
Introduction

The eruption of the COVID-19 epidemic has 
engendered significant public health security perils, 
representing a grave menace to human well-being 
and vitality, while also exerting a profound impact on 
economic and societal spheres [1, 2]. The virus has 
afflicted humanity through modes of respiratory droplet 
and contact transmission. To mitigate the proliferation of 
the virus, the Chinese government has actively carried 

out nucleic acid testing [3], which has also spawned 
research on optimizing the transport path of new 
coronavirus testing samples. Thus, the investigation into 
the conveyance path of these samples bears immense 
practical significance. The sample transfer process 
commonly entails healthcare personnel collecting 
samples at diverse testing sites, followed by the 
imperative dispatch of vehicles from the testing center to 
gather these samples. However, due to the variability in 
sample quantities, collection times, and frequencies, this 
results in an inefficacious utilization of vehicle cargo 
space and the proliferation of circuitous paths, thereby 
inflating transshipment costs. Certain testing sites 
may be inaccessible via vehicular means, necessitating 
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The novel coronavirus is one of the most widespread global epidemics that has harmed human  
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and efficient approach but also mitigates the risk of contagion. 
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manual transportation, which is not only time-intensive 
but also heightens the risk of infection. Furthermore, 
the extensive utilization of trucks has exacerbated the 
emission of greenhouse gases, consequently inflicting 
greater damage upon the predicaments of global 
warming and climate change. Drones have demonstrated 
merits across a spectrum of domains, encompassing 
the reduction of operational expenditures, acceleration 
of transportation velocity, facilitation of contactless 
delivery, and advocacy for the integration of renewable 
energy sources [4]. Additionally, owing to its reliance 
on battery power, the drone system operates with  
a complete absence of emissions, refraining from the 
discharge of detrimental gases, thereby contributing to 
the preservation of the climate and enhancement of air 
quality. Nevertheless, it is imperative to acknowledge 
the constraints inherent in their performance with 
regard to long-haul and large-scale cargo conveyance 
assignments. Consequently, we proffer an innovative 
resolution wherein a truck collaboratively transports 
nucleic acid samples in concert with multiple drones, 
each endowed with multi-visit capabilities. This 
approach not only furnishes robust reinforcement in the 
face of the exigencies presented by this global pandemic 
but also harmonizes seamlessly with the principles of 
sustainability and environmental preservation.

Some scholars have proposed research on using 
trucks and drones to collaborate on package delivery, 
which has gone through multiple evolutionary stages 
and variants so far. The Flying Sidekick Traveling 
Salesman Problem (FSTSP) originally proposed by 
Murray et al. [5] was the cornerstone of this problem. 
Subsequently, a profusion of offshoots materialized, 
among which were TSPD (Traveling Salesman Problem 
with Drone) [6], MFSTSP (Multiple Flying Sidekicks 
Traveling Salesman Problem) [7], TSP-mD (Traveling 
Salesman Problem with Multiple Drones) [8], VRPD 
(Vehicle Routing Problem with Drone) [9], to name but 
a few, each tailored to distinct delivery scenarios and 
endowed with different objective functions. Researchers 
have predominantly built to formulate mathematical 
models with delivery time [10] or delivery cost [11] as 
the centerpiece objective. They have proffered sundry 
algorithmics to tackle these quandaries, including the 
column generation algorithm [12], the genetic algorithm 
[13], the variable neighborhood search algorithm 
[14], and the hybrid algorithm [15], among others. 
Furthermore, certain studies have delved into mode of 
transport, such as truck-supported drone delivery [16], 
drone-facilitated truck delivery [17], independent truck 
and drone delivery [18], and hybridized delivery systems 
[19], to better Adapt to real-world delivery challenges. 
The above literature can provide methodological 
reference for this article, but it does not consider the 
impact of public health emergencies on collaborative 
delivery path planning of trucks and drones.

The investigation conducted by Barnawi et al. 
[20] centered on the utilization of drones during the 
COVID-19 epidemic and introduced a deep learning 

model for diagnosing cases. Regrettably, this study 
omitted the consideration of practical concerns, such 
as the performance, efficiency, and energy consumption 
of drones in real-world deliveries. Correspondingly, 
Yang et al. [21] proposed a truck-supported drone joint 
delivery model to address the distribution challenges 
posed by the novel coronavirus epidemic. However, in 
this delivery model, the truck’s cargo capacity remains 
underutilized, as the truck itself does not directly 
participate in the delivery service. In this context, 
Peng et al. [22] conducted research on collaborative 
delivery of trucks and drones, where trucks directly 
provide services to customers. They formulated  
a mixed integer programming model and employed 
a hybrid neighborhood search algorithm to resolve 
this conundrum. Wu et al.’s [23] research prioritized 
the minimization of delivery time and introduced  
a contactless package delivery conundrum entailing 
collaborative routing for both trucks and drones.  
The research by Liu et al. [24] focused on how to 
supply emergency supplies between high-risk and low-
risk epidemic areas after the outbreak of infectious 
public health events, especially during the COVID-19 
epidemic. In order to avoid the spread of the epidemic, 
they proposed the strategy of using “contactless” drone 
delivery in high-risk epidemic areas and truck delivery 
in low-risk epidemic areas. Ji et al. [25] proposed  
a material distribution method for closed communities 
based on the collaboration of drones and trucks, 
focusing on solving the problems of cross-infection and 
material efficiency. Li et al.’s [26] research centered 
on contactless medical supplies distribution while also 
addressing carbon emissions optimization. Finally, Li 
et al. [27] proposed a two-layer heuristic algorithm to 
tackle the collaborative delivery conundrum involving 
trucks and drones. The aforementioned literature 
serves as a valuable theoretical compass for material 
distribution within the context of the new coronavirus 
epidemic.

