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Abstract

The earth’s underlying hydrocarbon-bearing reservoirs frequently leak. These reservoirs leak 
because of their inadequate sealing, and at high pressure, oil and gas escape vertically or nearly 
vertically to the earth’s surface as seepage. Micro-seepages on the earth’s surface cause oxidation-
reduction reactions, which cause anomalies in the soils and sediments beneath them. Remote sensing 
(RS) and geographic information systems (GIS) are important tools for investigating hydrocarbon 
micro-seepage-induced changes and anomalies in overlying soil and sediments. In this study, ASTER 
remote sensing data was adopted to delineate pixels of hydrocarbon micro-seepage-induced anomalies 
in Ugwueme, south-eastern Nigeria. Band Ratio (BR) was used as a spectral enhancement technique to 
detect alterations and anomalies in the overlying soil and sediments. ASTER BR of 2/1 improves ferric 
iron; (5+7)/6 improves clay minerals; (1+4)/(2+3) improves ferrous iron; and 4/(6+9) improves gypsum. 
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Introduction

The earth’s underground petroleum reservoirs 
are often saturated with oil and gas, concealed within 
the earth’s impermeable reservoir [1-5]. As a result of 
differences in pressure, these oil and gas leaks migrate 
vertically or nearly vertically along geological faults, 
fractures, and layers of rocks to shallow levels and 
finally to the earth’s surface as seepages [6-9] (Fig. 1). 
The vertical movement of oil and gas through geological 
faults and fractures and within the sub-surface bedding 
plane is known as the “chimney effect” [10-13]. Through 
its passage, the chimney effect often generates oxidation-
reduction reactions that produce anomalies in overlying 
soils and sediments. Microbial and mineralogical 
anomalies, as well as changes in the electrical and 
magnetic characteristics, often occur at the near surface 
and on the surface of overlying sediments and soils 
[14-17]. Among these anomalies and alterations, red 
bed bleaching (conversion of Fe3+ to Fe2+) [18-20], clay 
minerals (conversion of feldspar to clay minerals, such 
as kaolinite) [21-23], carbonates (the presence of Fe2+ rich 
carbonates, such as siderite), [24-27], and ferrous iron 
enrichment [28-30] often express diagnostic spectral 
characteristics, which can be detected and interpreted 
with remote sensing technology [31-33]. The description 
of these anomalies and alterations as represented  
in Fig. 1 is highlighted as follows [8, 34-36]:
(a) Red bed bleaching: Red beds or sediments often 

appear reddish if they contain iron oxide (hematite). 
When hydrocarbon seepage comes into contact with 
reddish sediments, it degrades the iron oxide and 
bleaches them. Bleached sediments frequently include 
more siderite and pyrite and less ferric iron [37-39].

(b) Clay mineral precipitation: In areas of hydrocarbon 
micro-seepage, clay minerals like illite and smectite 
frequently transform into kaolinite. Kaolinite-rich 
sandstone exhibits brighter values in the band ratio 
image [40-42].

(c) Prevalent carbonate minerals: Carbonate minerals are 
created when calcium or magnesium oxides present 
in sediments react with carbon dioxide emerging 
from micro-seepage. As a result, carbonate mineral 
concentrations rise in micro-seepage milieus. The 
calcium and magnesium content of the parent 
materials, in contrast, governs the development of 
carbonate minerals [43-45].

(d) Present of magnetic minerals: The synthesis of 
ferrous minerals is stimulated by reducing the ferric 
iron level in a micro-seepage-impacted environment. 
The precipitation of pyrrhotite, magnetite, greigte, 
and maghemite has been observed in numerous 
hydrocarbon micro-seepage fields [46-48].

Hydrocarbon seepage found on the earth’s surface 
may be macro- or micro-seepage [7, 49, 50]. Etiope 
[14] documented that Link [51] was the first scientist 
to have distinguished hydrocarbon seepage as either 
micro-seepage or macro-seepage. According to 
Etiope [14], macro-seepages are the visible onshore or 
offshore manifestations of oil, gas, and mud volcanoes, 
whereas micro-seepages are the invisible remains of 
light hydrocarbons that cause mineral alterations [52-
54]. They are dominated majorly by methane (CH4) and 
lightly by ethane (C2H6), propane (C3H8), butane (C4H10), 
and pentane (C5H12) gases [55-57]. At the surface, these 
hydrocarbon gases interact with the environment and 
produce mineralogical and botanical anomalies [58-60]. 
Long-term contact of hydrocarbon micro-seepage with 
overlying soils and sediments often alters their mineral 
composition, thereby producing changes in their pH, 
mineralogy, chemical, and physical properties [61-63]. 
These changes are manifested by changes in the color, 
hardness, radioactivity, magnetic, and electric properties 
of the rock minerals [64, 65]. Long-term exposure to 
hydrocarbon micro-seepage in the soil and sediments 
often results in local anomalous redox zones, which 
promote a wide range of mineral and chemical changes 
[66, 67]. Another important form of hydrocarbon 
seepage is active and passive seepage [52]. While active 
hydrocarbon seepage is associated with the subsurface, 
where oil and gas leak in large quantities into shallow 
soils and sediments as well as into the overlying water 
column, passive hydrocarbon seepage refers to areas or 
zones where subsurface oil and gas are inactively seeping 
[68-70]. Globally, hydrocarbon oil and gas seeps, and 
their diverse surface expressions are seen in sedimentary 
basins that contain oil and gas reserves [71-73].

