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Abstract

Improving the logistics industry’s green total factor productivity (LGTFP) is a key source of power to 
achieve its high-quality development (HQD) in China. Technological innovation (TI) and environmental 
regulation (ER) policies are vital factors that affect the improvement of LGTFP. Although the impact of 
ERs or TI on LGTFP has been extensively researched, few studies have examined their combined effect. 
This study utilizes panel data from 30 Chinese provinces during 2006–2020 to estimate LGTFP using 
the Epsilon-based measure and global Malmquist–Luenberger index. Moreover, this study employs  
a dynamic spatial Durbin model to explore the influence of TI on LGTFP and its spatial spillovers, 
as well as the modulatory effect of ER in the relations between TI and LGTFP. The results show that  
(1) China’s LGTFP displays positive spatial spillovers and is influenced by the preceding period’s level. 
(2) In the short term, an improvement in TI levels had a positive effect on local LGTFP, but negative 
spillovers on neighboring districts. Nevertheless, in the long run, an improvement in TI levels had  
a notably negative influence on local LGTFP but positive spillovers on adjacent regions. (3) ER had  
an “inverted U-shaped” modulatory roles with spatial spillovers on the relations between TI and 
LGTFP in the long-term. These discoveries offer valuable insights into the coordinated development 
of TI systems and ER policies, enabling the formation of a policy system that aligns with the logistics 
industry’s HQD in China.
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Introduction

China’s 14th Five-Year Plan (2021-2025) for Modern 
Logistics Development, issued by the State Council and 
the General Office on May 2022, emphasizes the strategic 
importance of the logistics industry in upgrading value 
chains, building supply chains, promoting high-quality 
development (HQD), and establishing modern economic 
systems. The logistics industry’s HQD is thus an essential 
component of economic HQD in China. Therefore, 
as China transitions from a rapid growth economy to 
HQD economy, the logistics industry, which is closely 
linked to this transition, has also entered a key phase 
of improving quality and efficiency from an extensive 
development mode. However, resource allocation of 
China’s logistics industry remains unreasonable, with 
high levels of investment and energy consumption, low 
efficiency, and environmental degradation emerging as 
prominent issues [1].

According to the China Statistical Yearbook (2007, 
2021), the energy consumption of the transportation, 
storage, and postal industries in China has risen 
dramatically from 186 million tons of standard coal in 
2006 to 413 million tons of standard coal in 2020, with its 
share of total energy consumption increasing from 7.5% 
to over 9.0%. To achieve green sustainable development, 
the logistics industry’s HQD should simultaneously 
consider enhancing economic and environmental 
benefits [2]. Green total factor productivity (GTFP) 
is a key indicator for measuring economic and 
environmental performance [3]. Therefore, research 
on the logistics industry’s GTFP (LGTFP) is crucial 
for improving the quality of logistics development and 
realizing long-term sustainability.

Improvements in GTFP are affected by several 
factors, such as the economic development level [4], 
technological innovation (TI) [5, 6], environmental 
regulation (ER) [7, 8], infrastructure level [9], and 
energy structure [10]. Among these influencing 
factors, TI is a pivotal force that drives sustainable 
and healthy economic development [11] and regional 
green development [12]. Simultaneously, to reduce 
pollution, improve the ecological environment, and 
meet China’s goal of peak carbon emissions, relevant 
sectors have introduced a range of ER measures. These 
environmental regulatory measures have impacted the 
level of TI and improvements in GTFP [13].

The relations among TI, ER, and the GTFP in 
various regions and industries in China has become a 
hot topic for scholars [5, 14-16]; however, few studies 
have examined the relations among TI, ERs, and LGTFP. 
Existing literature has only studied the influence of a 
single factor, TI [17] or ERs [18] on LGTFP. Few studies 
have incorporated TI, ERs, and the LGTFP into the 
same research framework. Thus, the following questions 
warrants further research: Can TI enhance the LGTFP? 
Does the relation between TI and LGTFP vary with 
the level of ER? How does the interplay of TI and ER 
impact LGTFP?

This study addresses this research void by examining 
TI’s influence on LGTFP and the moderating impact of 
ER on this relation. In the 11th Five-Year Plan (2006-
2010), the government for the first time clearly proposed 
that “energy conservation and emission reduction” 
should be a binding indicator for environmental 
protection and linked to performance evaluation. This 
indicates that ER has become a mandatory constraint 
indicator, which has an important impact on the 
formulation and implementation of ER-related policies. 
The year 2020 is the end of the 13th Five-Year Plan 
(2016-2020). To this end, we selected data from 30 
Chinese provinces during 2006-2020, and calculated 
the LGTFP, which is used as the dependent variable in 
our analysis. Clarifying the internal relations among TI, 
ER, and LGTFP holds both theoretic and practical value 
for enriching the theoretical mechanism of the logistics 
industry’s HQD and formulating more reasonable ER 
and ecological protection policies.

The possible marginal contributions of our study 
are: (1) unlike previous studies that used traditional data 
envelopment analysis (DEA) or slack-based measure 
(SBM) to measure LGTFP, we used the Epsilon-based 
measure and global Malmquist-Luenberger index 
(EBM-GML) to evaluate changes in LGTFP. (2) Studies 
in the literature mostly considered the influence of  
a single factor – TI or ER– on LGTFP. In our study, TI, 
ER and LGTFP are integrated into the same research 
framework, and the internal influence relations among 
them are analyzed. (3) Earlier studies mostly used 
conventional econometric model approaches, but 
ignored the cross-spatial correlation and spillover effects 
of LGTFP, TI, and ER. We construct a dynamic spatial 
Durbin model (SDM) for analysis, which can prevent the 
bias arise form ignoring geospatial factors.

