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Abstract

The Jianghuai-Huai Hilly Region (JHHR), being a crucial agricultural and forestry hub within the 
Yangtze River Economic Belt, holds immense significance in investigating land use dynamics under 
diverse scenarios. Such exploration not only facilitates the sustainable utilization of land resources but 
also contributes to ecological environmental preservation and the advancement of regional economic 
and social development. This study aims to analyze the spatial and temporal characteristics and driving 
forces of land use in JHHR over the past three decades (1990-2020) using 18 driving factors selected 
from both the natural environment and social economy. We have considered four different scenarios, 
including Natural Development (ND), Rapid Development (RD), Cultivated Land Protection (CLP), and 
Ecological Protection (EP). We used the PLUS model to simulate land use changes in JHHR until 2040, 
and we analyzed the spatial distribution pattern of land under different objectives. The results show 
that: (1) The main types of land use in the Jianghuai hilly area are arable land and woodland. In the 
past 30 years, the land use changes have been relatively stable, the area of arable land and woodland 
has continued to decrease, and the construction land has continued to grow; unused land and grassland 
have the highest dynamic degree, with the highest comprehensive dynamic degree from 2000 to 2005, 
at 0.42%; (2) In 2020, the simulation accuracy of land use in different time spans is high, with a Kappa 
coefficient higher than 0.85 and an overall accuracy higher than 92%, both higher than the standard. 
(3) The main driving factors for land expansion from 1990 to 2020 were natural factors such as DEM 
and slope, and the driving forces for construction land mainly came from socio-economic factors.  
(4) There are obvious gaps in land use changes under different scenarios. A comprehensive comparison 
of the growth of other types of land use to varying degrees under the ecological protection scenario and 
under the protection of ecological land use can be used as the optimal development scenario model.  
The scenario simulation can provide an effective reference for the rational planning and management of 
land in the Jianghuai hilly area.
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Introduction

Land is the foundation of human civilization and 
provides a habitat for various ecosystems. However, 
the development of human society has continuously 
impacted the functions and structures of land [1], 
such as modern urbanization, agricultural production 
methods, and industrialization efforts [2]. Land use 
change, which refers to changes in land use types and 
their proportions within a given spatial unit [3, 4],  
can reflect dynamic changes in land cover influenced 
by natural environmental, economic, and social  
factors [5]. Current research on land use change 
is focused on identifying spatial differentiation 
characteristics, and intrinsic driving forces, evaluating 
sustainability, and simulating future changes [6-8], 
These simulation models can help people understand 
the interconnection between land, economy, society, and 
the environment, and promote sustainable development 
and resource use [9], Therefore, it is important for 
policymakers and planners to better manage and plan 
for present land.

As computing power and data availability continue 
to advance, land use simulation models have evolved 
from empirical rules and statistical models to the 
current neural networks [10]. Among the models used 
for land use change research, prominent ones include 
CA-Markov [11], SD [12], FLUS [13], and others. 
These models effectively predict land use changes by 
considering a variety of factors, making them widely 
used in the field [14, 15]. However, these models have 
limitations in simulating land use changes at the patch 
scale and explaining the complex drivers behind these 
changes [16, 17]. The PLUS model is introduced to 
address these issues and achieve higher accuracy. The 
PLUS model is a rule mining framework that combines 
land expansion analysis (LEAS) and a CA model based 
on a multi-type stochastic seed mechanism [18, 19]. The 
PLUS model has garnered substantial attention from 
researchers, leading to numerous significant findings. 
For instance, Shihe Zhang et al. [20] utilized the PLUS 
model to investigate the landscape pattern of the Fujian 
delta region in 2050 and analyze the ecological risk 
associated with land change under different scenarios; 
Similarly, Tongli Niu et al. [21] employed the PLUS 
model to simulate and analyze land use changes in the 
Yangtze River basin in 2050, comparing three scenarios: 
inertia development, CLP, and ecological priority. The 
study verified the model’s strong simulation capabilities 
in capturing land use changes in the Yangtze River 
basin.; Another notable study by Li Jun et al. [22] 
combined the PLUS model with the InVEST model to 
predict land use changes and carbon stock variations 
under different scenarios in Kunming City. By analyzing 
the impact of different land use changes on carbon stock, 
the research shed light on the broader implications of 
land use decisions. Given its higher simulation accuracy 
and adaptability, the PLUS model stands out as this 
study’s chosen land use prediction model. Its advanced 

features and effectiveness in capturing complex land 
use dynamics make it an ideal tool for exploring and 
understanding future land use patterns.

