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Abstract

Nanotechnology offers exciting prospects against infectious agents, particularly multidrug 
resistance bacteria (MDR), which is the roaring concern of this era. Zinc oxide nanoparticles (ZnO-Nps) 
efficiently deliver therapeutic agents into living systems due to their biocompatibility and bioactivity, 
which make them highly effective against infectious pathogens. The present investigation was designed 
to investigate the impact of the ZnO-Nps in combination with the Piperacillin-Tazobactam (TZP) drug 
against MDR. TZP are beta-lactam antibiotics highly effective against Gram-positive and Gram-negative 
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Introduction

Nano-biotechnology is a relatively young field 
of medicine that employs nano-sized materials for 
targeted cell-related, or more specifically tissue-related, 
therapeutic treatments [1]. In comparison to other 
sectors, the importance of this technology in agricultural 
research is relatively new [2]. NPs have greater physical 
properties than bulk molecules depending on their 
size and shape [3]. Because of their small size and 
high surface-to-volume ratios, nanoparticles with sizes 
ranging from 1 to 100 nm offer unique and exciting 
features [4]. The production of nanomaterials using 
greener and more biologically friendly approaches using 
safe and low-cost reactants is of tremendous interest in 
terms of applicability and biocompatibility [5, 6].

Antibiotic resistance is a growing issue to 
every healthcare system and food department, and 
consequently affects life expectancy. Anti-microbial 
resistance (AMR) or multidrug-resistant (MDR) 
bacteria are common problems worldwide [7]. Microbial 
resistance against antibiotics arises due to a systemic 
failure in health care research, planning, and in public 
health education [8].

The growth of MDR variants of numerous bacterial 
diseases creates the threat of a post-antibiotic world, 
in which previously curable illnesses are lethal, and 
routine surgery becomes a complicated process [9, 10]. 
Antibiotics become less effective, and treatment choices 
are restricted when a bacterium previously susceptible 
to an antibiotic acquires resistance in host cells [11-14]. 
While some bacteria have had inherent resistance for 
millions of years, this acquired resistance phenotype 
results from the microbial competition in their 
biological niches [15]. Moreover, the current increase 
in resistance that is persistent is an inevitable danger to 
public hygiene as it was in the pre-antibiotic era [16]. 
The ESKAPE (Enterococcus faecium, Staphylococcus 
aureus, Klebsiella pneumonia, Acinetobacter 
baumannii, Pseudomonas aeruginosa, Enterobacter sp.) 
group are bacteria especially responsible for the current 
rise in hospital-acquired infections. The development 

of multiple drug resistance and negative side effects 
against infectious pathogens, especially E. coli and P. 
aeruginosa, are caused by antimicrobial drugs.

Long-term effective methods with fewer side effects 
will be needed using a combination methodology 
(such as marker technology, gene/protein sequencing, 
docking studies and specially nanotechnology), rather 
than a short-range approach and a focused conventional 
strategy/approach [17-19]. In this aspect, the developed 
“Nanotechnology-based” combination therapy decreases 
toxicity that is linked to a specific drug and suppresses 
multi-drug resistance because of different mechanisms 
of action [20, 21]. In comparison to other nanoparticles, 
inorganic, mesoporous Zinc Oxide nanoparticles (ZnO-
NPs) are proven to be extraordinary [22, 23]. They are 
the ideal therapeutic nano-carriers because of their 
excellent drug loading capacity, suitability for simple 
functionalization, controllable particle size and shape, 
and biocompatibility. For example, they can effectively 
inhibit the growth of both gram positive and gram 
negative bacteria, making them potent antibacterial 
agents. The great sensitivity of the lipid bilayer of 
bacteria to the reactive oxygen species produced by 
these nanoparticles accounts for the antibacterial 
activity of zinc oxide. Despite their widespread usage 
in biomedicine, current investigations indicate that the 
effects of zinc oxide nanoparticles on various organisms 
are still not well known [22-25].

It is critical to develop alternatives to antibiotics for 
infectious diseases that are both human and animal safe 
[26]. Fecal microbiota transplantation (FMT), the use 
of bacteriophage, antimicrobial peptides (AMPs), or 
bacteriocins, and the competitive exclusion of pathogens 
using genetically modified probiotics and post biotics 
are a few examples of unconventional techniques that 
are frequently used [27-31].