Literature Review

Method to Measurement GTFP

Methods of measuring productivity could be 
categorized into two types: parametric and non-
parametric. The former primarily includes the stochastic 
frontier method and the parametric linear programming 
method, while the latter primarily includes the DEA 
method and Malmquist index. Parametric methods 
require a specific functional form and have strict 
assumptions regarding function distribution, which 
could result in larger errors if these assumptions are 
not met. Non-parametric methods are widely used to 
measure GTFP because they do not need assumptions, 
have lower requirements for data dimension indicators 
and sample size, and can handle multiple input-output 
variables directly [19]. For example, Tian and Lin [20] 
and Li and Lin [21] used the Malmquist-Luenberger 
(ML) productivity index based on the directional 
distance function (DDF) model to evaluate China’s 
industrial and cities’ GTFP. However, the DDF model 
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ignores slack variables and could overestimate efficiency. 
Therefore, Tone [22] put forth an SBM model that 
considers slack variables. Liang et al. [23] and Zhou 
et al. [24] utilized the SBM-ML and SBM-DDF-LPI, 
respectively, to estimate the LGTFP in Jiangsu 
Province and other provinces in China and studied the 
environment’s influence on it. However, the SBM model 
cannot measure input-output indicators that contain 
both radial and non-radial relations. To solve this issue, 
Tone and Tsutsui [25] developed a hybrid model known 
as the EBM model, which can handle both radial and 
non-radial input-output indicators simultaneously. This 
model compensates for some of the defects of the SBM 
model and makes the measurement results more accurate 
and reliable. Additionally, because the ML index could 
yield infeasible solutions, Oh [26] introduced the GML 
productivity index, which overcomes the infeasible 
solutions problem and meets the circularity requirements, 
making the results more accurate and comparable. This 
study therefore selects the EBM-GML index to calculate 
the LGTFP, as it overcomes issues related to radial 
and non-radial inputs and outputs while avoiding non-
solutions and non-circulation problems [27, 28].

Influence of TI on GTFP and its 
Spatial Spillover Effects

Influence of TI on GTFP

As China is increasing its focus on environmental 
quality, the impact of TI in decreasing carbon emissions 
and enhancing GTFP has gradually become a research 
hotspot. Existing research suggests that TI has three 
main impacts on productivity: positive promotion, 
inhibition, and nonlinearity.

TI has a positive effect on productivity. TI can 
promote productivity by improving energy utilization 
efficiency [29-31], reducing energy consumption and 
pollutant emissions [32, 33], and improving production 
efficiency by optimizing factor allocation [34]. 
Regarding the logistics industry, Yang [35] and Jian et 
al. [36] claimed that TI can drive logistics industry’s 
transform to intensification, standardization, and 
intellectualization; improve its operation quality; and 
significantly promote the logistics industry’s HQD. 
Zhang et al. [37] demonstrated that TI in reverse 
logistics is conducive to resources recycling, and 
enhances GTFP by enhancing resource utilization 
efficiency. Additionally, Bag et al. [38] and Mastos et al. 
[39] proposed that the integration of new technologies, 
such as big data and artificial intelligence, can facilitate 
the efficient allocate of resources in the logistics industry 
and improve business processes. They play a vital role in 
operational management and productivity improvements 
in the logistics industry.

Further, the influence of TI on productivity is 
either hindered or nonlinear. Liu et al. [40] found that 
TI significantly enhanced ecological efficiency in the 
Poyang Lake urban agglomeration; however, it had an 

energy-rebound effect in the Wuhan metropolitan area, 
which escalated its energy depletion and inhibited 
the enhancement of GTFP. Brännlund et al. [41] also 
demonstrated that TI could increase energy demand, 
which could lead to an energy-rebound effect, resulting 
in higher emissions of CO2, SO2 and other polluting 
gases. Liang et al. [8] demonstrated that the logistics 
industry’s TI can reduce its CO2 emissions by increasing 
the use of green packaging, adopting new energy 
trucks, and reducing the rate of driving empty vehicles. 
However, the logistics industry’s TI has a rebound 
effect on CO2 emissions. Thus, the impact of TI on CO2 
emissions is “U-shaped”.

Spatial Spillover Effect of TI

As industries become increasingly interconnected, 
the spillover effect of technology among industries 
becomes increasingly significant [42]. Therefore, 
the spatial spillovers of TI have received increasing 
attention in recent years. Some scholars believe that TI 
has significant positive spatial spillovers that can reduce 
carbon emissions in adjacent regions and improve GTFP. 
Jiao et al. [42] have demonstrated that the spillover effect 
of TI through industrial linkages has a more pronounced 
effect on reducing carbon intensity. Utilizing the SDM 
and China’s city-level panel data during 2003-2017, Sun 
et al. [43] also demonstrated that the spillover effect of TI 
notably decreased neighboring cities’ carbon intensity; 
however, other scholars concluded that TI has negative 
or nonlinear spatial spillovers. Wang et al. [44] explored 
the effect of TI on China’s GTFP and found that it had 
significant positive and negative impacts on the GTFP 
of local’s and neighbors’ respectively. However, Xiao 
et al. [45] concluded that the impact of agricultural 
technical advancements on agricultural GTFP on local 
and neighboring areas were “inverted U-shaped” and 
“U-shaped”, respectively, during 1998-2019.

In the areas of transportation and logistics, the 
vertical spillover effect of transportation emission 
reduction technique is even higher than the effect 
of the technology stock itself [42]. Therefore, green 
transportation emission reduction technology should be 
vigorously pursued. Moreover, Yang et al. [6] showed 
that research and development investment positively 
impact the transportation industry’s GTFP during 2005-
2017, whereas inter-provincial technology spillover 
negatively impacted the transportation industry’s GTFP. 
Liang et al. [8] also found that the logistics industry’s TI 
has spatial spillovers, which could intensify the rebound 
effect of carbon emissions in adjacent regions, thus 
negatively affecting LGTFP in neighboring areas.

ER, TI, and GTFP

ER and TI

There is no consensus regarding the relations 
between ERs and TI. Johnstone et al. [46] assessed 
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the effect of ER strictness on TI based on surveys and 
patent statistics in 77 countries during 2001-2007 and 
found that strict ER positively impacted enterprise 
innovation. Song et al. [34] focused on resource-based 
enterprises data and examined the effect of ER on TI 
in manufacturing industries using the TI compensation 
theory of ER and discovered that ER can stimulate green 
TI in resource-based manufacturing industries. Based 
on vehicle specification data, Kiso [47] compared and 
analyzed the impact of ERs on vehicle fuel economy and 
found that ERs can promote TI in vehicle fuel efficiency 
and improve vehicle fuel economy by 3%-5%. However, 
Shi et al. [48] showed that ER policies significantly 
inhibit enterprise innovation, with their suppressive 
impact increasing over time. Zhou et al. [49] identified 
an “inverted U-shaped” relation between formal ERs 
and innovation in China’s Yangtze River Delta region.