This study aims to investigate the spatial and 
temporal changes in land use, and its drivers under 
different scenarios. The ultimate goal is to provide 
valuable insights for decision-makers in hilly areas by 
informing land management policies and planning. 
Using the PLUS model, we investigate the spatial and 
temporal characteristics of land use distribution from 
1990 to 2020. We also predict the spatial pattern of land 
use in JHHR under various scenarios for 2040 using 
cost matrix and domain factor settings. By exploring 
the spatial and temporal characteristics of land use in 
the JHHR, and providing analyses of future scenarios, 
this research bridges the gap between theoretical 
understanding and practical decision-making. The study 
contributes to the body of knowledge that supports 
effective land management policies and planning, 
ensuring sustainable development in hilly areas and 
promoting a harmonious coexistence between human 
activities and the environment.

Study Area and Data Sources

Overview of the Study Area

The Jianghuai Hilly Area is located at 115°49′E-
119°35′ and 30°12′-34°17′N (Fig. 1), surrounded by the 
Yangtze River and the Huai River, mainly containing 
Chuzhou City, Hefei City, Liuan City, and Maanshan 
City, with a total area of 44,416.23 km2 and a total 
population of 12,096,600. The terrain is mainly hilly and 
mountainous, decreasing from the south to the northeast, 
with an average elevation of 150 m. The landscape 
is dominated by hills and mountains, including the 
southern foot of Dabie Mountain, hilly beaches and basin 
mountains, with undulating terrain, mountain peaks and 
crags, and intertwined rivers and lakes. The climate is 
a subtropical monsoon climate with rainy summer, high 
temperatures, the annual average temperature around 
15ºC, and annual precipitation between 800~1600 mm. 
JHHR is one of the important economic regions in the 
Anhui Province of China, and the economy continues 
to maintain a fast development momentum, and also 
has rich natural and cultural resources, especially the 
agricultural resources and red cultural resources in the 
Huaihe River Basin, etc.

Data Source and Pre-Processing

The research data for this study encompass three 
main types: land use data, socio-economic data, and 
natural environment data. Detailed information on 
these data sources is presented in Table 1. To obtain 
the land use data, we accessed the Institute of Remote 
Sensing Information Processing at Wuhan University. 
Specifically, the JHHR land use data were reclassified 
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into six categories, namely cultivated land, forest land, 
grassland, water area, construction land, and unused 
land, utilizing the Chinese land use classification 
standard as a reference. The road network data, 
which is essential for analyzing transport patterns 
and their influence on land use, was obtained from 
OpenStreetMap. Extraction techniques were used 
to extract  and utilized the road data for analysis.  
The DEM (Digital Elevation Model) data used in 
the study were obtained from ASTGTM GDEM. 
Additionally, we calculated slope data based on the DEM 
data, providing valuable insights into the topography 
of the study area. Various environmental variables, 
including rainfall, temperature, soil properties, and 
night light remote sensing data, were acquired from the 
Resource and Environment Data Center of the Chinese 
Academy of Sciences. These data sources played  
a crucial role in understanding and assessing the natural 
environmental factors influencing land use patterns. 
All the collected data were processed using ArcGIS 
software. To ensure consistency and compatibility, 
the data were resampled to a common resolution of 
30 m x 30 m and projected using UTM coordinates in 
the WGS1984 coordinate system. By utilizing these 
diverse data sources and employing rigorous processing 
techniques, the study can offer comprehensive and 
reliable insights into the complex interplay between land 
use dynamics, socio-economic factors, and the natural 
environment in the research area.

Research Methodology

Land Use Dynamic Attitude and Transfer Matrix

Single dynamics refers to the degree of change of 
a certain type of land use within a certain period of 
time, that is, the degree of movement of a certain use 
to other uses; comprehensive dynamics refers to the 
comprehensive changes of multiple types of land use 
[23, 24]. The calculation formula is as follows:

             (1)

          (2)

Where: K denotes the kinetic attitude of a particular 
land class during the study area; LC denotes the 
combined kinetic attitude of land classes in the study 
area; Ua and Ub refer to the area at the beginning  
and end of the land class, respectively; T denotes the 
study period; ∆LUa-b is the absolute value of the data for 
the transition from land class a to land class b in time T.