The traditional techniques for studying hydrocarbon 
micro-seepage-induced alterations in soil and sediment 
have been extensively studied. These techniques, 
which include geophysical and geochemical analyses, 
are expensive, time-consuming, and destructive, and 
they are only suitable for selected observations within 
the vicinity of drilling sites in active oil fields [74-
77]. Remote sensing offers a quick, cheap, and non-
destructive solution for studying hydrocarbon micro-
seepage manifestations at or near the earth’s surface [54, 
78]. Although remote sensing techniques cannot directly 
identify micro-seepage, they can detect patterns of large-
scale modification [59, 68]. In the past few decades, 
researchers have employed spectral enhancement 
techniques such as false color composite (FCC), band 
ratio (BR), and principal component analysis (PCA) to 
identify areas of surface-based alterations and anomalies 
induced by hydrocarbon micro-seepage on soil and 
sediments [79, 80]. 

The study highlights that BR is an excellent spectral enhancement technique for delineating areas  
of alterations and anomalies induced by hydrocarbon micro-seepage.
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In this study, the overall aim was to apply the 
BR algorithm and Advanced Space-borne Thematic 
Emission and Reflection Radiometer (ASTER) data to 
delineate pixels of mineral alterations and anomalies 
induced by natural hydrocarbon micro-seepage in 
Ugwueme. Field observation is an integral part of the 
study. Fieldwork was carried out in the study area to 
ascertain the hydrocarbon micro-seepage-prone zone.

ASTER is a multispectral sensor found on the Earth’s 
Observing System (EOS) Terra platform that measures 
electromagnetic radiation from the surface in 14 bands 
[81-84]. Case studies by Salati et al. [85], Rowan et al. 
[86], Poumandari et al. [87], and Rockwell et al. [88] 
have shown that ASTER data has successfully been 
used to delineate pixels of alterations and anomalous 
minerals by utilizing their emissivity, absorption,  
and reflection features in the SWIR and TIR regions 
of the electromagnetic spectrum [86, 89]. Ugwueme is  
a developing town situated in Enugu, in the southeastern 
part of Nigeria. The area is cited as being on fairly 
elevated terrain, covering an area of about 82 km on  
a scale of 1 to 25, 000 km [90, 91]. Ugwueme is 
accessible by a laterite road and can be found between 
latitudes 6°0‘00”N and 6°07‘00”N and longitudes  
7°24‘00”E and 7°30‘00” E in geographic coordinates  
[8, 92].

Materials and Methods

Description of the Study Area

The study area “Ugwueme” is situated on a fairly 
leveled elevation between latitudes 6°0‘00” N and  
6°07‘00” N and longitudes 7°24‘00” E and 7°30‘00”E 
in Enugu, South-Eastern Nigeria. The region falls under 
the Tropical Wet and Dry Climate “AW” of the Koppen 

climate classification scheme [3, 6]. The wet season lasts 
from April to September, while the dry season runs 
from November to March of the following year. The dry 
season is characterized by little rainfall, high sunshine, 
and dryness. During the wet season, Ugwueme 
experiences heavy rainfall, with a record of 1,800 mm, 
which results in significant floods, soil leaching, 
erosion, severe outwash, groundwater penetration, 
and percolation. According to studies, this climatic 
circumstance is thought to be the primary reason for  
the oil seepage that flushed out from the tar sand as 
heavy, viscous, and sticky crude within the study area 
[3, 6]. The temperature is high in the area, and during 
the dry weather, it rises up to 26.6ºC.