ER and GTFP

An overview of the literature shows that ERs 
has three main influences on GTFP: promoting, 
inhibiting, and nonlinear. Ai et al. [50] demonstrated 
that ER can improve allocation efficiency of factors 
and positively impacts industrial enterprises’ GTFP. 
Some studies demonstrated a positive effect of ER on 
GTFP in industries [51, 52] and cities [23] in China. 
However, Wu and You [53] and Xia et al. [54] concluded 
that command-control ERs markedly inhibit the 
improvement of local GTFP. More research showed that 
the relations between ERs and GTFP is nonlinear. For 
instance, Wang and Shen [55] examined the effect of ER 
on industrial environmental productivity in China and 
concluded that the impact is “inverted U-shaped”. Wang 
et al. [56] showed that ER has a threshold level, and its 
influence on GTFP is “inverted U-shaped”. However, 
Qiu et al. [57] reached an opposite conclusion: that ER 
has a “U-shaped” impact on GTFP. Li and Li [15] found 
that the effect of ER on GTFP in moderately and heavily 
polluting manufacturing industries is “U-shaped”, 
whereas the impact on GTFP in lightly polluting 
manufacturing industries is non-significant. According 
to Liang et al. [23] and Pei and Mu [58], there is also an 
inflection point or threshold effect associated with ER’s 
impact on LGTFP.

Moderating Effect of ER

Some studies have shown that ERs moderate the 
relation between TI and productivity. Chan et al. 
[59] concluded that green product innovation and 
development ability are key to enhancing corporate 
competitiveness, which positively impacts enterprise 
performance, and that ERs have a moderating effect 
on this impact. Pan et al. [60] found that TI improves 
energy efficiency, and that this influence is affected 
by ERs. Jin et al. [14] found that while TI alone does 
not significantly improve industrial water resources’ 
GTFP, but its interaction with ER significantly enhances 

industrial water resources’ GTFP. This suggests that 
ERs moderate the effect of TI on GTFP. Kong [61] 
also indicated that both command-control and market-
incentive ERs can effectively moderate the relation 
between innovation capability and GTFP.

By reviewing the available literature, we discovered 
that, first, most published studies utilized traditional 
DEA or SBM models to assess GTFP, but none could 
deal with input-output indexes containing both radial 
and non-radial relations. EBM compensates for the 
defects in the above models, and the GML index is 
comparable and transitive. Therefore, the EBM-GML 
model was selected to evaluate changes in LGTFP, 
resulting in more accurate and reliable measurements. 
Second, few studies examined relations among TI, ERs, 
and LGTFP, and most either considered the impact of a 
single factor of TI or ER on LGTFP. Few studies have 
simultaneously incorporated TI, ERs, and the LGTFP 
into the same research framework. It is crucial to clarify 
the internal relations among TI, ER, and the LGTFP 
to enrich the theoretical mechanism of the logistics 
industry’s HQD. Third, most existing studies used 
traditional econometric models to study relations among 
TI, ER, and GTFP but did not consider objective spatial 
factors and rarely considered spatial spillover effects.

Consequently, we employ the EBM-GML index 
to assess changes in LGTFP in 30 provinces in China 
(Xizang, Hong Kong, Macau, and Taiwan were excluded 
owing to missing data) and adopts dynamic SDM to 
perform a thorough analysis of relations among TI, 
ER, and LGTFP. This study enriches the theoretical 
mechanism of LGTFP; practically, this could help 
the government formulate more reasonable ERs and 
ecological protection policies. Therefore, our study 
holds notable theoretical and practical implications for 
logistics industry’s HQD.

The Influence Mechanisms 
and Hypotheses of TI, ER, and LGTFP

Influence Mechanism of TI on LGTFP

The theory of endogenous economic growth and 
innovation believes that TI can promote the improvement 
of GTFP through endogenous effects of technological 
progress and efficiency improvement. The logistics 
industry’s TI can promote innovation in its technological 
equipment, accelerate its automation and intelligence 
[35], promote the progress of production technology, 
improve the service quality of the logistics industry, 
reduce service costs, and improve its production 
efficiency. Concurrently, the product and process 
innovation of enterprises will optimize the combination 
of production factors, improve the efficiency of resource 
allocation, reduce energy consumption and pollutant 
emissions, and ultimately enhance LGTFP.

From the above literature review, the logistics 
industry’s TI can not only improve local LGTFP but 
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also have an impact on neighboring areas. Regions with 
TI advantages often have a better economic foundation 
and research and development (R&D) environment. 
These advantages will draw in workforce, financial, 
and other related resources from neighboring areas 
through the “siphon effect”—resulting in the loss of 
resources, capital, and technology in neighboring areas, 
thereby reducing their LGTFP [62]. Therefore, TI can 
have a negative spatial spillover effect on LGTFP in 
surrounding areas through the “siphon effect”.

Based on the analysis of the impact mechanism of 
TI on LGTFP and its spatial spillover effects, we formulate 
the first hypothesis:

Hypothesis 1: TI has a positive and direct effect on 
LGTFP but negative spatial spillovers on neighboring 
areas’ LGTFP.

Influence Mechanism of ER on TI and LGTFP

The influence of ER on TI and LGTFP is mainly 
through two aspects. First, ER affects TI and LGTFP 
by causing changes in enterprise costs; that is, the 
“compliance cost” effect. ER will increase the cost of 
pollution control and increase the cost of enterprises. 
Driven by the principle of profit maximization, 
enterprises will compensate for the cost of investment 
in environmental governance by reducing TI investment 
such as R&D, which will adversely affect TI and 
LGTFP [63]. Second, ER improves TI and promotes 
LGTFP through the “innovation compensation” effect. 
The “innovation compensation” effect mainly means 
that appropriate ER policies can encourage enterprises 
to perform TI, explore green production methods with 
competitive advantages, balance environmental and 
economic performance, improve enterprise operating 
conditions, increase profits, make up for the increased 
cost owing pollution control, and ultimately enhance 
LGTFP. Therefore, the impact of ER on TI and LGTFP 
is a game between “innovation compensation” and 
“compliance cost” [64]. The influence of TI on LGTFP 
will vary with the intensity of ER; that is, ER most 
probably modulates the relation between TI and LGTFP 
in a nonlinear manner. Thus, we formulate Hypothesis 
2.

Hypothesis 2: ERs play a nonlinear modulatory role 
in TI’s influence on LGTFP.