Clinical diagnosis and therapy have been 
transformed by nanomedicine, which enables treatments 
and medications to target sick tissue while avoiding 
healthy cells [32]. To enhance delivery effectiveness and 
spatiotemporal accuracy, researchers have improved 
particle size, shape, and mesostructured regions, as 

bacteria such as Pseudomonas aeruginosa, and are recommended for the empirical treatment of Febrile 
neutropenia (FN) associated with chemotherapy treatment. For this study, three different-sized ZnO-
Np combinations were used. The extended-spectrum beta-lactamase (ESBLs) producing Escheria 
coli and MDR P. aeruginosa strain sensitivity profiling towards different combinations of ZnO-Nps  
and Piperacillin-Tazobactam were measured. The synthesized Zno-Nps were designated as Zn-1, Zn-
2, and Zn-3 based on their sizes, and were made in different combinations with the commercially 
available drug TZP (ZnO-Nps+ Drug) against MDR E.coli and P. aeruginosa. There was no synergistic 
effect observed against growth inhibition of E.coli. The combined dose of Zn-1 and TZP showed better 
antibacterial efficacy even as compared to the pure drug against P. aeruginosa. The study revealed 
that the dosage and biological activity of drugs used to treat fatal human diseases like cancer can be 
decreased while their efficacy can be boosted by using ZnO nanoparticles as powerful drug delivery 
systems.

Keywords: Antibacterial Potential, MDR, Piperacillin-Tazobactam, ZnO-Nps, synergistic effect 
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well as conjugated specific ligands and/or “gatekeepers” 
to increase cell selectivity and on-demand release 
patterns. ZnO-NPs can address a number of drawbacks 
of conventional therapies, such as poor bioavailability, 
brief half-life, and unfavorable bio-distribution, when 
used as nano-carriers for therapeutics delivery. Due 
to their small size (100 nm) and high mono dispersed 
nature, they are essential in numerous applications 
involving the controlled release of drugs [33, 34].

NPs have superior resilience to degradations caused 
by heat, mechanical stress, pH, and hydrolysis as 
compared to conventional polymer-based drug carriers. 
Selective functionalization with different components is 
possible thanks to the interior and external surfaces of 
NPs. The majority of drug delivery materials are made 
up of connected porous structures, like the branching 
porous structure and porous shell found in dendrimers. 
Additionally, NPs with the same special porosity 
structure that is appropriate for drug delivery [28, 35].

The existing antibiotic therapy is ineffective due to 
its low solubility, stability, and side effects, prompting 
researchers to come up with new, creative ways to 
combat such resistant bacterial strains. As a result, 
there is a considerable need for new antibiotic delivery 
methods. Nanotechnology has gained a lot of attention 
because of its favorable physicochemical features, drug 
targeting effectiveness, improved absorption, and bio 
distribution capabilities [35, 36]. The purpose of the 
current investigation was to examine the antibacterial 
effectiveness of ZnO-Nps and any possible interactions 
with the powerful antibiotic (Piperacillin-Tazobactam) 
when used against MDR bacteria.

Materials and Methods

The MDR strains i.e. E. coli as well as P. aeruginosa 
were acquired from the Laboratory of Microbiology and 
public Health from COMSATS University Islamabad 
Pakistan. 

Sensitivity Profiling for Antibiotics

In accordance with the 2013 “CLSI” 
recommendations, the susceptibility patterns of 
antibiotics for the ESBL-producing P. aeruginosa and 
E. coli were assessed using the method of disc diffusion 
on Muller Hinton Agar (MHA) plates. On MHA plates, 
the isolates were grown using a sterile loop. These 
plates were inoculated with ESBL-producing E. coli and  
P. aeruginosa, and the surface of the plates was covered 
with antibiotic discs of varying concentrations. The plates 
were incubated at 37ºC for the entire night [37, 38].

ZnO Nanoparticles Synthesis

Using the standard Stober Method and synthetic 
materials, three alternative modifications were done 
to manufacture the ZnO nanoparticles. The ZnO-NPs 

were named as Zn-A (size 35+2), Zn-B (size 35+3) and 
Zn-C (size 35+2.5). Cetyl trimethyl ammonium bromide 
(CTAB 99%), Tetra ethyl ortho silicate (TEOS 98%), 
Hydrochloric acid solution (HCL 38%), Ammonium 
hydroxide solution (NH3 32%) and absolute Ethanol 
99%.

Zn-A Synthesis

The CTAB (about 0.3 gram) was diluted in 100 mL 
absolute ethanol and supplemented with about 8 mL 
TEOS solution. Afterwards 10µL of NH3 was also added 
to the solutions. The solution was maintained for 15 min 
while being stirred rapidly to ensure thorough mixing.