Although there have been studies focusing on 
collaborative delivery using trucks and drones, the 
existing literature has not yet delved into the specific 
delivery needs of nucleic acid samples. Firstly, this need 
is pressing as any delays may result in sample failure. 
Such failures can lead to substantial economic and 
human costs and even cause social panic. Secondly, this 
demand carries a high risk of infection and necessitates 
non-contact methods. Additionally, existing research 
often does not take into account the actual situation 
of drones visiting multiple nodes in a single trip and 
processing nodes whose demand is greater than the 
drone’s load capacity. With advancing technology, 
we will also investigate how multiple drones can be 
coordinated with trucks to enhance drone utilization. 
Simultaneously, we will prioritize two key goals: 
delivery time and distribution cost. In summary, this 
study aims to address the urgent delivery of nucleic 
acid samples. We establish a bi-objective programming 
model that takes into account the actual situation of  
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a truck carrying multiple drones and the drones’ visits to 
multiple nodes within one trip. This model is designed to 
minimize delivery time and costs. To tackle this crucial 
problem, we have devised a genetic adaptive large-
scale neighbor search algorithm (GALNS) to resolve 
this conundrum, offering valuable insights for decision-
making in virus sample transport path planning during 
major outbreaks.

Literature Review  

In this section, we furnish a concise exposition 
of antecedent research intimately associated with the 
present paper’s undertaking. Should readers desire an 
exhaustive and in-depth analysis, they are encouraged to 
peruse the studies authored by Macrina et al. [28] and 
Madani et al. [29]. According to the number of trucks 
and vehicle-mounted drones, we can divide the truck 
and drone collaborative delivery problems into three 
categories (Table 1): TSPD, TSP-mD and VRPD.

Murry et al. [5] introduced the concept of the 
FSTSP, which encompasses the collaborative delivery 
of a truck and a drone. In this context, they imposed 
a constraint wherein the drone could exclusively 
serve one customer per flight while optimizing for 
delivery time. To contend with the inherent NP-hard 
of this challenge, they formulated a mixed-integer 
programming model and devised a heuristic algorithm 
for resolution. Building upon this work, Agatz et al. [6] 
conceived an alternative model, denoted as TSPD, with 
the objective of cost-minimization in transportation. 
They also engineered a path-first clustering-second 
heuristic algorithm, effectively addressing this problem. 
Ha et al. [15] focused their attention on the TSPD model 
with the goal of minimizing operating costs, where 
operating costs include transportation costs and time 
costs caused by waiting. Tong et al. [30] harnessed  
a variable neighborhood search algorithm to tackle the 
TSPD challenge. It should be pointed out that in the 
above studies, the drone typically undergoes battery 
replacement after each flight to facilitate subsequent 
node services. However, Yurek et al. [31] proposed  
a different perspective, considering the TSPD problem 
under charging strategy.

Following this, Phan et al. [32] expanded the 
purview of the TSP-D problem to encompass real-
world distribution scenarios, introducing the concept 
of a truck equipped with multiple drones for delivery, 
which they designated as the TSP-mD problem. 

Campbell et al. [33] employed continuous approximation 
modeling techniques to assess a collaborative delivery 
system involving both trucks and multiple drones. The 
research findings underscored the economic advantages 
inherent in TSP-mD. Seifried et al. [34] developed 
an exact algorithm for resolving this problem and 
substantiated the NP-hard of TSP-mD. Murray et al. 
[7] further studied the MFSTSP, correlating the energy 
consumption model of the drone with the package 
weight, speed and operation time. It is worth noting 
that in the above study, the drone could only visit one 
customer at a time. Subsequently, Gonzalez-R et al. [35] 
proposed an extension of the TSP-D problem model, 
permitting drones to serve multiple customers in a single 
flight. Luo et al. [8] addressed the multi-drone multi-
visit traveling salesman problem and harnessed a multi-
start tabu search methodology to tackle the challenge, 
involving up to a hundred customers. Lastly, Mara et al. 
[36] devised a heuristic algorithm grounded in Adaptive 
Large-scale Neighborhood Search (ALNS) techniques 
for the resolution of this problem.