Research Methods, Variable 
Selection, and Data Sources

Research Methods

Construction of Econometric Model

The levels of TI, ER, and LGTFP within a region 
are influenced not only by the region’s own resources, 
economic level, and other factors but also those of 
surrounding cities. Further, the relevant literature shows 

that TI’s influence on GTFP exhibits spatial spillovers 
[16, 44]. This study discusses the relations among these 
three factors through a spatial econometric perspective. 
In the spatial model setting, the omission of the spatial 
lag term of the dependent variable or independent 
variable will cause bias in the model setting, resulting 
in biased and inconsistent estimators [65]. The SDM 
considers the spatial lag terms of both independent 
and dependent variables, and there is no need to add a 
priori constraint to the spatial interaction of potential 
independent variables [66]. Therefore, we constructed 
SDM to study the relations among TI, ER and LGTFP. 
The test results of the model selection in 5.2 also shows 
that our choice is appropriate. Equation (1) represents 
the general form of SDM.

               (1)

Where y is the dependent variable, while X represents 
the independent one; ρ is the spatial autoregressive 
coefficient; β and θ denote parameters to be estimated 
for X and its spatial lag item; W signifies the spatial 
weight matrix; and u indicates spatial disturbance  
term.

In addition, since GTFP changes are dynamic and 
continuous, current GTFP is affected by previous 
levels, which is easy to produce path dependence 
[67]. Therefore, we introduce a lagged period for the 
LGTFP and construct dynamic SDM. The dynamic 
SDM contains both spatial and time lag terms of the 
explained variables, which can avoid path dependence 
and endogeneity problems [68]. The SDM shown in 
Equations (2-4) are constructed based on Equation (1) to 
explore the relations among TI, ER, and the LGTFP to 
empirically test the above research hypotheses.

(2)

(3)

(4)
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Model (2) tests the direct and indirect influences of 
TI on LGTFP. We include the interaction term of TI and 
ER in Model (3) and introduce the interaction item of TI 
and ER squared in Model (4) to examine the nonlinear 
moderating effect of ER.

Selection of Spatial Weight Matrix

Owing to the absence of a unified construction 
standard for the spatial weight matrix and in 
consideration of the actual situation of the logistics 
industry, this study constructed an adjacent spatial 
weight matrix according to the methods used by Hao 
et al. [69] and Wu and Wang [70]. The formula is as 
follows:

  (5)

Variable Selection and Data Sources

Dependent Variable and Data Sources

This study calculated the LGTFP using the EBM-
GML index. For the specific calculation formula, refer 
to Deng et al [27]. Table 1 summaries the selected input-
output indicators. Considering that the growth rate of the 
LGTFP is obtained by using the EBM-GML index, we 
utilized the cumulative multiplication method proposed 
by Chen et al. [71] and Shen et al. [72] to convert it 
into the actual value of the LGTFP for further analysis. 
Assuming that the LGTFP in the base year 2006 was 1, 
the resulting LGTFP after multiplication represents the 
years 2007-2020.

Input index selection
Capital and labor are fundamental components of 

production and economic activities in various industries 
[73], and energy consumption is a key input for the 
logistics industry. Therefore, for LGTFP computation, 
we selected capital stock, number of employees, and 
energy consumption as input indicators. Considering 
that China’s logistics industry lacks complete statistical 
data, so we draw on the work of Zheng et al. [74], Wang 
and Xin [75] and Li and Wang [2] used statistical data on 
the transportation, warehousing, and postal industries to 
represent the logistics industry.

As data on the logistics industry’s capital stock are 
unavailable directly, we referred Long et al. [76] and 
utilized the perpetual inventory method to evaluate it. 
The formula is,

              (6)

δt signifies depreciation rate in year t, which is 9.6% 
in this study, Iit and Pit are fixed asset investment and its 
price index of the logistics industry in year t of region i, 
respectively. Data are reduced to a constant price based 
on 2006. We use the method of Zhong and Wang [77] to 
estimate base capital stock.

China Statistical Yearbook (2007-2021) data on 
transportation, warehouse, and postal employees is 
used to as the number of logistics employees. Following  
Li and Wang [2] and Long et al. [76], we selected  
eight energy sources (raw coal, gasoline, kerosene, 
diesel, fuel oil, liquefied petroleum gas, natural gas, 
electricity) that are more expended in logistics industry 
as energy inputs. Data of these sources were converted 
into standard coal using their energy conversion 
coefficients. 

Selection of Output Indicators

As a production service industry, logistics industry’s 
expected output should be the total effect it has on 
service objects. However, the total effect cannot be 
measured scientifically. Therefore, numerous studies 
have adopted logistics industry’s added value as a value 
form to assess its expected output [78, 79]. We draw on 
these studies and use the logistics industry’s added value 
as the expected output indicator. To adjust the data to a 
constant 2006 price, we employed the price index of the 
tertiary industry’s added value.

The logistics industry’s main form of pollution is 
CO2 emissions. Therefore, we considered CO2 emissions 
as the undesired output. Combined with data availability 
of the logistics industry, we calculated its CO2 emissions 
using the “top-down” method provided by IPCC [80]. 
The formula is as follows:

(7)

Indicator type Primary indicators Secondary indicators Unit

Input indicators

Capital input Capital stock of the logistics industry 100 million yuan

Labour input Number of employees at the end of the year 1 million people

Energy input Energy consumption 10,000 t standard coal

Output indicators
Economic output Added value of the logistics industry 100 million yuan

Undesirable output CO2 emissions 10 thousand tons

Table 1. Input–output indicators of LGTFP.
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Fig. 1. The influence mechanism of TI and ER on LGTFP.

Fig. 2. Spatial distribution of LGTFP in 2007, 2011, 2015, and 2020.
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Ei signifies the consumption of i − th energy; NVi, 
EFi, and OFi indicate the average low calorific value, 
carbon content per unit calorific value and carbon 
oxidation factor of i − th energy, respectively.

Based on the EBM-GML index, we calculated the 
LGTFP of 30 provinces in China during 2006-2020. 
We selected the productivity values   of 2007, 2011, 2015, 
and 2020 and used ArcGIS10.2 to draw the spatial 
distribution evolution map of LGTFP. As demonstrated 
in Fig. 2, the spatial distribution of LGTFP in China 
gradually develops spatial clustering features. High 
LGTFP areas gradually became concentrated along 
the eastern and south-eastern coastal regions, while 
low LGTFP areas were primarily concentrated in the 
western region.

Explanatory Variables and Data Sources

Core explanatory variable: TI. Griliches [81] showed 
that patents are closely associated with innovation and 
that their authorization standards are relatively stable. 
Scholars often use patent data to measure innovation 
levels. Following Dang and Motohashi [82] and Hao et 
al. [69], we considered the patent invention authorization 
quantity per 10,000 people in the logistics industry as an 
indicator of TI. Data on invention patent authorization 
were collected from the logistics industry patent 
information service platform of the China Intellectual 
Property Office and include six categories: loading 
and unloading, logistics transportation, inventory 
technology, distribution processing, sorting, packaging 
and distribution systems, and logistics information 
technology.