The land use transfer matrix is a matrix of the inter-
transformation relationships and quantities between 
different land use types at a certain time [25, 26]. It can 
provide an in-depth analysis of the evolution and trend 
of land spatial patterns by reflecting the change process 
between different land use types [27]. The expressions 
are as follows:

Fig. 1. Study area.
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             (3)

Where: A represents the area of the land class; i, j  
(i, j = 1, 2, 3∙∙∙n) denote the early and late ground classes 
of the study, respectively; n is the number of land 
classes.

PLUS Model

PLUS model is a patch generation land use simulation 
model based on multi-type stochastic patch seeds, 
an improved CA model based on FLUS model, which 
integrates land expansion analysis strategy (LEAS)  
and multi-type stochastic seeds (CARS) [18], addressing 
the potential drivers of land use change process and 
spatial-temporal dynamic multi-type land use that  
are lacking in CA model generation and land patches 
[28, 29]. The model obtains the development probability 
of each factor on land expansion by LEAS module, 
predicts the amount of future land use by MarKov model 
[30], and performs the patch evolution of land use types 
by CARS under the constraints of total probability, 
adaptive coefficient, domain effect, and transfer matrix 

[20, 31] to obtain the simulated distribution map of 
future land use.

Land Expansion Analysis Strategy (LEAS)

LEAS simplifies the calculation of land class change 
for multiple classes of feature change by transforming 
the conversion rule mining for each land class into 
obtaining the probability of change and probability of 
inertia for each land use type, and then exploring the 
expansion and drivers of each land class for mining by 
the Random Forest Classification (RFC) algorithm [10] 
to obtain the development probability of each land class 
and the weight of drivers on the land class.

In this paper, we utilize random sampling and 
random forest algorithm under LEAS module to obtain 
the growth probability of each land use type based on 
land use data from 1990-2020, combining 18 drivers 
[32] with the following equation:

          (4)

where: Pi,t
x(v) is the probability of growth of land use 

type t at spatial unit i; v is a vector composed of driving 
factors; N(.) is the indicator function of the decision tree; 

Data Type Data Name Time Data source

Land Use Data Land Use Data 1990-2020 Institute of Remote Sensing Information Processing, Wuhan 
University (http://irsip.whu.edu.cn/)

Natural Factors

Average annual rainfall /mm
1990-2020 Data Center for Resources and Environment, Chinese 

Academy of Sciences
(https://www.resdc.cn/)

Average annual temperature /ºC

Soil type /

DEM/m / ASTGTM GDEM (http://gdem.ersdac.jspacesystems.or.jp)

Slope / ArcGIS calculates the DEM to obtain

Distance from river/m 2023 OpenStreetMap (https://www.openstreetmap.org/)

Socio-economic 
factors

Distance to primary road/m

2023 OpenStreetMap (https://www.openstreetmap.org/)
ArcGIS Euclidean distance

Distance from secondary road/m

Distance to tertiary road/m

Distance to highway/m

Distance to railway/m

Distance to school/m

Distance to city/m

Distance to township/m

Distance from countryside/m

Nighttime Lighting Index

1990-2020 Data Center for Resources and Environment, Chinese 
Academy of Sciences(https://www.resdc.cn/)Population density (person/km2)

GDP

Table 1. Data source information.
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(2) The overall probability of each type of land 
use was calculated using a stochastic patch generation 
mechanism to simulate the change of each land use 
under the setting of each land use growth probability 
constraint [37] with the following equation:

           (6)

where: NPi,k
d=1,t denotes the integrated probability;  

Pi,k
d=1 is the probability of suitability of land class 

k for spatial unit i: Dk
t is this is an adaptive driving 

coefficient that reflects the degree of future land use 
demand for land use type k. This coefficient depends 
on the difference between the amount of land use at the 
current iteration t and the target demand for land use 
type k; Ω ti,k is the domain effect of spatial cell i, i.e., the 
proportion of land use components covered by k in the 
next neighborhood.

Scenario Setting

In order to investigate the land use changes of JHHR 
under different scenarios, based on the NP scenario, 
cultivated land conservation scenario, the ecological 
conservation scenario and the RD scenario, and with 
reference to the existing research results [38-40], each 
cost matrix is set up in Table 3 below:

hn(v) is the predicted land use type of the nth decision 
tree of vector v; L is the number of decision trees; when 
x = 1, it means that other land use types are transformed 
to t, and when x = 0, there is no transformation to land 
type t.

CA Model Based on Multi-Class Random Patch Seeding 
(CARS)

The CARS module is a patch generation mechanism 
based on multiple types of stochastic seeds for land 
use, and simulates land use dynamics based on the 
development probability, domain extent, adaptive 
inertia, domain weights, and transfer matrix of each 
type of land use [33-35], where domain extent, diffusion 
coefficient, and decreasing threshold are the defaults.