Wang et al. [9] embarked on an expansive 
exploration of collaborative delivery challenges both 
trucks and drones, transcending the confines of a single 
vehicle to encompass multiple vehicles, thereby birthing 
the VRPD problem. Their research illuminated that, 
even when each vehicle carries just one drone, and 
the drones share identical speed and distance matrices 
with the trucks, this collaborative delivery paradigm 
can slash completion time in half. Subsequently, some 
scholars conducted research on exact methods [37, 38] 
and heuristic algorithms [39, 40] to solve this problem. 
Some scholars have studied the collaborative delivery 
problem of trucks and drones in different contexts [23, 
26]. In addition, some literature studies the extension 
of the collaborative delivery problem of trucks and 
drones by adding constraints. Meng et al. [41] extended 
the VRPD to a logistics system that incorporates dual 
requisites: pickup and delivery. They intricately modeled 
parameters such as drone travel distance and package 
carrying weight, conceptualizing them as pivotal facets 
of drone energy consumption models. Subsequently, 
they formulated a mixed integer programming model, 
replete with problem-specific inequalities. In addition, 
they proffered a novel two-stage heuristic algorithm 
to proficiently tackle this conundrum. Kuo et al. [42] 
directed their research towards the minimization of 
travel expenses, focusing on the expansion of the 
VRPD, this time accounting for temporal constraints in  
the form of time windows. They ingeniously devised a 
variable neighborhood search algorithm as a means to 
resolve this intricate challenge. Jeong et al. [43] studied 
the impact of package weight on drone flight duration 
and considered the situation where drone flights are 
prohibited in some delivery areas during certain periods. 
Furthermore, Liu et al. [11] innovatively incorporated the 
concepts of no-fly zones and pickup and delivery tasks 
into the VRPD framework. Their solution strategy was 
grounded in a two-stage heuristic algorithm, anchored 

Table 1. Categorization of cooperative delivery challenges 
amidst trucks and drones.

TSPD TSP-mD VRPD

Number of trucks n n = 1 n = 1 m>1

Number of vehicle-mounted 
drones m m = 1 m>1 m3  1
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in the principles of simulated annealing, offering  
a resolution to this multifaceted problem.

The preceding literature delves into the examination 
of collaborative truck and drone delivery from various 
perspectives and problem scenarios. While these 
investigations have advanced our understanding, there 
remains ample space for further exploration. Despite the 
proposal of theoretical frameworks within these studies, 
they must still account for the intricacies of real-
world delivery operations. Moreover, it is imperative 
to acknowledge that this predicament is formally 
established as NP-Hard, necessitating additional 
research to devise more efficient algorithms, particularly 
in addressing expansive-scale challenges.

Problem Description

Given a delivery network ( , )G V A= , 

{0,1,2,..., , 1}V n n= +  represents the node set, node 

0, 1n +  represents the inspection center, {1,2,..., }C n=  
represents the detection node set; A  represents the arc 

set, {( , ) | , , }A i j i V j V i j= ∈ ∈ ≠ . {1,2,..., }U u=  

represents the collection of drones, and {1,2,..., }P p=  
represents the collection of drone trips. The location of 
each detection node is known, along with the sample 
collection requirements, which are determined based 
on the number of samples that need to be collected. 
When orchestrating the conveyance of these samples, 
the formidable challenge at hand lies in the judicious 
planning of synergistic transport paths for both trucks 
and multiple drones, each endowed with multi-visit 
capabilities. This endeavor is aimed at augmenting 
sampling efficiency, mitigating the peril of contagion, 
and curtailing transportation costs. This study christens 
this intricate quandary as the Multi-Visit Multiple Flight 
Assistant Traveling Salesman Problem (MV-MFSTSP).

The workflow is as follows: a fleet, comprising  
a truck and a cohort of multi-visit drones, commences 
its journey from the inspection center denoted as ‘0’, 
methodically collecting samples at diverse detection 
nodes. It is imperative that each detection node receives 
service either from a truck or a drone, and upon the 
culmination of all tasks, the fleet is obliged to return 
to the inspection center. To facilitate management, the 
truck is bound to the drone it carries, i.e. they move 
together (Fig. 1). The drone is afforded the flexibility 
to launch and land either at the detection node or the 
inspection center. Following the completion of the 
sample collection task at each detection point, the 
drone must fulfill two prerequisites before proceeding 
to the subsequent detection point: its remaining cargo 
capacity must meet or exceed the sample collection 
volume requisite for the next point, and its remaining 
flight distance must meet or exceed the remaining 
flight distance for the ensuing detection point. If the 

drone fails to meet these criteria, it shall return to 
the nearest accessible truck parking location to await 
landing. Meanwhile, while the drone executes its 
mission aloft, the truck continues its preordained path, 
ensuring the uninterrupted delivery of sample packages. 
Furthermore, to forestall cross-contamination, it is 
imperative that samples undergo requisite disinfection 
both before collection and after delivery.

The assumptions of the MV-MFSTSP problem are as 
follows:

The drone traverses nearly linear trajectories, 
prompting its adherence to the Euclidean distance 
metric; while the truck needs to travel along the road 
network, the truck distance is defined as dij = ηdij, η is a 
constant that represents the curvature of the road.

Both the truck and the drone always keep moving at 
a constant speed, and the drone is faster than the truck.

The impact of the drone’s flight speed and load 
capacity on the cruising range is not considered.

In the event that either the truck or the drone arrives 
ahead of schedule, they must await the other’s arrival 
before recommencing the delivery process.

No consideration is given to the time required 
for battery replacement when their energy levels are 
depleted.

Fig. 1. Model drawings of trucks and drones.

Fig. 2. A possible solution for MV-MFSTSP.
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The truck possesses the capacity to transport all 
available drones in a single haul, and the quantity is 
contingent upon the volume of samples gathered at the 
detection node.

In this paper, MV-MFSTSP is assumed to be 
explored in two-dimensional (2D) space.