Moderator variable: ER. Since there are no direct 
data on the level of ER, previous studies mainly 
measured the level of ER through data, such as pollution 
control investment as a percent of GDP, the sum of the 
three waste discharges, and the number of ERs issued by 
the government. Drawing on Li et al. [83] and Liu and 
He [84], we assessed ER by the completed investment 
amount of industrial pollution control per thousand yuan 
in the secondary industry’s value-added.

Control variable. In addition to ER and TI, LGTFP 
is affected by various other factors, for instance 
economic development level and energy structure. To 
reduce the result bias caused by omitting other factors, 
borrowing from Yang et al. [6] and Long et al. [76], 
we chose five indexes-economic development (ED) 
level, industrial structure (IS), energy structure (ES), 
opening-up (OP) level, and labor productivity (LP)-
as control variables. Each province’s per-capita GDP 
indicated its level of economic development while the 
percentage of the tertiary sector’s added value of GDP 
signified its industrial structure. The level of opening-
up was evaluated as foreign direct investment’s share 
of GDP, and energy structure was denoted as the share 
of electrical expenditure in total energy consumption. 
In addition, labor productivity of the logistics industry 
was measured by the ratio of its added value to the total 
number of employees.

All the data presented above were collected from 
the China Statistical Yearbook (2007-2021) and the 
China Energy Statistical Yearbook (2007-2021). Table 2 
provides a descriptive statistical analysis of all variables 
and data.

Empirical analysis

Spatial Correlation Test

Examining the spatial correlation of the data is 
essential before constructing a spatial econometric 
model. Global and local spatial autocorrelation measures 
are often adopted for this purpose. We selected global 
Moran index to examine the spatial correlation of 
LGTFP in China during 2007-2020 using the adjacency 
matrix. Table 3 summarizes the measurement results, 
while the Moran scatter diagram is illustrated in Fig. 3.

Selection of Spatial Econometric Models

The spatial autocorrelation test demonstrated that 
LGTFP has a significantly positive spatial correlation. 
Next, we selected the model followed the analysis 
process recommended by Elhorst [85]. First, since the 
level of TI, ER and logistics industry in each province 

Variable  Obs Mean Std. Dev. Min Max

LGTFP 420 1.011 0.319 0.412 2.673

TI 420 0.167 0.346 0.001 3.555

ER 420 2.813 2.426 0.045 20.352

lnED 420 10.414 0.571 8.786 11.81

IS 420 45.024 9.897 28.6 83.9

OP 420 0.023 0.02 0.000 0.121

ES 420 4.784 2.896 0.768 20.553

LP 420 45.084 20.706 14.756 123.942

Table 2. Descriptive statistical analysis of the data.
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is different, we adopted the fixed effect model for spatial 
regression analysis. Our choice was also verified by the 
Hausman test results. Second, we performed Lagrange 
Multiplier (LM) tests, including ordinary and robust 
LM tests, to confirm whether there was a spatial lag and 
error term. The results of both tests were significant, so 
we could not determine which of the two models was 
more suitable. We therefore selected the SDM with the 
dual effects of spatial lag and error. Third, both Wald 
and likelihood ratio (LR) were significant, so SDM 
would not degenerate into spatial lagged and spatial 
error model. Based on these outcomes listed in Table 4, 
we determined that the SDM under fixed effects was the 
optimal choice.

Regression Results Analysis

The results obtained from the above variables 
and models are summarized in Table 5. The findings 
demonstrate that the spatial autoregressive coefficients 
of LGTFP in Models (2)-(4) were 0.1769, 0.3426 and 
0.4612, respectively (all ps<0.01). This suggests that 
the promotion of local LGTFP can improve LGTFP 
in neighboring regions. The time-lag coefficients of 
LGTFP in the three models were 1.3745, 1.7031, and 
1.7067, respectively (all ps<0.01), indicating that the 
positive influence of the previous period LGTFP on 
the current is significant. In Model (2), the regression 
coefficient and spatial lag coefficient of TI are 0.2116 and 
-0.1836, respectively (both ps<0.01). This demonstrates 
that TI promotes the increase of the local area’s LGTFP 

Fig. 3. Moran scatter plot of the LGTFP.

Table 3. Global Moran index of LGTFP.

Years 2007 2008 2009 2010 2011 2012 2013

Moran’s I 0.167** 0.215** 0.223** 0.241** 0.210** 0.183** 0.207**

Z 1.679 2.016 2.090 2.257 2.00 1.793 2.020

Years 2014 2015 2016 2017 2018 2019 2020

Moran’s I 0.233** 0.238*** 0.242*** 0.252*** 0.224** 0.183** 0.164**

Z 2.255 2.329 2.359 2.451 2.243 1.908 1.765

Note: * p<0.1, ** p<0.05, *** p<0.01.
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Tests Statistics P-value

LM tests

LM_err 8.920 0.003

Robust LM_err 6.241 0.012

LR_lag 15.518 0.000

Robust_LM_lag 12.839 0.000

LR tests
LR_err 58.08 0.000

LR_lag 56.63 0.000

Wald tests
Wald_err 58.65 0.000

Wald_lag 60.49 0.000

Hausman test 36.593 0.000

Model (2) Model (3) Model (4)

L.LGTFP 1.3745*** 1.7031*** 1.7067***

(0.0162) (0.0165) (0.0166)

TI 0.2116*** 0.3272*** 0.3248***

(0.0155) (0.0162) (0.0164)

ER -0.0071*** -0.0062*** -0.0114***

(0.0013) (0.0013) (0.0015)

TI*ER -0.0747*** -0.1171***

(0.0046) (0.0081)

TI*ER2 0.0122***

(0.0017)

lnED 0.1025* 0.1874*** 0.1974***

(0.0543) (0.0551) (0.0550)

IS 0.0013 -0.0007 -0.0007

(0.0009) (0.0009) (0.0009)

OP 4.7532*** 6.4993*** 6.2901***

(0.1985) (0.2103) (0.2138)

ES -0.0026 -0.0009 -0.0009

(0.0018) (0.0018) (0.0018)

LP 0.0015*** 0.0034*** 0.0040***

(0.0004) (0.0004) (0.0004)

W*TI -0.1836*** -0.1020*** -0.0972***

(0.0273) (0.0278) (0.0279)

W*ER 0.0065*** 0.0184*** 0.0124***

(0.0031) (0.0032) (0.0035)

W*TI*ER -0.1785*** -0.2618***

(0.0098) (0.0194)

W*TI*ER2 0.0278***

Table 4. LM, Hausman, Wald, and LR tests.