Zn-B synthesis

Ethanol was mixed with TEOS in an 8:100 ratio. 
The reaction was then carried out at 60ºC with constant 
stirring for two hours after a few NH3 drops were also 
added to the solution to keep the pH = 7.5. The solution 
was then centrifuged for 15 minutes at maximum speed 
before being washed three times with 1M 0.5 mL 
HCL and an absolute ethanol solution subsequently.  
After that, the solution was agitated for two hours  
at 60 degrees Celsius before being dried for 24 hours  
at 100 degrees Celsius in a drying oven.

Zn-C Synthesis

Ethanol (8:200 ratio) was mixed with TEOS. The pH 
was maintained by adding NH3, which was stirred for  
30 min at 60ºC before being dried in an oven for 
24 hours at 100ºC. All the samples were dried and 
meticulously gathered, kept, and characterized.

ZnO-NPs and Antibiotics Biological Activity

Several pathogen colonies, including E. coli and 
P. aeruginosa, were cultured in LB to examine the 
biological effects of ZnO-NPs/antibiotics and the 
combinations of both against pathogenic ESBL-
producing strains. To test the synergistic action in LB, 
beta lactam antibiotics Piperacillin-Tazobactam (TZP) 
and ZnO-NPs were combined [39-42].

Culture Preparation

The sodium chloride (NaCl) 3 cgm, yeast (1.5 cgm), 
and bactotryptone (3 cgm) (OXOID, UK). To maintain 
the pH at 7.5, sodium hydroxide (NaOH) was added to 
a mixture of all the ingredients in 200 mL of distilled 
water.

Growth Evaluation 

It was observed that the Luria Broth (LB) culture 
for the strains was resistant to the medication  
and nanoparticle combination. In order to treat 100 µL  
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of both the strain in a 5 mL Luria Broth (LB) culture, 
a serial dilution of a 20 mg per mL ZnO-NPs stock 
with 2 mg of medication per ml was used. To observe 
the growth kinetics of the ESBL strain, the synergism 
of beta lactam antibiotics with a mixture of ZnO-NPs 
was assessed. The test compound-infused Luria Broth 
(LB) media was used to cultivate the ESBL E. coli and 
P. aeruginosa cultures, which were then incubated 
at 37ºC. Using Nano drops, the O.Ds at 600 nm were 
captured for each sample of ZnO-NPs conjugated with 
the medication at intervals of 2 hours (Thermo 2000C). 
Readings were taken after 2, 4, 6, and 24 hours.

Results

Growth Assessment of Bacterial in LB Media

In order to ascertain the sensitivity of P. aeruginosa 
and E. coli, the synergism of the beta lactam antibiotics 
TZP with the combination of ZnO-NPs (Zn-A, Zn-B, 
and Zn-C) was studied in LB grown culture. In 5 mL 
L.B culture a total of 20 mgl-1 dilutions of ZnO-NPs 
stock solution and with 2 mgl-1 antibiotics was used for 
every 100 µL of strain. 

Synergistic Activity of Both the Drugs 

Zn-A was unable to demonstrate any potential ability 
to reduce the development of either strain of bacteria, 

but the combination of Ciprofloxacin and Zn-A therapy 
inhibits bacterial growth normally when compared to the 
control. While E. coli demonstrated only little growth 
inhibition, P. aeruginosa growth was almost completely 
inhibited by Zn-A and medication at 24 hours compared 
to pure ciprofloxacin. Fig. 1(a-d) which depict the growth 
patterns for the two strains, respectively.

Zn-B alone hardly affected the bacterial growth 
whereas in combination with the drug, growth of  
P. aeruginosa kept inhibiting the bacterial growth and 
showed absolute inhibition at 24 hours. In contrast,  
E. coli kept harboring the resistance against Zn-B and 
ciprofloxacin combination (Fig. 1a-d).

Similarly, Zn-C alone showed minimal activity. 
The P. aeruginosa growth was stunted when used with 
the combination therapy. Similarly, the Zn-C with the 
drug showed potency to inhibit the bacterial growth as 
compared to pure Ciprofloxacin. Whereas the growth 
of E. coli reduced almost two times with S3 and 
ciprofloxacin combined therapy in contrast with Zn-C 
alone (Fig. 2a-b).

Piperacillin-Tazobactam  
and ZnO-NPs Synergistic Activity

Zn-A In contrast to the control, TZP combined 
therapy hindered the typical growth pattern of  
E. coli. Zn-B and Zn-C did not demonstrate any 
possible efficacy to inhibit the growth of bacterial strain  
(Fig. 2a-d).