Fig. 2 illustrates a plausible path for a truck 
transporting multiple multi-visit drones collaboratively 
engaged in sample transportation. Further symbols and 
explanations pertinent to the mathematical model can be 
found in Table 2.

Before establishing a mathematical model, first 
divide the detection nodes as follows:

Nku: detection nodes in this set are served by trucks, 

max{ | || , }k
i ijN i q Q d D i j C= > > ∀ ∈/ 2,

;
Nk: detection nodes in this set can be served by both 

drones and trucks, Nku = C – Nk.

Table 2. Model symbols and explanations.

Type Symbol Explanation

Parameter

e Sample validity period.

M A very large positive integer.

R Maximum number of drones that can be carried on a truck.

Dmax
The maximum flight distance of the drone. Because the drone serves at least one detection node each 

time it flies, the distance to the farthest detection node that the drone can visit is Dmax/2.

C1, C2 Truck/drone cost per unit transportation distance.

Si Service time of detection node i∈C.

qi
Sample weight of detection node i∈C, qi = lic, li represents the number of samples at detection node i, 

c is the weight of a single sample.

Q Maximum load capacity of drone.

V1, V2 The speed of truck/drone transportation.

dij
', dij Transportation distance of truck/drone from node i∈V to node j∈V.

tij
', tij

u Transportation time of truck/drone from node i∈V to node j∈V.

Variable

xij(=1) 0-1 variable, which indicates that the truck travels from node i∈V to node j∈V.
yij

up(=1) 0-1 variable, which indicates that the u-th ((u∈U) drone’s p-th (p∈P) trip along arc (i,j)∈A.

hiup
S(=1) 0-1 variable, which indicates that node i∈V is the launch node of the p-th (p∈P) trip of the u-th (u∈U) 

drone, and S is the abbreviation of “Start”.

hiup
E(=1) 0-1 variable, which indicates that node i∈V is the landing node of thep-th (p∈P) trip of the u-th (u∈U) 

drone, and E is the abbreviation of “End”.
Zi

up(=1) 0-1 variable, which indicates that node i∈V is served by the p-th (p∈P) trip of the u-th ((u∈U) drone.
Zi(=1) 0-1 variable, which indicates that node i∈V is served by a truck.

ti
' Continuous variable, which represents the time when the truck arrives at node i∈V.

ti
up Continuous variable, which represents the time when the p-th (p∈P) trip of the u-th (u∈U) drone 

reaches node i∈V.
gi Continuous variable, which represents the truck access order of node i∈V.
ki Continuous variable, which represents the drone access order of node i∈V.

ri
Continuous variable, which represents the number of drones that are not on the truck when departing 

from node i∈V.
ti Continuous variable, which represents the actual time of arrival at node i∈V.
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This study considers the dual optimization objectives 
of the transportation cost and the maximum allowable 
return time to the inspection center, as expressed in 
formulas (1-2). Constraint (3) means that each detection 
node can only be provided with a collection service 
by a truck or drone. Constraint (4) ensures that the 
detection points in the set Nk can only be served by 
trucks. Constraints (5-6) give the relationship between 
variables. Constraint (7) provides a traffic balance 
equation for the nodes visited during the drone trip, 
which can handle launch and landing nodes. Constraints 
(8-9) provide the total in-degree and total out-degree of 
the drone for each detection node to ensure that each 
detection node is only served once. Constraint (10) 
not only maintains the flow balance of trucks, but also 
ensures that trucks can visit a detection node at most 
once. Constraint (11) requires that each edge be visited 
by a drone at most once. Constraint (12) requires that 
each edge visited by the drone has at least one node 
service during this drone trip to prevent the drone from 
flying along the truck’s path unnecessarily. Constraints 
(13-14) determine the launch and landing nodes of the 
drone trip, respectively. Constraints (15-16) ensure that 
the launch and landing nodes of the drone must be 
visited and served by the truck. Constraint (17) ensures 
that the launch and landing nodes of the drone cannot 
be the same node. Constraint (18) ensures that the 
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number of launch and landing nodes in each drone trip 
is equal, and there is at most one launch node in each 
drone trip. Constraints (19-20) represent subtours that 
eliminate the paths of trucks and drones. Constraint (21) 
is to calculate the actual time to reach node i. Constraint 
(22) represents the latest time for all drones to arrive at 
node i. Constraints (23-24) calculate the time for drones 
and trucks to arrive at node i, respectively. Constraints 
(25-26) calculate the transportation time of drones and 
trucks from node i to node j, respectively. Constraint 
(27) means calculating the number of drones on the truck 
when it leaves the inspection center. Constraint (28) 
means that if the truck wants to go from detection node 
i to j, then the sum of the number of drones on the truck 
when leaving node i and the number of drones from 
node i to other nodes is equal to the number of drones 
on the truck when leaving node j the sum of the number 
and the number of drones from node j to other nodes. 
Constraint (29) is a special case of constraint (28) at the 
inspection center. Constraint (30) represents the load 
constraint of the drone. Constraint (31) is the maximum 
flight distance constraint of the drone. Constraints  
(32-33) represent the value range of all variables.