Table 5. SDM regression results.
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but inhibits the neighboring areas’ LGTFP increase. 
In Model (4), the interaction coefficient of TI and 
ER is significantly negative, whereas the interaction 
coefficient of TI with ER squared is significantly 
positive. Therefore, ER has a “U-shaped” moderating 
effect in the impact mechanism of TI on the LGTFP, and 
the regulatory effect diagram is shown in Fig. 4.

Given the coefficients of exogenous variables and 
their spatial lag items in the SDM are not the real 
influences on the dependent variable; therefore, the 
direct and indirect effects must be calculated. Hence, 
effect decomposition was performed for Models (2) 
and (4) to calculate the direct and indirect effects. The 
outcomes of the effect decomposition are displayed in 
Tables 6 and 7.

According to Table 6, the effect decomposition of 
Model (2) demonstrates that the direct and indirect effect 
coefficients of TI on LGTFP in the short term are 0.2049 
and -0.1680, respectively (both ps<0.01). This means 
that, in the short term, TI can boost the enhancement 
of local LGTFP but will have negative spatial spillovers 
on adjacent regions. This result confirms Hypothesis 1 
and also corroborates the conclusions of Wang et al. [44] 
and Liang et al. [8]. There are three possible reasons for 
this finding. First, in the short term, TI can enhance the 
energy efficiencies in freight transportation and other 
links, reduce energy consumption and CO2 emission, 
and thus improve the LGTFP [8]. Second, TI promotes 
the demand for regional logistics and freight markets, 
improves the logistics industry’s distribution capacity 
and transportation benefits, and improves LGTFP [86]. 
Third, in the short term, the improvement in TI in 

local regions will draw in manpower, capital, and other 
related resources from neighboring areas, resulting in 
a “siphon effect” [62]. This will give rise to a loss of 
resources, capital and technology in neighboring areas, 
thereby reducing the LGTFP.

The effect coefficient of TI on local LGTFP is 
-0.6434 in the long-term (p<0.01). This result may 
appear to be contrary to our expectations, but we 
cannot simply conclude that TI in the logistics industry 
inhibits LGTFP. The energy-rebound effect could 
be a possible explanation. In the long run, TI will 
reduce energy consumption per unit of product while 
enhancing energy utilization efficiency and further 
increase the logistics industry’s energy consumption 
through mechanisms like substitution, income, and 
output effects [87]. This rebound phenomenon can give 
rise to a marginal increase in energy consumption and 
pollutant discharge, thereby reducing LGTFP. Vivanco 
et al. [88] also discovered that, owing to the rebound 
effect, TI can indirectly increase the environmental 
pollution of the transportation sector. This also 
corroborates the conclusions of Liu et al. [89], Liang et 
al. [8], and Liu et al. [90] – that TI in the transportation 
and logistics industries has a rebound effect on energy 
consumption and air pollution. TI has a significantly 
positive long-term indirect influence, indicating  
a significantly positive impact on LGTFP in adjacent 
regions. The possible reasons are twofold. First, in the 
long run, when TI develops to a certain level, it could 
produce agglomeration and a diffusion effect, drives the 
improvement of LGTFP in neighboring areas. Second, 
technical exchanges and cooperation with neighboring 

Table 5. Continued.

(0.0049)

W*lnED -0.9071*** -1.5654*** -1.7246***

(0.0960) (0.0975) (0.0998)

W*IS 0.0030* -0.0012 -0.0032*

(0.0018) (0.0018) (0.0018)

W*OP 20.6917*** 22.9075*** 21.3580***

(0.0511) (0.5500) (0.5564)

W*ES -0.0156*** -0.0214*** -0.0236***

(0.0034) (0.0034) (0.0035)

W*LP` -0.0043*** -0.0080*** -0.0068***

(0.0007) (0.0007) (0.0007)

Spatial Rho 0.1769*** 0.3426*** 0.4612***

(0.0343) (0.0346) (0.0345)

Time-fixed effect Yes Yes Yes

Individual-fixed effect Yes Yes Yes

Observations 390 390 390

Note: * p<0.1, ** p<0.05, *** p<0.01.
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areas will be strengthened in long-term development, 
which will enhance the spillover and transformation of 
TI achievements and neighboring areas’ LGTFP.

The Model (4) effect decomposition results in 
Table 7 reveals that, in the short term, the interaction 
coefficients between TI and ER and TI and ER squared 
are significantly negative and positive, respectively. 
These outcomes indicate that ER has a “U-shaped” 
moderating effect in the impact mechanism of TI on the 
LGTFP in the short term, which confirms Hypothesis 
2. Weak ERs display negative regulatory roles in the 
impact mechanism of TI on LGTFP, and consequently 
weakens the positive effect of TI on the LGTFP. 
Strengthened ERs have positive moderating effects in 
the impact mechanism of TI on the LGTFP. That is, 
strong ERs strengthen the positive effect of TI on the 
LGTFP. This could be because in the short term, when 
the intensity of ER is weak, enterprises tend to occupy 
TI investment funds for pollution control. The reduction 
in TI funds decreases the TI capabilities of enterprises 
and their innovation output [91]. Therefore, the favorable 
influence of TI on LGTFP is suppressed. However,  
when the intensity of ERs is high, taking up investment 
in TI to passively control pollution does not achieve 
pollution control. Enterprises will increase their 
investments in pollution control and production 
technology innovation to enhance their level of TI and 
improve the level of emissions reduction and pollution 
control in production process. Therefore, in the short 
term, high-level ER facilitates the positive effect of TI 
on LGTFP.

Further, the indirect effect coefficient for the 
interaction of TI with ER square is also positive and 
significant (p<0.01) in the short term. This indicates that 
ERs have “U-shaped” modulation on the effect of TI on 
LGTFP in neighboring areas. Thus, ER has the same 
moderating effect in the effect mechanism of TI on both 
local and adjacent areas’ LGTFP.

