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Abstract

The objective of this study was to compare the effects of grazing and non-grazing on the 
physicochemical properties, stoichiometry, ecto-enzyme activities, and microbial element limitations 
of soils at five depths in subtropical grassland, China, and to identify the influencing factors of enzyme 
activities and element limitations. Results showed that grazing, soil depth, and the interaction between 
grazing and depth remarkably changed soil available phosphorus (AP), available potassium (AK), 
available calcium (ACa) and available magnesium contents (AMg), bulk density (BD), water content 
(WC), and β-glucosidase activity (βGC) (p = 6.702e-9 - 0.04739). Compared with no grazing, grazing 
remarkably declined the 0-5 cm soil AP by 73.10% (p = 0.0250), the 0-5, 5-10, 10-20 cm soil WC by 
47.19% (p = 0.0042), 37.19% (p = 0.0090), and 30.80% (p = 0.0034), however, grazing remarkably 
increased the 0-5, 5-10, 10-20, 20-30 cm soil ACa by 188.76% (p = 7.9e-05), 93.24% (p = 0.0177) ,84.18% 
(p = 0.00067), and 38.77% (p = 0.01368), the 0-5, 5-10 cm soil AMg by 186.69% (p = 0.0016), 78.89%  
(p = 0.0109), the 0-5, 5-10, 10-20 cm soil pH by 0.51 (p = 0.0013), 0.37 (p = 0.0006), and  
0.27 (p = 0.0114) units, the 0-5, 5-10, 10-20 cm soil BD by 59.03% (p = 0.0077), 44.14% (p = 0.0147), 
and 35.55% (p = 0.0071), the 30-50 cm soil WC by 22.88% (p = 0.0241), the 0-5 cm soil βGC by 89.49% 
(p = 0.0011), the 0-5, 5-10 cm soil ACP by 7.87% (p = 0.0300), 6.57% (p = 0.0240), respectively. Grazing 
exacerbated the microbial C limitation of 0-5 and 10-20 cm soils by 20.51% (p = 0.0078) and 40.38%  
(p = 0.0209) and switched the soil microbiome from under N limitation to under P limitation at 5-10 cm 
(p = 0.0390). Specific soil available cations were identified as the important factors that significantly 
explained the variation of soil ecto-enzyme activities and soil microbial carbon and nutrient limitations. 
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 Introduction

Grasslands occupy about 40% of the planetary land 
cover [1]. Grazing changes over 60% of the earth’s 
agricultural land [2], making grazing the most important 
and widespread use of global grasslands [3, 4]. 
Knowledge about the influence of grazing on grassland 
soil is, thus, necessary to enhance the level of grassland 
management.

Soil extracellular enzymes, mainly secreted by 
microbes, play crucial roles in degrading organic matter 
and providing bioavailable nutrients for microbes 
[5]. For instance, β-glucosidase can hydrolyze simple 
sugars, providing labile C, N-acetylglucosaminidase 
can hydrolyze chitooligosaccharides, leucine-
aminopeptidase can degrade peptide bonds in proteins 
[6], providing bioavailable N. Acid phosphatase 
can hydrolyze phosphate, providing bioavailable P. 
As investments made by microorganisms to obtain 
elements, these enzyme activities are useful markers of 
soil microbial C, N, and P requirements [5]. The vector 
analysis based on these enzyme activities [7] has been 
widely used for the quantification of soil microbial 
elemental limitations [8]. For example, Wang et al. 
[9] used this method and suggested that soil microbial 
communities in grazed grassland were under soil N and 
P co-limitation. Ding et al. [10] showed that grazing 
exacerbated the microbial carbon limitation of surface 
soil. Soil extracellular enzyme activity and microbial 
resource limitation profoundly reflect soil quality [11] 
and impact the carbon use efficiency of soil microbiota 
[12]. Therefore, understanding soil enzyme activity 
and soil microbial element resource limitations can 
enhance our understanding of soil carbon and nutrition 
supply from the perspective of microbial communities 
[9]. Nevertheless, the impact of grazing on soil enzyme 
activity and soil microbial element resource limitations 
is still not fully understood [11], especially in the 
subtropical grasslands of southern China.