Solution Approach 

Main Objective Method 

Contingent upon the specific circumstances of 
the issue at hand, it becomes imperative to ensure the 
timely conveyance of test samples to the inspection 
center, adhering to their stipulated validity periods. 
Consequently, this study adopts the main objective 
method for addressing the bi-objective programming 
model. In this model, we designate objective function (1) 
as the principal aim, relegating objective function (2) to 
the status of a constraint. By doing so, we effectuate a 
transformation of the original bi-objective programming 
model into a single-objective programming model. To 
confine the ultimate timeframe for the fleet’s return to 
the inspection center, we refine objective function (2) 
into formula (34).

 1nt e+ ≤  (34)

Genetic Adaptive Large-scale Neighborhood 
Search Algorithm

Algorithm Framework

Murry et al.’s [7] research shows that the MFSTSP 
problem is NP-hard, so the MV-MFSTSP problem is 
also NP-hard. The ALNS algorithm has been widely 
used to solve NP-hard problems [36], and the operators 
of ALNS are customizable. Hence, it can specifically 
optimize the paths for trucks and drones to work 
together. Considering that the precision of solution  

and the pace of convergence in ALNS are notably 
influenced by the initial solution, we advocate for 
the adoption of a “sort first, then group” approach 
to constructing the initial solution, which leverages 
genetic algorithms. Furthermore, to mitigate the risk of 
ALNS getting trapped in local optima and to enhance 
algorithmic efficiency, we incorporate the Metropolis 
acceptance criterion from Simulated Annealing (SA) 
into ALNS. This refined algorithm is denominated as 
the Genetic Adaptive Large-Scale Neighborhood Search 
Algorithm (GALNS) [44].

The fundamental concept underlying the Metropolis 
acceptance criterion is to probabilistically embrace new 
solutions during each iteration, thus circumventing 
entrapment within a local optimum [45]. The probability 
associated with accepting these new solutions is 
determined by Formula (35):

[ ( ) ( )]/

1, ( ) ( ),
, ( ) ( ).new curr

new curr
f S f S T

new curr

f S f S
P

e f S f S− −

<
=  ≥  (35)

where, f(Scurr) represents the objective function value of 
the current solution, and f(Scurr) represents the objective 
function value of the new solution. As the number of 
iterations increases, the probability of acceptance will 
definitely decrease. This is because the search time 
needs to be reduced, that is, the temperature T decreases 
as the number of iterations increases. The formula is as 
follows:

 Tgen+1 = αTgen (36)

where, α is the cooling factor, 0<α<1.
This study formulates three sets of operator pairs 

and employs the roulette principle for their selection. 
These operator pairs individually undertake the task 
of destroy and repair of the existing solution, guided 
by the principles of “randomness,” “correlation,” and 
“whole path reconstruction.” Such an approach not 
only broadens the domain of viable solutions but also 
contributes to an enhanced level of solution precision. 
The probability associated with the selection of an 
operator pair is delineated in Formula (37).

 1
/ , 1, 2,...,| |j j k

k
P w w j

Ω

=

= = Ω∑
 (37)

where, wj represents the weight of the operator to j, and  
|Ω| represents the total number of operator pairs.

The weighting of operator pairs undergoes 
dynamic adjustments in response to performance score 
fluctuations throughout the iterative process. If the new 
solution Snew, following the operator pair exploration, 
ascends as the fresh global optimum solution, it shall 
receive a points. When the new solution Snew is better 
than the current solution Scurr, b points are given; when 
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the new solution Snew is worse than the current solution 
Scurr but accepted by the acceptance criterion, c points 
are given, otherwise, d points are given, where a3 b3 c3 
d. The weight wj undergoes updating according to the 
formula (38).

 
0 (1 )( / ), 1, 2,...,| |j j j jw w jβ β= + − Ψ Π = Ω

(38)

where, β represents the reaction parameter, β∈[0,1]. 
wj

0 signifies the historical weight. Ψj denotes the score 
corresponding to operator pair j, and Πj reflects the 
frequency of utilization of operator pair j.

The framework of GALNS is shown in Fig. 3.

Construct Initial Solution

The dimensions and length of the solution to 
the MV-MFSTSP problem are not predetermined, 
rendering the conventional approach to initial solution 
construction impractical. Consequently, this study 
introduces a novel “sort first, then group” method for 
the initial solution construction, leveraging genetic 
algorithms. The fundamental concept is as follows: 
Firstly, employ a genetic algorithm to ascertain the 
optimal truck delivery paths for all nodes. Subsequently, 
categorize all nodes into two groups: one comprises 

nodes amenable to both drones and trucks, while the 
other consists of nodes exclusively suitable for truck 
service. Thereafter, eliminate nodes of the first category 
from the truck path, followed by determining the 
nodes to be serviced by drones based on Formula (39). 
This formula accounts for the overall transportation 
cost when distinct vehicle types serve each node.  
In essence, we eliminate the most expensive nodes 
for drone delivery and insert these omitted nodes into 
the most economical positions along the truck’s path. 
This step expedites the search for the optimal solution 
during subsequent optimization processes. Lastly, we 
sequentially insert the omitted nodes at positions where 
the increase in total transportation cost is minimal. 
Following the insertion of each node, the algorithm 
scrutinizes whether the present path complies with the 
drone’s load capacity, endurance, and sample validity 

Fig. 3. GALNS algorithm framework.

Fig. 4. Demonstration diagram of a simple path.
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constraints. Subsequently, it reevaluates the cost 
associated with each uninserted node when placed at 
various positions within the current path. If during the 
process of inserting nodes, there is a path that does not 
satisfy the constraints, then the algorithm will add a new 
drone path or add the node to the truck path to ensure 
that all nodes are eventually inserted into the path. As 
illustrated in Fig. 4, we can derive Formula (39).