(1) Domain weights indicate the intensity of land 
type conversion to other land types [36] and are 
calculated in this paper based on previous land use data 
with the following equation:

                   (5)

Where: Xi is the domain weight parameter of the i-th 
land type, range 0~1; TAi is the area of land use type 
change in the study interval; TAmax, TAmin denote the 
maximum and minimum values of land use type change 
in the study interval, respectively. The calculated 
weights are shown in Table 2.

Year Cropland Woodland Grassland Water Construction Land Unused land

1990-2000 0.1 0.4647 0.1 0.4535 1 0.1

2000-2010 1 0.4245 0.1 0.1654 0.1 0.4112

2000-2005 1 0.5820 0.1 0.2478 0.1 0.1908

2005-2010 1 0.1676 0.1 0.1 0.1 0.8139

2015-2020 0.4656 1 0.1 0.4002 0.1 0.9546

Table 2. Domain weights by land use type.

NP scenarios CLP scenarios EP  scenarios RD Scenario

a b c d e f a b c d e f a b c d e f a b c d e f

a 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0

b 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0

c 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0

d 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0

e 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note: NP-Natural Development; RD- Rapid Development; CLP- Cultivated land protection; EP- Ecological Protection

Table 3. Land use transfer matrix for the four scenarios.



Xu L., et al.1904

Results and Analysis

Spatial and Temporal Land Use Change 
Characteristics

Analysis of the Current Situation of Land Use Types

The land classification map of the JHHR from 1990 
to 2020 (Fig. 2) and the proportion of each type of land 
use (Fig. 3) reveal that JHHR is primarily dominated by 
cultivated land and forest land, which for many years 
have accounted for more than 85% of the total area. 
The remaining area is shared by water and construction 
land, while grassland and unused land make up the 
smallest proportion. Regarding spatial distribution, the 
first part to the north of the southern boundary of JHHR 
is mainly dominated by forest land. The second part 
is characterized by construction land and watershed, 
mostly found in the middle and on the edge of the 
region, with the provincial capital city’s construction 
land aspect dominating and concentrating in this area. 
Lakes are mainly found in and around Chaohu Lake. 
Meanwhile, the third part is dominated by cultivated 
land, which is mainly distributed in the middle and 
upper part of the hilly area. Specifically, forest land is 
mainly distributed in the hilly and mountainous areas 
of the Dabie Mountain Ecological and Economic Zone, 
while cultivated land is mostly distributed in the plain 
area. Given the changing land use in this region, it is 
important to pay attention to the significant impact of 
rational planning and management of land resources on 
protecting and enhancing the quality of the ecological 
environment.

Land Use Dynamic Attitude and Transfer 
Matrix Analysis

According to the data provided in Table 4, it is 
evident that the comprehensive dynamic attitude 
towards land use in JHH remained stable from 1990 to 

2020. The highest rate was observed during the period 
of 2000-2005, reaching 0.42%, while it maintained 
around 0.2% during other periods. Analyzing the 
dynamic attitude towards individual land use types, 
it can be observed that the largest trend was observed 
in unused land and grassland, whereas cropland and 
forest land exhibited the smallest changes. The order 
of magnitude, from highest to lowest, was construction 
land, unused land, grassland, water area, cropland, 
and forest land. Throughout six periods reflecting the 
dynamics of land use, there was a consistent decline in 
grassland coverage, accompanied by a notable increase 
in construction land. Other land use types experienced 
fluctuating changes of decrease-increase-decrease. 
These comprehensive changes indicate that over 30 
years, JHHR has undergone significant expansion in 
construction land, leading to occupation and reduction 
of other land use categories. As a result, the overall 
economic benefits have become predominant.

The data presented in Table 5 reveal significant 
changes in land use patterns from 1990 to 2020. There 
has been a noticeable decline in the area of cultivated 
land, forest land, grassland, water area, and unused 
land, while the area occupied by construction land has 
experienced an increase. Particularly striking is the 
transferred area of construction land, which reached a 
substantial 2,280.03 square kilometers, accounting for 
44.96% of the total transferred area. The primary source 
of these transferred areas is cultivated land, followed by 
forest land, constituting 31.38% and 13.80% respectively. 
Additionally, the transferred land primarily originates 
from cultivated land, forest land, and water area, 
with transferred areas of 3,273.36 square kilometers,  
905.86 square kilometers, and 773.91 square kilometers, 
amounting to 64.55%, 17.86%, and 15.26% respectively. 
The expansion of construction land has consequently 
led to a decline in cultivated land and forest land.  
Fig. 4 further demonstrates the obvious transformation 
of various land types, with continuous outward 
transfers of cultivated land and gradual expansion of the 

Fig. 2. 1990-2020 Land Use Classification Map.
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construction land area. These transformations mirror 
those observed in other periods, except for the period 
spanning from 2000 to 2010.