Increasing numbers of studies have been 
implemented to estimate the responses of soil physical 
environment, chemical properties, and stoichiometry in 
grassland to grazing [3, 13, 14]. Some studies found that, 
compared with no grazing, grazing could modify the 
soil’s physical environment by degrading soil structure, 
decreasing porosity [15], decreasing the air and water 
permeability of soil [16], mechanical resistance [17], 
increasing soil bulk density (BD) [16-18], and lowering 
pH [19-21], temperature [22], and reduced infiltration 
rate [18, 23], and soil moisture [18, 20, 24, 25]. For 
example, grazing increased BD, pH, and temperature 
by 32.90%, 1.02 units [13] and 9.85% [26], decreased 
soil WC by 20.75% [27]. The influence of grazing on 

soil physical environment also differs between soil 
depths and grazing intensities. For instance, grazing 
increased the BD (resistance to penetration) of 0-5, 5-10,  
and 10-15 cm soils by 15.55% (57.74%), 4.69% (23.63%), 
and 1.23% (2.97%) [23]. Moderate grazing increased 
the soil BD by 7.5%, whereas heavy grazing increased 
it by 11.3% [25]. However, it is still unknown whether 
the changes in soil physical environment induced by 
grazing affect the limitation of soil microbial elements 
and the activity of soil carbon, nitrogen, and phosphorus 
acquisition enzymes.

In addition to changing physical properties, 
compared with no grazing, grazing changed soil nutrient 
availability and cycling in several pathways, such as 
the deposition of urine and dung [15], altering plant 
community structure, and litter [28]. The negative effects 
of grazing on grassland biomass are commonly reported 
[29]. Grazing decreased the vegetation cover, biomass 
[30], and litter [31]. For instance, grazing decreased plant 
coverage, aboveground biomass, belowground biomass, 
and litter by 23.90% [32], 14%-58.34% [20, 29, 33], 
38%-45.11% [27, 29, 33, 34], 5.2%-23.13% [27, 29, 34], 
51.41%-95.19% [29, 32-34], whereas increased the ratio 
root to shoot by 17.03%-30.58% [20, 29]. These might 
lead to reductions in aboveground and belowground 
plant C input into soils [35]. Soil nutrient concentrations 
represent the amount of nutrient provision, whereas 
nutrient stoichiometric ratios reflect nutrient balance 
[5]. Grazing changes soil nutrient concentrations and 
stoichiometric ratios [12]. Some studies showed that 
grazing significantly declined soil organic carbon (OC), 
total nitrogen (TN) [33], total phosphorus (TP) [20], 
available phosphorus (AP) [13, 36], and the ratio of soil 
C and N [22, 27]. In contrast, grazing increased OC, 
TN, and TP [37], decreased soil available nitrogen (AN), 
increased the ratio of soil N and P [36], increased the 
ratio of soil C and P [38], and increased the ratio of soil 
C and N [38]. Grazing had no significant effects on soil 
AP [20]. However, no effects on total soil C, N [17, 21], 
organic C [39], and soil AN, the ratios of soil C and P 
and soil N and P [22], or the ratio of soil C and N [40] 
were observed. The promotion and inhibition influences 
of grazing on calcium, magnesium, and potassium were 
also reported [13, 21, 41]. This inconsistency implies 
the importance of further research. However, it is still 
unknown whether changes in soil chemical properties 
induced by grazing affect soil microbial element 
limitation and soil carbon, nitrogen, and phosphorus 
acquisition enzyme activity.

Altogether, compared with the studies on soil 
physicochemical properties, the studies on the effects of 
grazing on ecto-enzyme activities and their influencing 
factors remain relatively scarce. Shifting soil microbial 

These findings present basic information for the future improvement management of subtropical 
grassland and understanding the impact of grazing on microbial element limitation.
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communities between elemental limitations by grazing 
has received little attention to date [9]. Therefore, 
the aim of this work was to compare the effects of 
grazing and non-grazing on ecto-enzyme activities and 
microbial element limitations of soils and to identify 
the influencing factors of enzyme activities and element 
limitations at five depths of subtropical grassland in 
China.