In the long run, the interaction coefficients between 
TI and ER, and TI and ER squared are 0.2851 and 
-0.0299, respectively (both ps<0.01). This outcome 
suggests that ER plays an “inverted U-shaped” 
moderating role on the mechanism of TI’s influence on 
LGTFP. This result also confirms the Hypothesis 2 that 
ER plays a nonlinear regulatory role in the effect of TI 
on LGTFP. Weak ERs have positive modulatory roles in 
the influence mechanism of TI on LGTFP, meaning that 
the negative influence of TI on LGTFP can be alleviated 
when ER levels are low. However, when ER reaches  
a certain level, it negatively regulates the relations 
of TI with LGTFP; that is, the negative effect of TI 
on LGTFP can be exacerbated by high levels of ER.  
This could be because, in the long run, weak ER intensity 
can also promote TI to a certain extent and improve 
GTFP through innovation compensation and enhanced 
energy utilization efficiency [49]. However, weak ER 
intensity is not sufficient to form a strong incentive effect 
on TI, and the energy-rebound effect owing to TI will 
be low. Therefore, long-term low levels of ERs weaken  
the negative effect of TI on GTFP. However, long-
term high ER intensity compels the logistics industry 
to perform TI, improve its development level, promote 
freight demand and energy consumption, and increase 
the energy-rebound effect brought by TI. Simultaneously, 
strict ERs could exhaust excessive financial resources in 
the long-term, and weaken the overall competitiveness 
of the industry [92], which is detrimental to the 
improvement of LGTFP. Therefore, higher ER intensity 
intensifies the negative effects of TI on the LGTFP in 
the long term.

In the long run, the indirect influence coefficient of 
the interaction of TI with ER squared is also significantly 
negative. This shows that ER has the same modulatory 
effects in the impact mechanism of TI on the LGTFP in 
local and adjacent districts.

Fig.4. The moderating effect of ER in the influence of TI on LGTFP.
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Variables
Short-term effects Long-term effects

SR_Direct SR_Indirect SR_Total LR_Direct LR_Indirect LR_Total

TI 0.3497*** -0.1952*** 0.1545*** -0.4993*** -0.4380*** -0.9373***

(0.0176) (0.0256) (0.0204) (0.0268) (0.1551) (0.1714)

ER -0.0131*** 0.0140*** 0.0009 0.0140*** -0.0203 -0.0063

(0.0016) (0.0029) (0.0027) (0.0028) (0.0151) (0.0171)

TI*ER -0.0958*** -0.1638*** -0.2595*** 0.2851*** 1.2929*** 1.5780***

(0.0087) (0.0161) (0.0166) (0.0246) (0.2281) (0.2501)

TI*ER2 0.0099*** 0.0176*** 0.0275*** -0.0299*** -0.1371*** -0.1669***

(0.0018) (0.0041) (0.0039) (0.0039) (0.0308) (0.0341)

lnED 0.3863*** -1.4312*** -1.0449*** 0.2800** 6.0912*** 6.3712***

(0.0635) (0.0827) (0.0660) (0.1222) (1.0252) (1.1227)

IS -0.0004 -0.0023* -0.0027* 0.0022 0.0142* 0.0164*

(0.0010) (0.0014) (0.0014) (0.0017) (0.0077) (0.0089)

OP 4.3974*** 14.5472*** 18.9446*** -17.8834*** -97.2545*** -115.1378***

(0.2494) (0.5797) (0.7019) (1.4562) (15.3089) (16.7328)

ES 0.0016 -0.0183*** -0.0167*** 0.0095*** 0.0912*** 0.1007***

(0.0018) (0.0028) (0.0030) (0.0033) (0.0183) (0.0207)

LP 0.0049*** -0.0068*** -0.0019*** -0.0042*** 0.0155*** 0.0113***

(0.0004) (0.0006) (0.0006) (0.0006) (0.0029) (0.0033) 

Note: * p<0.1, ** p<0.05, *** p<0.01.

Table 7. Model (4) Effect decomposition results.

Table 6. Model (2) Effect decomposition results.

Variables
Short-term effects Long-term effects

SR_Direct SR_Indirect SR_Total LR_Direct LR_Indirect LR_Total

TI 0.2049*** -0.1680*** 0.0369 -0.6434*** 0.5886*** -0.0548

(0.0147) (0.0311) (0.0320) (0.0504) (0.0664) (0.0469)

ER -0.0073*** -0.0091** -0.0163*** 0.1767*** 0.0067 0.0243***

(0.0013) (0.0038) (0.0042) (0.0036) (0.0065) (0.0059)

lnED 0.0635 -1.0395*** -0.9760*** -0.5402*** 2.0050*** 1.4648***

(0.0521) (0.1080) (0.1149) (0.1654) (0.2275) (0.2082)

IS 0.0014 0.0040* 0.0054** -0.0027 -0.0054 -0.0081**

(0.0010) (0.0022) (0.0026) (0.0025) (0.0040) (0.0037)

OP 5.7161*** 25.2381*** 30.9543*** -7.5832*** -38.7353*** -46.3184***

(0.3242) (1.4406) (1.7168) (1.0260) (1.9338) (2.7436)

ES -0.0033* -0.0187*** -0.0220*** 0.0028 0.0299*** 0.0327***

(0.0019) (0.0043) (0.0055) (0.0050) (0.0068) (0.0075)

LP 0.0013*** -0.0048*** -0.0035*** -0.0055*** 0.0107*** 0.0052***

(0.0004) (0.0008) (0.0009) (0.0010) (0.0016) (0.0012) 

Note: * p<0.1, ** p<0.05, *** p<0.01
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Additionally, the influences of economic level and 
energy structure on local and neighboring districts’ 
LGTFP are significantly positive in the long run, 
which suggests that a good economic environment 
and clean energy applications, such as electricity, have 
beneficial promoting impacts on LGTFP. However, 
the enhancement of the opening-up level hinders the 
enhancement of LGTFP in local and adjacent districts. 
This could be attributed to pollution transfer. Developed 
nations have transferred highly polluting enterprises to 
developing countries to avoid strict local ERs. Labor 
productivity also negatively impacts the LGTFP.

Robustness Test

The weight matrix is a core factor and crucial carrier 
of the spatial econometric model; thus, its selection 
significantly influences the test results. Therefore, we 
replaced the spatial weight matrix to reconstruct the 
model. Since the logistics industry depends primarily 
on the flow of resources and factors between areas to 
establish spatial interactions, its development is closely 
related to economic development. Therefore, we used 
the gravity model matrix constructed by inter-regional 
distance and per-capita GDP to test robustness. Table 
A1 in the appendix displays the robustness test findings 
of Model (4). Compared with the results based on 
adjacency weight matrix, the plus-minus signs and 
significance of the coefficients of the core explanatory 
variables and interaction items under the gravity model 
space weight matrix are approximately agree with those 
reported in Table 7. Most control variables also show the 
same plus-minus signs and significance as in Table 7. 
Therefore, our results are robust.