PLUS Model Accuracy Check

Overall Accuracy of PLUS Model

Based on the actual land use data in 2010, we utilized 
the FLUS model and PLUS model in conjunction with 
natural economic factors and other variables to develop 
an analysis strategy for land expansion in the Jianghuai-
Huai Hilly Region (JHH). Consequently, we predicted 
the land use for 2020 and constructed a confusion matrix 
to compare the actual land use data with the simulated 
prediction data. We calculated the overall accuracy 

and Kappa coefficient for different land use types and 
presented the results in Table 6 (Area Validation) and 
Fig. 5 (Spatial Distribution Comparison). The simulation 
results for 2020 using the FLUS model yielded a Kappa 
coefficient of 0.79, with an overall accuracy of 87.36%. 
On the other hand, the PLUS model achieved a higher 
Kappa coefficient of 0.85 and an overall accuracy of 
92.06%. The comparison shows that the PLUS model 
outperformed the FLUS model in terms of accuracy. 
However, it is important to note that the different ways 
of calculating these values influence the synthesis of 
results. Furthermore, the PLUS model exhibited larger 
relative errors for grassland and unutilized land, at 
16.85% and 17.37% respectively. This can be attributed 
to the small size and scattered distribution of these land 
types, making them susceptible to encroachment by 

Fig. 3. Percentage of land use by category from 1990 to 2020.

Year / Feature Type 1990-1995 1995-2000 2000-2005 2005-2010 2010-2015 2015-2020 1990-2020

Single land use 
dynamic attitude

1 -0.04 0.03 -0.60 -0.37 -0.27 0.13 -1.09

2 0.29 -1.14 1.31 0.21 -0.14 -0.92 -0.48

3 -8.29 -8.25 -3.02 -1.67 -2.33 -12.22 -18.16

4 -2.75 0.51 1.61 0.15 0.00 -1.06 -1.77

5 5.03 -6.90 -8.94 -14.61 -13.10 14.24 -18.56

6 4.13 3.44 1.27 3.06 2.76 2.05 23.51

Integrated land use 
dynamic attitude 0.23 0.23 0.42 0.25 0.2 0.26 1.00

Note: 1- Cultivated land; 2- Woodland; 3- Grassland; 4- Water; 5- Unused land; 6- Construction area.

Table 4. Land use dynamic attitude 1990-2020.
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Land Use 
Type

2020 Total Total Transfers Out

1 2 3 4 5 6

1990

1 27513.55 676.65 1.61 442.76 0.20 2152.11 30786.91 3273.35

2 859.27 7616.40 1.621 4.26 0.04 40.65 8522.26 905.85

3 22.39 14.35 1.99 7.79 0.08 10.628 57.24 55.25

4 691.59 8.72 0.01 2372.96 0.21 73.36 3146.87 773.91

5 0.54 0 0.02 4.64 0.03 3.28 8.52 8.49

6 17.27 0.09 0.002 36.09 0.02 1840.91 1894.41 53.49

Total 29104.63 8316.23 5.26 2868.52 0.61 4120.95 44416.23 /

Transfer to total 1591.08 699.82 3.26 495.56 0.58 2280.03 / /

Note: 1- Cultivated land; 2- Woodland; 3- Grassland; 4- Water; 5- Unused land; 6- Construction area.

Table 5. Land Use Transfer Matrix 1990-2020.

Fig. 4. Map of each land use transfer matrix for the years 1990-2020 JHHR. The outer arcs divided by nodes in the chord diagram 
reflect the amount of transfer between different types of land areas, the sectors moving clockwise represent the amount of transfer out, 
the sectors moving counterclockwise represent the amount of transfer in, and the width of the connecting lines represent the size of the 
transfer.
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other features during the simulation. Nonetheless, the 
overall accuracy met the requirements, demonstrating 
that the PLUS model effectively meets the desired 
objectives.