1 2 1(| | | |) (| | | |) | | , ,
( )

, .
AB BC C AB BC C AC C Node Bis serviced by drone

f B
Other Node B is serviced by truck

η η+ × × ≥ + × + × ×
= 
  

(39)

Pursuant to Formula (39), we can deduce a lemma 
that will provide useful help for guiding parameter 
selection.

Lemma: When 
2

1

CAB BC
AB BC AC C

η +
≥ ×

+ −  or 

2

1 ( )
C AB BC
C AB BC AC η

+
≥

+ − ×  is established, node B  can 

save transportation costs by choosing drone service.

Operator Design

(1) randDestory and randRepair
Operator randDestory represents randomly deleting 

a node from the current solution, while operator 
randRepair represents inserting the deleted node into 
a position that minimizes the increase in transportation 
cost. Its calculation method is shown in formula (40).

 
0min i i

r rr removed
f f f

∈
∆ = −

 (40)

where, f0 represents the transportation cost of the 
destroyed solution, fr

i represents the transportation 
cost of node r at the i-th position, Δ fr

i represents the 
transportation cost increment of node r inserted into 

position i, and removed represents the set of removed 
nodes.

Taking Fig. 5 as an example, we first randomly 
selected the drone launch node 2 as the node to be 
removed. In this operation, since the drone path where 
node 2 is located is still serving node 3, we need to 
remove node 3 as well and store them as a set in the node 
set to be removed. Then, according to the calculation 
method of formula (39), we sequentially insert node 2 
and node 3 into the position that minimizes the increase 
in transportation cost.

(2) relatedDestory and relatedRepair
Operator relatedDestory refers to removing several 

related nodes according to formula (41-42).

 

_

( , ) 1/ ( ), , ,ijR i j V i C j C i jijd= + ∀ ∈ ∈ ≠
 (41)

 

_

/ max , (max 0)ij ij ijd d dijd = ≠
 (42)

where, d̄ ij is the standardized value of dij, d̄ ij∈[0,1].  
Vij = 1 indicates that node i and node j are not on the 
same path, otherwise Vij = 0. When R(i,j) is larger, the 
correlation between node i and node j is greater.

The operation of operator relatedRepair is to try 
to re-insert the removed node to the position with the 
largest regret value while satisfying the conditions of 
load capacity, endurance, and sample validity. The 
regret value refers to the cost difference between the 
node’s optimal insertion position and the sub-optimal 
insertion position in the truck and drone paths, and its 
calculation method is as shown in formula (43).

 
2 1max l l

r r rr removed
H f f

∈
= ∆ −∆

 (43)

where, Δ fr
i represents the transportation cost increment 

when node r is inserted into the position i, and l1 and l2 
respectively represent the minimum and sub-minimum 
positions of the transportation cost increment when 
node r is inserted into the destroyed solution. The regret 
value Hr represents the cost difference of inserting node 
r into the destroyed solution.

Taking Fig. 6 as an example, we first selected the 
drone launch node 3 and landing node 4 as the nodes 
to be removed based on formula (41). In this operation, 
node 7 in the path also needs to be removed and 
stored in the set of nodes to be removed. Then, we 
will sequentially insert the nodes in the node set to be 
removed to the position with the largest regret value 
according to formula (43).

(3) wholeUavpathDestory and wholeUavpathRepair 
Operator wholeUavpathDestory means to randomly 

delete a drone path from the current solution, while 
operator wholeUavpathRepair will sequentially insert 
the drone service nodes in the deleted drone path to the 
position with the smallest transportation cost increment. 

Fig. 5. randDestory and randRepair.
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Taking Fig. 7 as an example, we first randomly selected 
a drone path R1 for deletion, and stored the node 6 
served by the drone in the removed node set. Next, we 
insert node 6 into the appropriate location one by one 
according to the principle of minimum transportation 
cost increment.

Experiment

Because MV-MFSTSP is an extended problem of 
the MFSTSP, this study chooses to use the test instance 
of the MFSTSP [7] to evaluate the performance of 
our proposed model and algorithm. All test cases 
featured within this paper can be accessed online at 
the following link: https://github.com/optimatorlab/
mFSTSP. We employ Gurobi (version 9.1.2) for resolving 
the MIP model, utilizing Python (version 3.9) as the 
programming language, and configuring a maximum 
runtime constraint of 3600 seconds. For algorithms 
such as GALNS, we utilize Matlab (version 2018b) for 
implementation, imposing a maximum iteration limit 
of 200. All coding endeavors are conducted on a server 
furnished with an Intel(R) Core (TM) i5-10200H CPU 
@ 2.40GHz. Referring to the performance parameters of 
multi-rotor drones [46] and the parameters of standard 
nucleic acid detection samples [4], the parameters are set 
as shown in Table 3.