Material and Methods

Region Description, Designing and Soil Sampling

The study region was in a 6,000 hectares natural 
grassland in Longli County (26°19′N-26°24′N, 
106°51′E-106°55′E) of Guizhou, SW China. This region 
experiences a subtropical monsoon humid climate, 
the annual temperature is ca.14.8°C, and the annual 
precipitation is about 1100 mm [10]. The regional soil 
type is Haplic alisols [5, 8]. The grazing and non-
grazing areas were distributed in this grassland.  
The grazing rate is one buffalo/hectare [10].

Between September and October 2017, three grazed 
and non-grazed sites (i.e., three 1 m × 1 m plots) were 
set in long-term (two decades) buffalo grazing and non-
grazing areas, respectively. Three soil cores were drilled 
using ring cutting at each site and blended to a composite 
sample as a replicate, resulting in 30 composite soil 
samples in all (five soil depth (0-5, 5-10, 10-20, 20-30, 
30-50 cm) × three sites (i.e., three replicates) × two 
treatments (grazing and non-grazing). The composite 
sample was then separated into sub-samples for the 
following determination.

Assay of Soi Physicochemical Attributes 
and Ecto-Enzyme Activities

Soi physicochemical attributes and ecto-enzyme 
activities were assessed based on the approach described 
in our earlier works [5, 10]. Briefly, soil bulk density 
(BD) was tested using a cutting ring. Water content 
(WC) was tested in an oven at 105ºC. pH was tested 
using a pH meter. Organic carbon content (OC) using an 
elemental analyzer, inorganic carbon content (IC) using 
the HCl method, total nitrogen content (TN) was tested 
by sulfuric acid digestion, nitrogen availability (AN) 
was analyzed by the Alkali diffusion approach, total 
phosphorus content (TP) was using sodium hydroxide 
digestion, phosphorus availability (AP) was determined 
by the NaHCO3-ultraviolet spectrometer subsystem, 
potassium availability (AK) was by a flare photometer, 
calcium availability (ACa) and magnesium availability 
(AMg) were by an atomic absorption spectrophotometer. 
Total carbon content is the sum of OC and IC. Four 
extracellular enzyme (β-glucosidase (βGC), Leucine 
aminopeptidase (LAP), N-acetyl glucose aminidase 
(NGA), and acid phosphatase (ACP)) activities were 

determined by Shanghai Enzyme-Linked Biotechnology 
Co. (CN) [42].

Statistical Analysis

The soil nutrient stoichiometry ratio was represented 
as a mass ratio. Vector analysis was applied to measure 
the limitations of soil microbial carbon, nitrogen, and 
phosphorus based on the four extracellular enzyme 
activities [5]. A two-way ANOVA was used to 
determine the influences of soil depth, group (grazing 
or non-grazing), and the interaction between soil depth 
and group on the soil physicochemical attributes, 
the ecto-enzyme activities, the stoichiometric ratio, 
and the length and angle of the vector using the R 
function “anova”. The Wilcoxon test or t test was used 
to determine the significance of differences in the soil 
physicochemical attributes, the ecto-enzyme activities, 
the stoichiometric ratio, and the length and angle  
of the vector, by using the R function “wilcox.test” 
or “t.test”. Random forest analysis with 20-fold cross 
validation was applied to identify the important 
factors that significantly explained the variation of soil 
ecto-enzyme activities and soil microbial elemental 
limitations using the R packages “randomForest” 
and “A3”. The R package “ggplot2” was applied 
for the visualization of results. These analyses and 
visualizations were performed in R v4.0.5 (https://
www.r-project.org/).

Results and Discussion

Grazing Changes the Nutrient Contents 
and Stoichiometric Ratios of Soil.