Simulation accuracy under different time spans

To assess the accuracy of the model over different 
time periods, an investigation was conducted on the 
simulated land use data for 2000 and 2010, projected 
to 2010 and 2015 with time spans of 10 and 5 years, 
respectively. These simulated data were then used as 
a basis for predicting land use in 2020 using the same 
approach. The simulation accuracy was then compared, 
as depicted in Fig. 6. The Kappa coefficients and 

overall accuracy of the simulations for the year 2020, 
considering time spans of 5 and 10 years, were found 
to be 0.86 (92.65%) and 0.85 (92.01%), respectively. 
These results highlight a relatively minor difference 
in simulation accuracy between the two-time spans. 
Notably, the primary discrepancies were observed in the 
transition zones between forest land, cropland, and areas 
designated for construction. These findings underscore 
the model’s consistent performance in predicting land 
use dynamics over various time intervals. Despite 
slight variations, the overall accuracy remained highly, 
providing valuable insights into the evolving landscape 
and aiding in informed decision-making.

Land Use Type Cropland Woodland Grassland Water Unused land Construction Land

Actual Area 29104.63 8316.23 5.26 2868.52 0.61 4120.95

Simulated Area 26684.42 8028.80 4.37 2589.18 0.51 4282.10

Relative Error 8.31 3.45 16.85 9.73 17.37 -3.91

Table 6. Validation of land use area projections for 2020.

Fig. 5. Map of actual land use and simulated differences in 2020.



Xu L., et al.1908

Analysis of Driving Forces of Land Use Change 
in Jianghuai Hilly Area

Land use changes arise from a complex interplay of 
factors, including population growth, urbanization, and 
policy demands. These factors often lead to shifts and 
alterations in the way land is utilized. In the present 
study, we have examined a comprehensive set of 18 
natural and socio-economic factors to investigate their 
respective contributions to land expansion and the 
probability of expansion at individual sites. The LEAS 
module was employed for this analysis, and the findings 
are presented visually in Fig. 7. Among the different 
land types, cultivated land and grassland exhibit a strong 
dependence on natural factors such as Digital Elevation 
Model (DEM), slope, and temperature. Additionally, the 
distribution of vegetation is influenced by the unique 
geographical characteristics of each area. Woodland, 
on the other hand, is significantly influenced by factors 
such as population density and DEM. Human activities 
and demand for natural resources play a crucial role in 
driving changes in woodland cover. The expansion of 
watersheds is strongly influenced by rainfall patterns 

and DEM. Varied rainfall intensities and topographic 
attributes contribute significantly to the aggregation of 
watersheds, shaping their spatial extent. The expansion 
of unused land is primarily driven by DEM and slope, 
as topographic conditions serve as constraints leading to 
alterations in land use patterns across different regions. 
In the case of construction land, socio-economic factors 
take precedence. The intricate relationship between 
transportation infrastructure, economic factors, and the 
planning of urban expansion determines the course of 
change in the urban landscape. These socio-economic 
variables are fundamental drivers influencing the 
dynamics of urban expansion, as presented in Fig. 8.

Land Use Simulation under Multiple Scenarios

Based on the 2020 land use data, land use simulations 
were conducted under four different scenarios based 
on the calculated land use expansion probabilities and 
transfer matrices to predict the spatial distribution 
pattern of land use in JHHR in 2040, The simulation 
results and the current status of land use under different 
scenarios are shown in Fig. 9 and Table 7.

Fig. 6. Simulated differences at different time spans.
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In the natural scenario, several notable changes in 
land use can be observed. Cultivated land decreases by 
3,466.27 km2, while forest land, water, and construction 
land increase by 1,996.56 km2, 740.80 km2, and  
722.90 km2 respectively. The changes in grassland and 
unused land are relatively insignificant. The main change 
is between cultivated land, forest land, and construction 
land, which accounts for the main differences in the 
landscape. In this scenario, construction land expands 
outward in areas characterized by higher levels of 
economic development. Within regions that encompass 
a mix of cultivated land and forest, the latter extends 
towards the periphery, resulting in a substantial 
reduction in the cultivated land area. The expansion of 
watersheds, observed mainly in the south-eastern region 

of the Yangtze River basin, stems from cultivated land. 
As a consequence, the natural scenario demonstrates 
a continuous expansion of construction land and 
forest land, along with a decrease in cultivated land. 
In contrast, the RD scenario shows the expansion of 
construction land as the dominant change, whereas other 
types of land experiencing varying degrees of reduction. 
Compared to the natural scenario, the RD scenario 
effectively curbs the reduction of cultivated land and 
stops the expansion of watersheds to meet development 
requirements. Moving to the CLP scenario, there is a 
significant expansion of cultivated land by 319.94 km2, 
accompanied by a decrease in the growth of construction 
land. The expansion of cultivated land primarily 
occurs in areas where forest land is concentrated, with 

Fig. 7. Contribution of land use expansion drivers, 1990-2020. A: distance from city; B: DEM; C: distance from secondary road;  
D: distance from highway; E: GDP; F: distance from river; G: average annual rainfall; H: population; I: slope; J: distance from tertiary 
road; K: distance from school; L: average annual temperature; M: distance from railroad; N: soil attributes; O: distance to countryside; 
P: night light remote sensing; Q: distance to primary road; R: distance to town.

