Relative Error 0.004

Training time 0:00:00.05

Testing 36 samples
Sum of Squares Error 0.078

RMSE (testing) 0.047
Relative Error 0.005

Holdout 24 samples Relative Error 0.006 / /

ANN for Levening

Training 143 samples

Sum of Squares Error 0.206

RMSE (training) 0.038Relative Error 0.003

Training time 0:00:00.05

Testing 38 samples
Sum of Squares Error 0.046

RMSE (testing) 0.035
Relative Error 0.003

Holdout 17 samples Relative Error 0.001 / /

ANN for Lnight

Training 95 samples

Sum of Squares Error 0.120

RMSE (training) 0.036Relative Error 0.003

Training time 0:00:00.02

Testing 21 samples
Sum of Squares Error 0.035

RMSE (testing) 0.041
Relative Error 0.003

Holdout 16 samples Relative Error 0.004 / /

ANN for Lden

Training 124 samples

Sum of Squares Error 0.096

RMSE (training) 0.028Relative Error 0.002

Training time 0:00:00.05

Testing 44 samples
Sum of Squares Error 0.083

RMSE (testing) 0.043
Relative Error 0.005

Holdout 30 samples Relative Error 0.002 / /

Table 4. The results of ANN models.
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Fig. 6. Graphic representation of a) actual compared to predicted Levening emission values and b) importance analysis.

Fig. 7. Graphic representation of a) actual compared to predicted Lnight emission values and b) importance analysis.

Fig. 8. Graphic representation of a) actual compared to predicted Lden emission values and b) importance analysis.
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by the independent variables. RMSE values for Lday, 
Levening, Lnight and Lden are 3.521, 3.534, 3.390 and 3.366, 
respectively. Also the level of significance was less than 
0.05 in all four cases, which means that all independent 
variable coefficients are statistically significantly 
different from zero. 

If we take into consideration the results of the 
conducted ANN analysis and MLR (the values of R2 and 
RMSE) it can be concluded that ANN model used in 
the research offers better results, as Yusof et al. [50] and 
Kuznetsov et al. [16] also stated in their research.  

Conclusions

The results of IDW interpolation method in GIS 
showed that before the introduction of measures to 
reduce noise levels caused by air traffic on some grids 
it was necessary to reduce noise levels by over 30%, 
while the introduction of measures reduced noise levels, 
but still on some grids a reduction of over 9% is needed. 
However, it can be concluded that the application of 
measures to reduce noise levels in the study area has 
been successful, but not sufficiently to reach a noise 
level below the limit values and therefore additional 
measures to reduce noise should be introduced.

The application of ANNs in the prediction of noise 
variations has shown that the MLP technique can be 
successfully used in achieving this goal. The results of 
this analysis can also be used in the implementation of 
adequate measures to reduce noise levels. The reliability 
of the ANNs in predicting noise pollution caused by 
air traffic was confirmed by higher coefficients of 
determination and lower RMSE values than the ones 
achieved by MLR method. However, it is important to 
point out that additional parameters (the speed of the 
aircraft during takeoff and landing, wind direction, 
etc.) may also be included in the analysis, which would 
probably affect the result of the analysis using MLP 
technique, or some other traditional model such MLR, 
but in this way, data would certainly be obtained that 
would facilitate decision-making on the choice of 
corrective measures.

Since the research the research was limited 
both by time and technical possibilities to perform 
measurements at more measuring points, in future 
research, within the project carried out by the airport 
authorities,  it is planned that the measuring points are 

located in the direction of the extended runway, where 
the highest measured noise values will certainly be. 
This will certainly make the noise distribution different. 
Also, it is planned to measure noise east and west of the 
airport in the vicinity of residential areas, to study the 
impact of noise on the population living in the vicinity 
of the airport.

Finally, the system of preferential runways can be 
introduced in the future. This would make it possible to 
schedule the use of the runways according to the time of 
day, as well as according to the days of the week, which 
would achieve an additional reduction of the noise 
level in certain periods. It is also possible to introduce 
a flight ban for aircraft that are not noise certified for 
night flights. However, these are suggestions for further 
research. 
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