Comparative Analysis of Small-Scale Instances

Owing to the inherent intricacy of the MV-MFSTSP 
problem, the exact solver can exclusively procure optimal 
solutions for small-scale instance. Consequently, we 
confine the node count in our instances to a maximum 
of 20 nodes. We then apply both the GALNS algorithm 
and the Gurobi solver to these instances, yielding  
a comparative analysis presented in Table 4. Regarding 
the Gurobi’s solution, this table documents the upper 
and lower bounds (Obj_UB, Obj_LB) pertaining  
to the optimal solution value, alongside its corresponding 
runtime (Time) and disparity between them  
(GAP = (Obj _UB - Obj _ LB)/Objj _UB*100%). 
Regarding the GALNS solution, this table records 
the optimal solution value (Obj) and the computation 
time (Time) obtained via GALNS, while denoting the 
disparity between them as GAP1 = (Obj _UB - Obj)/Objj 
_UB*100%. The test instances are categorized based on 
their node quantities (Num), and Table 4 documents the 
corresponding mean values (AVG.) for each group of 
test instances.

According to the results, the MV-MFSTSP challenge 
can be optimally addressed employing the Gurobi solver 
for instances featuring a modest scale of no more than 

Fig. 7. wholeUavpathDestory and wholeUavpathRepair.

Table 3. GALNS parameters.

Parameter Value Parameter Value Parameter Value

NIND 50 Qu 15 lb Vu 0.75 km/min

Pc 0.9 Dmax 20km Cu 0.078

Pm 0.05 α 0.97 Vk 0.5 km/min

ζ 100 β 0.5 C 0.78

Tmin 10 a, b, c, d 1.5, 1.2, 0.8, 0.6 η 2

T0 1000 s 3 min / /

Fig. 6. relatedDestory and relatedRepair
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10 detection nodes. However, as the number of nodes 
increases to 15 (20), the optimal solution cannot be 
obtained within 3600 seconds. On average, the gap 
between the upper and lower bounds of the solution is 
18% (41%). This shows that as the node size increases, 
the solver performance decreases drastically and more 
computation time is required. In contrast, the GALNS 
algorithm exhibits commendable performance not only 
for smaller-scale predicaments but also maintains a 
minimal disparity with Gurobi’s solutions when tackling 
15 and 20-node challenges. On average, GALNS 
demonstrates efficiency in terms of computation time 
and solution quality for cases involving 5 and 10 nodes. 
Nevertheless, when the node count escalates to 15 and 
20, GALNS performance exhibits a slight reduction, yet 
it continues to boast relatively expeditious computation 
times. In general, it is necessary to design a heuristic 
algorithm for MV-MFSTSP to solve.

Comparative Analysis of Medium-Scale 
and Large-Scale Instances

The ALNS algorithm is commonly employed for 
addressing the collaborative delivery path optimization 
problem concerning trucks and drones [36]. Hence, to 
assess the algorithm’s efficacy, this paper applies both 
the GALNS and ALNS algorithms to medium- and 
large-scale instances, subsequently compares their 
solution results (Table 5). Table 5 shows the name of 
the calculation example (Instance), the number of nodes 
(Num), the optimal solution value of the algorithm 
(ObjALNS and ObjGALNS) and the difference value between 
them. The computational formula is denoted as  
GAP2 = (ObjALNS - ObjGALNS)/ ObjALNS*100%. To reduce 
the impact of chance, the LNS and GALNS algorithms 
were executed 20 times for each computational 
instance to ascertain the minimum value. These test 
instances are categorized based on their node quantities,  

Table 4. Small-scale instance result comparison.

Instance Num
Gurobi GALNS

GAP1Obj_UB Obj_LB GAP Time Obj Time

20170606T113038113409 5 33.18 33.18 0 1 33.18 0.23 0 

20170606T113251786976 5 28.24 28.24 0 1 28.24 0.23 0 

20170606T113339368121 5 43.38 43.38 0 1 43.38 0.19 0

20170606T113427164164 5 31.95 31.95 0 1 31.95 0.21 0 

20170606T113515209066 5 23.35 23.35 0 1 23.35 0.26 0 

AVG. 5 32.02 32.02 0 1 32.02 0.22 0

20170606T113038113409 10 36.33 36.33 0 10 36.33 0.21 0 

20170606T113251786976 10 51.84 51.84 0 205 51.84 0.22 0 

20170606T113339368121 10 30.57 5.57 0.82 3600 30.57 0.62 0 

20170606T113427164164 10 38.45 38.45 0 1171 38.45 0.29 0 

20170606T113515209066 10 83.85 83.85 0 15 83.85 0.3 0 

AVG. 10 48.21 43.21 0.16 1000.2 48.21 0.33 0 

20170606T113038113409 15 55.86 53.1 0.05 3600 53.58 0.32 0.04 

20170606T113251786976 15 49.39 45.81 0.07 3600 46.85 0.58 0.05 

20170606T113339368121 15 47.44 43.64 0.08 3600 48.4 1.01 -0.02 

20170606T113427164164 15 21.22 7.27 0.66 3600 19.35 0.25 0.09 

20170606T113515209066 15 86.94 85.5 0.02 3600 87.25 0.25 0

AVG. 15 52.17 47.06 0.18 3600 51.09 0.48 0.02 

20170606T113038113409 20 81.13 57.53 0.29 3600 83.28 0.72 -0.03 

20170606T113251786976 20 93.3 54.54 0.42 3600 94.24 0.74 -0.01 

20170606T113339368121 20 79.05 62.13 0.21 3600 81.15 0.61 -0.03 

20170606T113427164164 20 92.19 31.87 0.65 3600 90.85 1.01 0.01 

20170606T113515209066 20 93.08 50.7 0.46 3600 103.49 0.71 -0.11 

AVG. 20 87.75 51.35 0.41 3600 90.60 0.76 -0.03 
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and Table 5 catalogues the corresponding mean values 
(AVG) for each cohort of test instances.