Fig. 8. Overlay of construction land expansion and factors.



Xu L., et al.1910

the development of cultivated land being protected  
at the cost of ecological land and the constraints 
imposed by construction land. This scenario prioritizes 
food security but restricts economic development to 
some extent. Lastly, the EP scenario demonstrates  
a noteworthy decrease in cultivated land, while the 
total area of ecological land increases to 1197.87 km2.  
This indicates a shift towards preserving and expanding 
ecological resources, necessitating a reduction in 
cultivated land.

An examination of the land use changes under the 
four different scenarios reveals distinct spatial allocations 
resulting from different development directions. 
The trends in nature protection NP and ecological 
development display similarities, with variations in the 
extent of expansion observed among different areas. 
Nonetheless, the overall direction of development remains 
consistent across the scenarios. In the RD scenario, 
economic development takes precedence, leading 
to a vigorous emphasis on urban construction while 

Fig. 9. Land use simulations for 2040 under different scenarios.

Scenario Model (2040) Area status in 2020 Area change (km2)

NP RD CLP EP NP RD CLP EP

1 25642.56 28692.55 29428.77 27188.00 29108.83 -3466.27 -416.28 319.94 -1920.83

2 10311.45 8011.10 7994.15 9153.86 8314.89 1996.56 -303.79 -320.74 838.97

3 11.19 1.65 1.45 6.25 5.26 5.93 -3.61 -3.82 0.99

4 3609.05 2869.02 2869.04 3226.155 2868.25 740.8 0.77 0.79 357.91

5 0.37 0.30 0.21 0.35 0.61 -0.25 -0.32 -0.40 -0.26

6 4844.9 4844.9 4125.90 4844.9 4121.68 723.22 723.22 4.22 723.22

Note: NP-Natural Development; RD- Rapid Development; CLP- Cultivated land protection; EP- Ecological Protection;  
1- Cultivated land; 2- Woodland; 3- Grassland; 4- Water; 5- Unused land; 6- Construction area.

Table 7. Land use in 2040 under different scenarios.
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disregarding ecological security measures. Conversely, 
the CLP scenario prioritizes food security at the expense 
of ecological land security. Comparatively, the changes 
in other land types are less significant compared to the 
other three scenarios. A comprehensive assessment 
shows that the EP scenario holds greater promise for the 
development of JHHR. The land use combination in this 
scenario appears more rational, offering valuable insights 
for the optimal allocation of land resources and territorial 
spatial planning in JHHR’s future.

Discussion

Land Use Change Factors

The current development strategy and direction of 
Anhui Province is “three zones, two highlands”. Among 
them, JHHR, as the Yangtze River Economic Belt, needs 
to increase its support for the integrated development of 
the Yangtze River Delta, promote new urbanization and 
the development of urban agglomerations, create “inland 
open highlands” and “innovation-driven development 
highlands”, and build an industrial system with the role 
of scientific and technological innovation and promoting 
opening up to the outside world [41]. The implementation 
of these development policies will have a series of effects 
on land use changes [42]. The development of modern 
industries and the promotion of urbanization will lead to 
an increase in demand for construction land, prompting 
the transformation of agricultural and ecological land 
into industrial and commercial land, causing the loss of 
cultivated land, environmental and EP and other issues 
[43, 44].

Before 2000, the change in the area of cultivated 
land was not obvious. The area of grassland decreased 
sharply during this period, while the expansion of built-
up areas was the largest in 30 years. This findings 
is consistent with the results of Sai [45]. According 
to historical analysis, from 1990 to 2000, the JHHR 
focused on strengthening infrastructure construction, 
adjusting agricultural industrialization, transforming 
traditional agriculture into modern agriculture, and 
adjusting industrial layout at the same time [46]; 
from 2000 to 2010, the economic transformation and 
upgrading began, from traditional agricultural economy 
to ecological agriculture, characteristic agriculture and 
other diversified development directions, improving 
regional ecological quality, strengthening the protection 
and use of land resources [47]; from 2010 to 2020, 
with the “ecological+” development model, while the 
economic development focuses on green industries, 
ecological civilized cities, etc., the process of rural 
urbanization is accelerated, process of rural urbanization 
promote the construction of a new type of agricultural 
management system [48, 49].