Geological Settings of the Study Area

The geological setting of Ugwueme is explained 
in the study geology map (Fig. 2). The study area and 
its environs are underlain by four formations and five 
main lithological facies. These formations are the Awgu 
Shale, Owelli Sandstone, Mamu, and Ajali Formations. 
The main lithological facies associated with the study 
area are the heterolith sediments, dark gray shale, 
coarse grain, medium grain, and whitish cross-bedded 
sandstones [92, 93]. The Awgu shale is documented to 
be up to 300 ft. thick. The formation is made of bluish-
gray, well-bedded shale with occasional intercalations 
of yellow, pale, fine-grained sandstones and thin-shell 
limestone [3, 94]. The Owelli sandstones are mostly 
ferruginous and are characterized as medium-to-coarse-
grained sandstones [3, 93]. Toward the Awgu location, 
the Owelli sandstone is estimated to be 250 m thick.  
At the oil and gas seepage spot, situated in Ugwueme, 
the Owelli sandstone is assumed to be about 130 m 
thick, resting conformably on the Awgu shale [52, 
93]. The Mamu Formation (Lower Coal Measures)  

Fig. 1. Hydrocarbon micro-seepage model (modified from [71]).
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is dated from the Lower to Middle Maastrichtian and 
is between 100 m and 1000 m thick. These formations 
are characterized by the alternation of coal seams with 
sandstone, siltstone, mudstone, and rare shale. The Ajali 
Formation is composed of friable and thick medium- 
to coarse-grain sandstones that are poorly sorted 
and whose conformability is above that of the Mamu 
Formation [92].

Data Sources and Pre-Processing

ASTER is a one-of-a-kind sensor that records 
electromagnetic radiation in 14 district bands with  
15-m, 30-m, and 90-m spatial resolutions in the visible-
near infrared (VNIR), shortwave infrared (SWIR), and 
thermal infrared (TIR) (Table 1) [95-97]. With a spatial 
resolution of 15 m, 30 m, and 90 m, the sensor has 
three VNIR bands ranging from 0.52 µm to 0.86 µm, 
six SWIR bands ranging from 1.60 µm to 2.43 µm, and 
five TIR bands ranging from 8.125 µm to 11.65 µm. The 
wavelength areas of VNIR, SWIR, and TIR offer spectral 
resolution concerning rocks and minerals [98, 99]. The 
VNIR area of the ASTER sensor is very effective in 
detecting iron-oxide minerals containing Fe2+ or Fe3+ 
ions. Altered rocks and minerals containing hydroxyl 
(OH) and carbonate (CO3), such as Al-OH, Fe-OH, Mg-
OH, and carbonate minerals, exhibit different absorption 
signatures in the SWIR region. The Earth Resources 

Observation and Science (EROS) Center in the United 
States and the Earth Remote Sensing Data Analysis 
Center (ERSDAC) in Japan offer ASTER products 

Fig. 2. Geology map of Ugwueme.

Table 1. Band specification of the ASTER sensor [87, 89].

Subsystem Band 
No.

Spectral 
Range (µm)

Spatial Resolution 
(m)

VNIR 1 0.52–0.60 15

2 0.63–0.69

3N 0.78–0.86

3B 0.78–0.86

SWIR 4 1.60–1.70 30

5 2.145–2.185

6 2.185–2.225

7 2.235–2.285

8 2.295–2.365

9 2.360–2.430

TIR 10 8.125–8.475 90

11 8.475–8.825

12 8.925–9.275

13 10.25–10.95

14 10.95–11.65
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in arithmetic terms [16, 58, 107]. The ratio of spectral 
reflectance measured in one spectral image band to 
spectral reflectance measured in another spectral image 
band is the outcome of this arithmetic division [62, 
108]. After removing atmospheric factors such as haze 
from the image, band rationing improves the contrast 
between the objects by dividing the brightness values at 
peaks and troughs in a reflectance curve. Compositional 
information is enhanced through spectral band 
rationing, whereas other sorts of information about the 
earth’s surface are suppressed. This approach is great 
for emphasizing characteristics or materials. Equation 
(1) depicts the basic equation for calculating the band 
ratio technique [52, 109].

 BR = (B1)i / (B2)j (1)

Where B1 and B2 represent the specific image bands, 
while i and j denote the digital numbers (DN) situated in 
the bands. In this study, band ratios (BR), an important 
spectral enhancement technique, were calculated using 
various bands in ASTER data to improve the spectral 
signatures of alteration and anomalous minerals [63]. 
ASTER BR of 2/1 enhances ferric iron [85]; (5+7)/6 
enhances clay minerals [110], after [51]; (1+4)/(2+3) 
enhances ferrous iron [88]; and 4/(6+9) enhances 
gypsum [85].