In the case of the 50-node instance, the ALNS 
algorithm yields an average optimal solution of 139.54, 
whereas the GALNS algorithm attains an average 
optimal solution of 126.78, with a mere 0.10 average 
disparity between them. As the node count escalates 
to 100, the ALNS algorithm’s average optimal solution 
stands at 251.25, whereas the GALNS algorithm 
achieves an average optimal solution of 204.34, resulting 
in an average difference of 0.23. In summation, when the 
node count remains below 100, the GALNS algorithm 
outperforms the ALNS algorithm. This superiority 
arises from the GALNS algorithm’s optimization 
grounded in a superior initial solution and the inclusion 

of a simulated annealing acceptance criterion, which 
effectively circumvents local optima, thereby enhancing 
the algorithm’s performance.

Comparative Analysis of Different 
Transport Modes

If the inspection center exclusively employs trucks 
for operations, this mode is referred to as the traditional 
truck transfer mode (Truck). Conversely, when the 
inspection center utilizes a truck carry out multiple 
drones, each endowed with multi-visit capabilities, 
operating in tandem, this mode is designated as the 
truck and drone cooperative transfer mode (Truck 
+ Drone). To delve deeper into the merits and 

Table 5. Solution results of different algorithms.

Instance Num ObjALNS ObjGALNS GAP2

20170606T114511221132 50 123.75 117.49 0.05

20170606T114654882472 50 128.42 124.06 0.04

20170606T114840930461 50 202.6 168.97 0.20

20170606T115303341654 50 99.90 99.90 0.00

20170606T115437348436 50 143.05 123.48 0.16

AVG. 50 139.54 126.78 0.10

20170606T115823934453 100 244.41 215.89 0.13

20170606T120227545709 100 220.15 177.58 0.24

20170606T121241353494 100 252.91 201.36 0.26

20170606T121632081849 100 302.67 247.54 0.22

20170606T122019874088 100 236.13 179.33 0.32

AVG. 100 251.25 204.34 0.23

Fig. 8. Comparison chart of different working modes.
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demerits of these two operational modes, we applied 
them to five test instances comprising 100 nodes.  
The comparative outcomes are delineated in Table 6 
and Fig. 8. Additionally, we selected the computation 
instance “20170606T115823934453” to illustrate the 
optimal route for traditional truck transfer (Fig. 9) 

and the optimal route for truck and drone cooperative 
transfer (Fig. 10).

The findings demonstrate that the synergy between 
trucks and drones in the transport paradigm confers 
distinct competitive advantages when compared to 
the traditional truck-based transportation model, 

Table 6. Comparison results of different working modes.

Instance Num Truck Truck + Drone GAP3

20170606T115823934453 100 300.87 215.89 0.39

20170606T120227545709 100 306.29 177.58 0.72

20170606T121241353494 100 294.93 201.36 0.46

20170606T121632081849 100 309.04 247.54 0.25

20170606T122019874088 100 296.43 179.33 0.65

AVG. 100 301.51 204.34 0.50

Fig. 10. Optimal route for truck and drone cooperative transfer.

Fig. 9. Optimal route for traditional truck transfer.
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particularly in cost reduction for conveying nucleic 
 acid testing samples. Across the five computation 
instances, the collaborative transfer truck and 
drone model yielded a noteworthy 50% reduction in 
transportation costs on average. For medical testing 
facilities, this collaborative transport model presents a 
pioneering and effective resolution for the conveyance of 
nucleic acid testing samples, delivering substantial cost 
savings, heightened efficiency, and expedited test result 
acquisition.

Conclusions

This study proposes an innovative solution to address 
the challenges faced in COVID-19 sample transport and 
climate change. Our approach is based on a co-transport 
working model of multiple multi-visit drones on a truck, 
with the primary objectives of cost minimization and 
swift return of samples to the inspection center. To 
achieve this objective, we established a model of the 
MV-MFSTSP in which two vehicles work together, 
and adopted a solving algorithm called GALNS. This 
algorithm comprises three pivotal components: firstly, an 
initial solution construction method founded on genetic 
algorithms, which formulates the initial solution through 
the “sort first, then group” methodology; secondly, the 
ALNS algorithm, which uses customized neighborhood 
operations to continuously improve the solution; Finally, 
we introduce a simulated annealing mechanism to 
further augment the algorithm’s performance. Through 
testing across various scales, our research findings 
evince that the proposed MV-MFSTSP model and the 
GALNS algorithm exhibit wide-ranging applicability 
and effectiveness. Compared with the traditional truck 
transfer model, our solution is more competitive in 
reducing transmission risks, saving costs and reducing 
greenhouse gas emissions.

Future research endeavors shall encompass the 
exploration of integrating multiple trucks to enhance 
the efficiency of sample transfers. Moreover, we shall 
take into account real-world delivery time window 
constraints to better align with the exigency of timely 
sample delivery. Our ongoing efforts shall also involve 
the development of even more streamlined algorithms 
dedicated to resolving this problem model.
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