Two-way ANOVA showed that soil depth, group 
(grazing and non-grazing) and the interaction between 
soil depth and group significantly changed soil AP  
(p = 0.00641, 0.01317, 0.04739), AK (p = 9.367e-07, 
0.01463, 0.00911), ACa (p = 6.702e-09, 3.757e-11, 
3.537e-07), AMg (p = 1.592e-08, 1.019e-06, 9.355e-
07), BD (p = 0.0017002, 0.0001306, 0.0042800), WC  
(p = 0.0041843, 1.917e-05, 0.0001234), βGC (p = 8.652e-09, 
1.221e-05, 0.002097); the group and the interaction, but 
not soil depth, significantly changed pH (p = 1.327e-06, 
0.002312, 0.285276); soil depth rather than the group and 
the interaction significantly changed TC (p = 2.375e-05, 
0.81663, 0.08621), OC (p = 9.292e-05, 0.9670, 0.1229), 
TN (p = 5.269e-07, 0.4947, 0.7745), AN (p = 1.842e-06, 
0.0812, 0.5216), NAG (p = 0.01019, 0.13498, 0.52822), 
soil depth and the interaction rather than group 
significantly changed TP (p= 9.576e-07, 0.87907, 
0.00438), and ACP (p = 9.456e-06, 0.287338, 0.002756). 
However, soil depth, group, and the interaction did not 
significantly change IC (p = 0.4034, 0.1025, 0.6166) and 
LAP (p = 0.3916, 0.2046, 0.2180). 

Our work described that grazing has an influence 
on soil nutrient contents and stoichiometric ratio at five 
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depths. Compared with no grazing (Fig. 1), grazing 
significantly declined the 0-5 cm soil AP (p = 0.0250) 
by 73.10%, the 0-5 (p = 0.0042), 5-10 (p = 0.0090),  
10-20 (p = 0.0034) cm soil WC by 47.19%, 37.19% 
30.80%, however, grazing significantly increased the 0-5  
(p = 7.9e-05), 5-10 (p = 0.0177), 10-20 (p = 0.00067), 
20-30 (p = 0.01368) cm soil ACa by 188.76%, 93.24% 
,84.18%, and 38.77%, the 0-5 (p = 0.0016), 5-10  
(p = 0.0109) cm soil AMg by 186.69%, 78.89%, the 0-5 cm 
soil βGC by 89.49% (p = 0.0011), the 0-5 (p = 0.0300), 5-10  
(p = 0.0240) cm soil ACP by 7.87%, and 6.57%, 
respectively. However, consistent with some previous 
findings but likely going against our intuition, this 
study showed that grazing did not alter soil total 
carbon content [43], organic carbon content [24, 43, 
44], inorganic carbon content, or total nitrogen content 
[24, 44], available nitrogen content, total phosphorus 
content [24, 44, 45], available potassium, OC:TN 
[44, 46], OC:TP [44, 46], and TN:TP [44] at different 
depths, indicating neutral effects of grazing. However, 
other previous studies suggested significantly negative 
[13, 20, 46-50] and positive [51-53] effects of grazing.  
The reasons for this inconsistency could be explained by 
the variation in grazing intensity, climate background, 
and scales. The stoichiometric ratios of soils C, N, and 
P have long been considered a crucial factor shaping 
nutrient limitation [37]. Our results showed that soil depth 

and the interaction rather than group (grazing and non-
grazing) significantly changed OC:TN (p = 0.004944, 
0.669023, 0.017570), OC:TP (p = 0.0004231, 0.7369789, 
0.0733796), TN:TP (p = 0.01630, 0.46398, 0.09694,  
Fig. 2). Although grazing did not significantly change 
soil stoichiometry, the OC:TN is almost half the value of 
10.1 in global grassland soils, and the OC:TP is ca. two 
times the value of 24.9 in global grassland soil, TN:TP 
are ca. 16-times the value of 2.5 in global grassland soil 
[54]. This suggested that this ecoregion’s soil is under 
N saturation but P limitation for the vegetation [55]. 
The total and available nitrogen have not been changed 
by grazing (Fig. 2). Two potential reasons can explain 
this situation. On the one hand, N is saturated in this 
land; on the other hand, the majority of N is returned to 
the soil as excrements [51]. Furthermore, in this study, 
OC:TP is <200, implying soil P mineralization [37, 56]. 
Grazing lowered the OC:TP of 0-5 cm soil by 30.24% 
(Wilcox test p = 0.1, Fig. 2). This indicated that grazing 
enhanced the phosphorus mineralization of 0-5 cm 
soil. This situation may lead to a reduction in available 
phosphorus due to runoff, leaching, and plant intake. 
Grazing increased foliar P [50, 57], which indicated 
an increase in the intake of available phosphorus by 
plants. As is well known, in an ecosystem, the runoff 
and leaching induced-loss of available phosphorus may 
lead to a decrease in total phosphorus, but the total 