Fig. 1. a) MDR growth curve of the P. aeruginosa strain against combination of ciprofloxacin and Zn-A (NP) at 24 h, b) ESBL 
growth curve of the E. coli strain against various combination including ciprofloxacin and Zn-A (NPs) at 24 h, c) MDR growth curve  
of the P. aeruginosa strain against different combination i.e. ciprofloxacin and Zn-B over a period of 24 h, d) ESBL growth curves of the 
E. coli strain against different combination i.e. ciprofloxacin and Zn-B over a period of 24 h.
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The P. aeruginosa is one of the top five pathogens 
responsible for infections of the lungs, circulation, urinary 
tract, surgical sites, and soft tissues. Unacceptably high 
rates of morbidity and mortality have been linked to 
current treatments, principally antibiotics that eradicate or 
prevent the growth of this bacterium. An innovative and 
possibly successful strategy for treating severe infections 
is the creation of drugs that counteract virulence factors 
[43, 46].

Nanotechnology-based infectious disease therapeutics 
have  gained popularity recently as a result of the 
development in antibiotic resistance and the dearth of 
effective treatment options. ZnO-NPs’ diversity and 
adaptability can be useful for infectious diseases. The 
antibacterial properties of zinc oxide nanoparticles 
(ZnO-NPs) have attracted a lot of attention from scientists 
all over the world, especially since nanotechnology 
has been used to create particles with dimensions in 
the nanometer range. ZnO-NPs can deliver a variety 
of therapeutic and diagnostic chemicals to the body 
because of their adaptable pore characteristics [47, 48]. 
Furthermore, ZnO-NPs are superior to other members 
of its family in terms of antibacterial and antifungal 
capabilities because they have strong photochemical  
and catalytic activity. The ZnO has strong optical 
absorption in the UVA and UVB i.e. 315-400 nm and 
280-315 nm, respectively, which aids in the antibacterial 

The P. aeruginosa growth was also slowed down 
by medication combination therapy. When compared  
to the effectiveness of Zn-A, Zn-B, and Zn- C to suppress 
the growth of P. aeruginosa, (Fig 3(a-d), respectively)  
the TZP showed more potency to limit bacterial  
growth.

Discussion

The treatment of severe MDR is now seriously 
threatened by antibiotic resistance, and the uropathogens 
P. aeruginosa and E. coli that produce ESBLs have 
differing sensitivity profiles to commercially available 
medications [43]. Since there is a limited selection 
of antibiotics, the production of these uropathogens 
results in the inactivation of numerous medicines  
and presents a significant therapeutic challenge [44, 
45]. The P. aeruginosa infections are linked to greater 
rates of morbidity, mortality, and medical expenses. 
One of the major worries, especially in undeveloped 
and wealthy countries, is the transmission of these 
germs through human feces to streams and other natural 
sources. These strains are the most dangerous bacteria 
in caged birds, causing extra intestinal disorders such 
polyserositis, septicemia, and aerosacculitis in addition 
to human infections [46].

Fig. 2. a) MDR growth curve of the P. aeruginosa strain against combination of Zn-C and ciprofloxacin at 24 h, b) ESBL growth curves 
of the E. coli strain against different combination i.e. ciprofloxacin and Zn-C over a period of 24 h, c) ESBL growth curves of the E. coli 
strain against different combination i.e. Zn-A and TZP over a period of 24 h, d) ESBL growth curve of the E. coli strain with various 
combinations of TZP & Zn-B at 24 h.
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response and is utilized as a UV protector in cosmetics 
[48-50].

ZnNPs can address a number of inherent treatment 
drawbacks, such as low bioavailability, brief circulation 
time, and unfavorable bio-distribution, when used as 
nano-carriers for therapies administration. To strengthen 
cell selectivity and on-demand release patterns, specific 
ligands and/or “gatekeepers” have been conjugated to 
engineered NPs, which have been designed to increase 
delivery efficiency and spatiotemporal accuracy [20, 33-
34].

The present study also demonstrated the use of 
ZnO-NPs as a drug carrier to check the TZP and 
Ciprofloxacin with ZnO-NPs. The Zn-A, Zn-B and Zn-C 
were designed for protected delivery of TZP to the 
culture media. As a result of piperacillin/antibacterial 
tazobactam’s action, third generation cephalosporins 
may not always be necessary when treating difficult 
illnesses. In this work, we examined the interaction 
between two medications and two ZnNPs for two 
distinct strains. The discovery that Zn-A, Zn-B, Zn-C 
and ciprofloxacin alone, did not reduce the P. aeruginosa 
growth, but had bactericidal efficacy when combined at 
24 hours. However, no beneficial synergism between 
ZnNPs and antibiotics was found for absolute growth 
suppression of E. coli. Contrarily, Zn-A, Zn-B and 

Zn-C did not exhibit a stronger response to individual 
therapy of piperacillin and tazobactam, while showing  
significant results for the suppression of both strains 
when used in combination [50, 51].