Based on multi-scenario simulation, the land use 
model simulates future land use changes. By varying 
assumptions and parameter settings, different land 

use results can be simulated [50], which can help 
decision-makers assess the possible impact of policy 
implementation. The model can consider various factors 
such as population growth, economic development, 
and environmental protection, and explore the impact 
of interrelationships on land use, which makes up for  
the gaps in the research area.

Uncertainty and Outlook

Based on multi-period land use data, this paper 
comprehensively considers the driving factors such as 
natural and socio-economic factors, explores the inherent 
driving factors of land use change in the research area, 
combines various scenarios to simulate the future land 
use distribution structure, and provides decision-making 
suggestions for subsequent development. However, 
based on the complexity of the research content, there 
are still some shortcomings.

(1) The parameter settings in the PLUS model 
simulation are determined based on existing research 
results and continuous debugging. There is a certain 
subjectivity, and the uncertainty of the simulation results 
increases.

(2) Due to the limited and difficult access to data, 
the selection of driving factors cannot be considered 
comprehensively. Many factors such as biological 
species, geological movement, and social policies will 
have an impact on land use changes.

(3) The PLUS model is based on historical land 
use data and the probability of land expansion for 
simulation. It is difficult to reflect the real situation of 
land use changes due to changes in internal and external 
factors of real urban development.

Due to limitations such as the research area and 
research materials, there are certain deviations in the 
research results; In the analysis of the research results, 
only the influence between factors is considered, and 
there is a deviation from the actual situation. Subsequent 
optimization work can try to establish long-term 
monitoring samples and adjust them based on the actual 
local situation and related index parameters to improve 
the reliability and applicability of the model.

Conclusion

(1) The predominant land types in the JHHR are 
cultivated and woodland. In terms of spatial distribution, 
woodland is primarily located north of the southern 
boundary of the research area, whereas the remaining 
area is predominantly cultivated land. Over the past  
30 years, land use changes have generally exhibited  
a stable trend. The most significant changes occurred 
between 2000 and 2005, with the highest dynamics 
observed in unused land and grassland. From 1990 
to 2020, both cultivated land and woodland have 
experienced a decline, while the expansion of 
construction land has been continuous. The primary 
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types of land involved in these transformations are 
cultivated land and woodland.

(2) The land use simulation accuracy in the 
Jianghuai-Huai Hilly Region (JHHR) demonstrates 
superior performance. When considering various 
time spans for land use simulation predictions, the 
results consistently yield Kappa values exceeding 0.85 
and overall accuracy surpassing 92%. These higher 
accuracy levels outperform other models, indicating the 
suitability of this model for future land use predictions.

(3) Utilizing the PLUS model for an in-depth analysis 
of land use expansion, we uncover the primary drivers 
behind the remarkable growth observed between 1990 
and 2020. A comprehensive assessment reveals that 
factors like DEM, slope, and temperature significantly 
influence this expansion. Notably, cultivated land, 
woodland, grassland, water bodies, and unused land 
bear the imprint of both natural and human forces, 
shaping their trajectory. Conversely, the expansion of 
construction land predominantly reflects the interplay of 
socio-economic factors, underscoring their pivotal role 
in shaping the landscape.

(4) Examining the results of our multi-scenario 
simulation, it becomes apparent that the overall 
distribution of land use in the JHHR region will remain 
relatively stable by the year 2040. However, there are 
marked differences between the various scenarios, 
presenting noteworthy contrasts in land allocation. 
In the natural scenario, cultivated land experiences 
the most substantial decrease, while both woodland 
and construction land witness significant expansions. 
Conversely, the RD scenario places a primary emphasis 
on the expansion of construction land, resulting 
in varying degrees of decline for other land types. 
Under the CLP scenario, the growth of cultivated land 
demonstrates an upward trend, although its progression 
is overshadowed by other scenarios, and limitations 
on construction land expansion persist. Notably, in the 
EP scenario, there is a concerted effort to safeguard 
ecological land, accompanied by discernible increases 
in other land categories.

Taking a comprehensive view and considering  
a range of factors, the EP scenario emerges as the 
optimal model for future development in the research 
area. This scenario provides decision-makers with 
valuable insights when formulating strategies for 
efficient spatial arrangement.
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