Fig. 1. Soil physicochemical attributes and ecto-enzyme activities (that changed significantly by grazing) under grazing and no grazing. 
AP, phosphorus availability; AK, potassium availability; ACa, calcium availability, and AMg, magnesium availability; BD, bulk density;  
WC, water content, βGC, β-glucosidase activity; ACP, acid phosphatase activity.
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phosphorus in our study did not decrease (the mean 
value increased, Fig. 2), it could be speculated that the 
available phosphorus was likely reduced by the plant’s 
intake. As expected, consequently, grazing decreased 
the available phosphorus content [13, 21, 50, 58] of 0-5 
cm soil. Interestingly, contrary to previous findings [58], 
grazing increased the available calcium and magnesium 
contents [57, 59]. Two potential mechanisms may 
simultaneously explain the increasing effect of grazing 
on available calcium and magnesium. (1) Excretion 
could elevate the soil’s calcium and magnesium 
availability [60]. (2) Grazing accelerates soil weathering 
[61], which enhances the availability of calcium and 
magnesium. Besides, the higher availability of calcium 
and magnesium in grazing soils was conducive to the 
improvement of soil pH (Fig. 1). Collectively, grazing 
mainly affected topsoil chemical properties [62], which 
confirms previous findings [53, 61].

Grazing Alters the Physical Environment of the Soil

Grazing not only affected soil nutrients and 
stoichiometry, but also altered the physical environment 
of the soil [46]. Especially, grazing significantly 
increased the 0-5 (p = 0.0013), 5-10 (p = 0.0006),  
10-20 (p = 0.0114) cm soil pH by 0.51, 0.37, 0.27 
units, the 0-5 (p = 0.0077), 5-10 (p = 0.0147), 10-20  

(p = 0.0071) cm soil BD by 59.03%, 44.14%, and 
35.55%, the 30-50 cm soil WC by 22.88% (p = 0.0241). 
This was consistent with the previous findings that 
grazing increased soil pH [20, 53, 59] and bulk density 
[13, 23, 43, 45] but decreased soil water content [20]. 
However, these effects are only in the topsoil [23]. The 
buffalo squeezed the topsoil pores that include those 
pores that originally store water [16] through treading, 
which caused soil compaction [63, 64], elevated the bulk 
density [65], and increased resistance to penetration [23]. 
Furthermore, buffalo grazing decreased the vegetation 
cover [66] through eating and treading, enhanced soil 
temperature (Liu et al., 2021a), and evaporation of 
topsoil water [65]. All eventually depleted topsoil water 
content (Fig. 1). Surprisingly, the water content of deep 
soil (30-50 cm) in grazing was remarkably higher than 
that in non-grazing. This may be caused by the typical 
dual structure of surface and deep soil in this area. 
However, further verification is still needed.

Grazing Changes Soil Microbial Element Limitation

The group (grazing and non-grazing) and soil depth 
rather than the interaction significantly changed the 
vector length (p = 0.000197, 8.885e-05, and 0.619125), 
the group marginally changed the vector angle (p = 
0.06451, 0.19606, 0.30958, Fig. 3). In details, the vector 

Fig. 2. Soil chemical properties and enzyme activities, and chemical stoichiometry (that changed by grazing insignificantly) under 
grazing and no grazing. TC, total carbon content; TN, total nitrogen content; TP, Total phosphorus content; OC, organic carbon content; 
IC, inorganic carbon content; AN, available nitrogen content; LAP, Leucine aminopeptidase activity; NGA, N-acetyl glucose aminidase 
activity.
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length declined with soil depth; however, the vector 
angle did not show a similar trend. Compared with the 
non-grazing, grazing remarkably increased the vector 
length of 0-5, 10-20 cm soils by 20.51% and 40.38%  
(p = 0.0078, 0.0209) also insignificantly reduced that 
of 5-10 cm soils by 16.68% (p = 0.0890). Grazing 
significantly increased the vector angle of 5-10 cm soils 
by 9.31% (p = 0.0390), whereas it did not significantly 

change that of 0-5 and 10-20 cm soils (p = 0.8880, 
0.0950). Besides, grazing did not significantly change 
the vector length and angle of 20-30 and 30-50 cm 
soils (p>0.05). In short, grazing exacerbated microbial 
C limitation (Fig. 3), as indicated by increases in 
investment in C-acquiring enzyme activity (Fig. 1). 
However, this exacerbating effect was almost limited to 
the topsoil. This discovery was different from the results 

Fig. 3. Vector analysis of various depths of soil enzymes under grazing and no grazing.