Research Conclusions and Policy Implications

The study first employed the EBM-GML index 
to evaluate changes in the LGTFP in 30 provinces 
in China during 2006-2020 and analyzed its spatial 
characteristics. Further, TI, ER, and the LGTFP were 
included in the unified research framework, and the 
dynamic SDM was used to demonstrate the relations 
among TI, ER, and the LGTFP. The major conclusions 
are summarized below.

China’s LGTFP exhibited spatial agglomeration 
features of “low in the west and high in the east” from 
2007 to 2020. LGTFP had a positive spatial spillover 
effect, and the current LGTFP level was affected 
by the previous period. The dynamic model’s effect 
decomposition revealed that, in the short term, an 
improvement in TI levels had positive influences on 
local LGTFP, but negative spillovers on neighboring 
districts. Conversely, in the long term, an improvement 
in TI levels had a negative influence on local LGTFP, 
while positively influence neighboring regions through 
spillovers. ER had a nonlinear moderating effect on the 
influence mechanism of TI on the LGTFP. Regarding 

short-term effects, ER had “U-shaped” regulatory and 
spatial spillovers on the mechanism of TI’s influence on 
LGTFP. Regarding long-term effects, ER had “inverted 
U-shaped” modulatory effects and spatial spillovers on 
the correlation between TI and LGTFP.

These findings not only provide a theoretical 
interpretation and practical references for TI and 
ER to promote the enhancement of LGTFP in China 
and accelerate its green transformation, but also 
have profound policy enlightenment for achieving its 
sustainable development on the path of HQD.

LGTFP in different regions exhibits spatial 
correlation and positive spatial spillovers. Therefore, 
areas with high LGTFP should fully exert their positive 
spatial diffusion effect, break down regional barriers, 
strengthen technical exchanges and talent flows with 
neighboring areas, and promote cross-regional green 
cooperation to realize the coordinated development of 
LGTFP among areas.

From a long-term perspective, TI could cause an 
energy-rebound effect; its impact on the LGTFP is 
therefore negative. However, the logistics industry’s 
TI remains a crucial factor for improving its energy 
efficiency, reducing energy intensity, and realizing 
green and sustainable development [93]. Thus, a 
rational view of the energy-rebound effect resulting 
from the improvement in TI is needful. Encouraging 
the introduction and development of eco-friendly 
technologies in the logistics industry’s various links 
is warranted, such as packaging, warehousing, and 
distribution, promoting more environmentally friendly 
warehousing and packaging technologies, higher-
performance transportation tools and equipment, and 
establishing an efficient and energy-saving freight 
transportation and distribution network system. 
Simultaneously, the logistics industry must reduce its 
dependency on highly polluting energy sources like 
coal and oil in various logistics links and encourage 
the adoption of clean energy sources alternatives, such 
as electricity and natural gas, to optimize its energy 
structure. Contrastingly, it is also warranted to adjust 
the cost of energy use through taxation and other price 
means, guide the substitution of energy factors with 
other elements, reduce excessive energy consumption, 
and reduce the energy-rebound effect owing to TI. 
Additionally, it is needful to bolster exchanges and 
cooperation between areas with high logistics TI and 
other regions, fully exerted the positive diffusion effect 
of high TI regions, and reduce the negative spillovers 
caused by the “siphon effect”.

ER has a nonlinear modulatory role in the effect 
mechanism of TI on LGTFP. Therefore, the government 
should always maintain a cautious attitude towards 
ER policies and consider their dual impact on logistics 
industry’s TI and the LGTFP, to avoid excessively fast 
and high ERs, which will have an adverse effect on its 
sustainable development. An ideal ER policy can both 
boost the logistics industry’s TI and impose certain 
constraints on the energy-rebound effect owing to TI to 
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improve LGTFP. Therefore, relevant departments should 
promote coordination between ER and TI policies to 
jointly control the two policies while also avoiding 
adverse effects on LGTFP caused by the transformation 
of TI to energy conservation and emissions reduction.

This study also has some limitations. First, owing to 
the delay of statistical data, our data is only collected 
until 2020. In future studies, the data of recent years can 
be continuously updated to observe its impact on the 
research results. Second, we used China’s 30 provinces 
as the spatial unit of research. In future studies, the 
scope of research can be refined to cities to explore the 
relations among TI, ER, and LGTFP in each city. Third, 
the dynamic SDM constructed in this study considers 
the time and spatial lag terms of the dependent variable, 
but only considers the spatial lag term of the independent 
variable, not its time lag. Since TI and ER could also 
have time lags, in future studies, a dynamic SDM with 
time-space double lags of dependent and independent 
variables can be constructed to conduct more in-depth 
research on the relations among TI, ER, and LGTFP. 
In addition, we only consider the situation in which 
the dependent variable is lagged by one period. Future 
studies should consider the time lag of the dependent 
variable for multiple periods.
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Appendix A

Short-term effects Long-term effects

SR_Direct SR_Indirect LR_Direct LR_Indirect

TI 0.3570*** -0.0786*** -0.7125*** -0.2686***

(0.0161) (0.0253) (0.0333) (0.0198)

ER -0.0121*** 0.0029*** 0.0230*** -0.0078

(0.0015) (0.0003) (0.0028) (0.0013)

TI*ER -0.1104*** -0.1619*** 0.1997*** 0.2342***

(0.0085) (0.0199) (0.0160) (0.0355)

TI*ER2 0.0089*** 0.0095* -0.0165*** -0.0292***

(0.0017) (0.0055) (0.0033) (0.0092)

lnED 0.0049 -1.2764*** 0.1800*** 2.1819***

(0.0533) (0.0981) (0.0251) (0.2282)

IS -0.0015 -0.0075*** 0.0021 0.0122***

(0.0010) (0.0019) (0.0018) (0.0033)

OP 6.2395*** 23.0103*** -9.7386*** -36.8773***

(0.3344) (1.2121) (0.9512) (2.3867)

ES 0.0003 -0.0073** 0.0013 0.0124**

(0.0018) (0.0034) (0.0034) (0.0056)

LP 0.0019*** -0.0005 -0.0038*** 0.0015*

(0.0004) (0.0008) (0.0007) (0.0014)

Table A1. Robustness test results.