Antibiotics have been discovered to have strong 
antibacterial properties when combined with 
photocatalyst ZnO-nanoparticles [51, 52]. Additionally, 
ZnO nanoparticles have lately been proposed as efficient 
photosensitizer carriers, and a lot of research has been 
done on their antibacterial activities [53-55], but their 
efficiency in terms of in-vitro cell line experiment has 
not been done [54, 56]. 

Previous research also found that increasing ZnO 
concentrations resulted in stronger bacterial (E. coli) 
inhibition. Similar results were found in the current 
research, but with the addition of antibiotics against 
AMR. Furthermore, the usage of Zn-based Nps is not 
restricted to people; it is also employed in a variety of 
industries, including the food business, where it is used 
to prevent bacterial growth due to contamination [57]. 
Studies have also reported the uses of antimicrobial 
NPs on different types of food, development of 
high barrier packaging materials, and use of NPs in 
nanosensors to track analytes related to food, such 
as microorganisms that cause foodborne illness [48]. 
Similar results were reported in previous studies 

Fig. 3. a) ESBL growth curve of the E. coli strain against different combination of TZP and Zn-C at 24 h, b) MDR growth curve of the 
P. aeruginosa strain with various combination of TZP and Zn-A over period of 24 h,  c) MDR growth curve of the P. aeruginosa strain 
with different combination of TZP and Zn-B at 24 h, d) MDR growth curve of the P. aeruginosa strain against various combination of 
TZP and Zn-C at 24 h.
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that ZnO nanoparticle inhibited bacterial growth and 
increased antibiotic susceptibility. They demonstrated 
that hydroxyl radicals produced by the coated surface 
played a significant part in the creation of an anti-
biofilm [58]. Other investigations also demonstrated 
that ZnO NPs can compromise the integrity of bacterial 
cell membranes, decrease the hydrophobicity of cell 
surfaces, and suppress the transcription of genes in 
bacteria that are resistant to oxidative stress [59]. The 
results used in present study were more significant 
to previous studies as the Nanoparticles were used in 
combination with antibiotics that increases its efficiency 
in terms of inhibition, and it was also revealed that for 
AMR combine therapy can be quite useful in treating 
infectious diseases.

To cope with this lethal issue, the use of advanced 
technology by combining various fields and 
methodologies is of great benefit, in terms of loss 
reduction [17, 19, 60-64]. In this regard, specifically, 
it has been demonstrated that a number of classes 
of antimicrobial nanoparticles (NPs) and nano sized 
carriers for antibiotic delivery are efficient methods for 
the treatment of infectious or fatal diseases, including 
those that are resistant to antibiotics, in vitro as well as in 
plant or animal models [54, 65]. Antimicrobial NPs and 
antibiotic delivery methods have been used primarily in 
the visible attempts to combat infectious diseases. These 
are modern methods for treating infectious diseases in 
light of the current circumstances [54-57].

Regardless of the fact that we are living in the age 
of modern and advance technologies that clearly define 
underlying mechanisms of diseases and also help us in 
molecularly designing and identification of diseases, 
especially for new drugs/treatment [17, 19, 60-64] 
against lethal/infectious diseases are still considered one 
of the world greatest health challenges [66, 67].

Conclusions 

Antimicrobial drugs are the cause of MDR and 
harmful side effects against infectious agents such as 
MRSA, E. coli, P. aeruginosa, and others. Furthermore, 
due to drug resistance, antibiotics must be delivered at 
high doses, which frequently results in severe toxicity, 
the need to develop new treatments, and expensive 
labor, material, and time expenses. Third-generation 
medicines for the treatment of infectious diseases 
have side effects such as gynecologic and vasomotor 
symptoms such as night sweats, hot flashes, vaginal 
dryness, insomnia, weight gain, and joint aches, but 
nanotechnology promises targeted application of 
anticancer drugs by minimizing the toxicity of healthy 
tissues. This research also indicated that nanoparticles 
such as ZnO-NPs can be tailored to fit the goals of 
current therapy and diagnosis. In addition, ZnO-NPs 
enable a targeted combination therapy technique for  
the safe transport and release of cytotoxic chemicals. 
This study suggests that by employing ZnO 

nanoparticles as potent drug vehicles in the treatment 
of life-threatening human diseases, dose and biological 
activity can be reduced while efficiency is increased.
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