Fig. 4. Random Forest analysis with 20-fold cross-validation identified the most crucial factors that significantly explained the variation of 
soil carbon-, nitrogen-, and phosphorus-acquiring ecto-enzyme activities, soil microbial C, and nutrient limitations. Available phosphorus 
content (AP), available potassium content (AK), available calcium content (ACa), available magnesium content (AMg), bulk density 
(BD), and water content (WC).
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of chicken grazing, which showed that chicken grazing 
alleviated the soil microbial C limitation [67].

Two reasons can explain the phenomenon of grazing 
exacerbating soil microbial carbon limitation. On the 
one hand, grazing reduced plant biomass and coverage 
[61, 66] and reduced plant carbon [68]. On the other 
hand, both depletion in soil water content and increased 
bulk density (compaction) [61] negatively impact root 
biomass [43] and grass production and quality [69]. 
These usually reduce the availability of soil C [70] due 
to reduced C inputs from plants. A reduced organic input 
by removing aboveground biomass, decreased litter 
[31], and a lower root-derived organic input resulted in 
the soil microbial C limitation [71]. Besides, the vector 
angles of the 5-10 cm soils under no grazing were <45°, 
indicating soil microbial N limitation, whereas the vector 
angles of the 0-5 and 10-20 cm soils under grazing were 
>45°, indicating soil microbial P limitation [10] (Fig. 3). 
Therefore, grazing switched the soil microbiome from 
under N limitation to under P limitation. However, 
these effects only occurred at specific soil depths. 
Furthermore, the random forest analysis identified that 
available calcium (p = 0.0099), magnesium (p = 0.0099), 
and potassium (p = 0.0099) and pH (p = 0.0198) were 
the most crucial factors that significantly explained the 
variation of soil C-acquiring enzyme activity; available 
potassium (p = 0.0297) was the most crucial factor that 
significantly explained the variation of soil N-acquiring 
enzyme activities; available phosphorus (p = 0.0396) 
and calcium (p = 0.0198) and pH (p = 0.0396) were 
the most crucial factors that significantly explained the 
variation of soil P-acquiring enzyme activity. This result 
is different from the result from the study of grassland 
fencing, which suggested that extracellular enzyme 
activities were better explained by dissolved organic 
C and microbial biomass N than by plant or other soil 
properties [9].

The driving force of soil microbial element limitation 
has also been identified through the random forest 
analysis. Results showed that soil available calcium  
(p = 0.0099), magnesium (p = 0.0099), and potassium  
(p = 0.0099) were identified as the most crucial factors 
that significantly explained the variation of soil microbial 
C limitation. This was also different from a recent 
finding from sheep grazing studies, which suggested 
that soil organic carbon and total nitrogen significantly 
affect soil microbial carbon limitation [11]. Furthermore, 
soil available calcium (p = 0.0099) and magnesium  
(p = 0.0198) were identified as the most crucial factors 
that significantly explained the variation of soil microbial 
nutrient (nitrogen and phosphorus) limitation (Fig. 4). 
This is different from the findings from the livestock 
removal study, which suggest that pH significantly 
affects soil nitrogen and phosphorus limitation [72]. 
This indicated that we should give importance to soil 
cations in grassland management, and manipulation 
of soil cations may affect soil enzyme activity and 
soil microbial element limitation. To the best of our 
knowledge, this is the first study to investigate the effect 

of resource limitations on soil microorganisms under 
long-term buffalo grazing.

Conclusion

Grazing significantly changed the topsoil nutrient, 
stoichiometry physical environment, and C- and 
P-acquiring enzyme activities. Moreover, grazing 
exacerbated topsoil microbial C limitations and 
switched the soil microbiome from under N limitations 
to under P limitations. Specific soil-available cations 
were identified as the crucial factors that significantly 
explained the variation of soil ecto-enzyme activities 
and soil microbial element limitations. These results 
will be beneficial to the management of subtropical 
grassland and the understanding of how microbial 
element limitations alter in response to buffalo grazing.
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