[100-102]. Two ASTER preprocessing approaches are 
cross-talk correction of ASTER-SWIR bands and layer 
stacking of VNIR-SWIR bands into a unique nine-band 
data cube. The cross-talk phenomenon has a tremendous 
impact on the ASTER-cross-talk SWIRs. This 
phenomenon changes radiance measurements within 
the SWIR area as a result of ASTER’s instrumental 
difficulties, resulting in deceptive reflectance spectra and 
mineral misidentification [103, 104]. Crosstalk can be 
decreased by utilizing the crosstalk correction program 
at www.gds.aster.ersda.c.or.jp. To convert pixel radiance 
within the sensor into the reflectance of the surface data, 
the ENVI (Environment for Visualizing Images) version 
5.1 software’s rapid line of sight atmospheric analysis 
of spectral hypercubes (FLAASH) module and thermal 
atmospheric correction of ASTER TIR emittance bands 
were used [105, 106].

Methods

To give the anomalous surface mineral assemblages 
more prominence in the study, the subset images 
were processed with the band ratio (BR) technique 
in order to delineate pixels of mineral anomalies and 
alterations. Band-rationing (BR) is a useful remote 
sensing technique for identifying spectral changes in 
minerals [80, 89]. It’s a multispectral image analysis that 
involves dividing one spectral image band by another 

Fig. 3. a) False color composite (FCC) map, formed by the BR images; b) Alteration zones elucidated in the study geology map. c) BR of 
2/1 enhances ferric iron; (5 + 7)/6 enhances clay minerals; (1+4)/(2+3) enhances ferrous iron; and 4/(6 + 9) enhances gypsum.
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Results and Discussion

Fig. 3a) shows the false color composite (FCC) 
map. The FCC maps in the study are formed by the BR 
images to indicate ferric iron, ferric oxides, gypsum, 
and clay minerals as channels of red (R), green (G), 
and blue (B), respectively. The alteration zones are 
represented by small spheres, as shown in Fig. 3b), and 
are highlighted in green. The field sample measurement 
is represented by a small, dark-colored square, which 
is elucidated in the study geological map. Fig. 3c) 
depicts the enlarged portion of the FCC map that clearly 
distinguishes ferric iron, clay minerals, ferrous iron, and 
gypsum mineralogical alterations with band ratio index. 
Their description is highlighted below:

Ferric iron index: Ferric iron minerals exhibit high 
reflectance at ASTER band 2 and broad absorption at 
the NIR wavelength (ASTER band 1). To depict ferric 
iron mineral pixels in the study area, the ASTER band 
ratio index of 2/1 is employed. In this study, the FCC of 
the band ratio, which displays ferric iron, is green.

Clay mineral index: Clay minerals frequently exhibit 
high reflectance abilities in ASTER bands 5 and 7, as 
well as vibrational Al-OH absorption characteristics in 
band 6. In addition to this, clay-bearing locations within 
the study area were delineated with ASTER BR (5+7)/6. 
In the study, clay pixels are highlighted in pink.

Ferrous iron index: Ferrous iron materials have high 
reflectance properties at ASTER bands 1 and 4 as well 
as an absorption feature in the VNIR wavelength of 
ASTER bands 2 and 3. To depict ferrous minerals in 
the study area, the ASTER BR (1+4)/(2+3) is employed.  
In the study, ferrous iron is delineated with a blue  
color.

Gypsum index: Gypsum displays high reflectance at 
ASTER band 4 and absorption at ASTER bands 6 and 
9. Thus, in the study, ASTER BR 4/(6+9) is utilized to 
discriminate gypsum, with a red color from the study 
area background pixels.

Conclusions

Remote sensing is a useful technique for analyzing 
and modeling hydrocarbon micro-seepage-impacted 
areas. The technique is cheap, rapid, and non-
destructive, and it can be used to delineate areas of 
mineralogical and botanical anomalies. Anomalies 
and alterations in soil and sediment can be found on 
the earth’s surface in a variety of ways. Within these 
forms, red bed bleaching, ferrous iron enrichment, clay 
minerals, and carbonate alterations exhibit abnormal 
spectral signatures, which can be analyzed with 
remote sensing tools. In this study, the band ratio (BR) 
algorithm was the technique used with the ASTER 
sensor to delineate areas of surface mineral alterations 
and anomalies induced by hydrocarbon micro-seepage 
in Ugwueme. ASTER BR of 2/1 enhances ferric iron; 
(5+7)/6 enhances clay minerals; (1+4)/(2+3) enhances 

ferrous iron; and 4/(6+9) enhances gypsum. The study 
highlights that BR is an excellent spectral enhancement 
technique for delineating areas of alterations and 
anomalies induced by hydrocarbon micro-seepage.
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