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Abstract

The semi-arid agro-pastoral ecotone is a transitional zone from agriculture to animal husbandry, 
with a fragile ecological environment. Top soil moisture (TSM) is an important factor restricting regional 
development, and studying its spatiotemporal changes and driving factors are important for ecosystem 
restoration. In this study, the spatiotemporal changes of TSM from 2003 to 2022 were analyzed 
based on empirical orthogonal function (EOF) method, and the individual and interactive effects of  
the influencing factors on the temporal or spatial variation of TSM were explored based on geographical 
detector model (GDM) method. The results showed that climate factors were the main influencing 
factors on the global spatial variation of TSM, while topography and soil texture had an impact  
on the local spatial variation of TSM. The explanatory power of the interaction among influencing 
factors on TSM was greater than that of individual factors on TSM, especially the combination of climate 
factors, where the combination of temperature, Pet and SPEI was the strongest explanatory power under 
each vegetation type. Precipitation and NDVI were the main factors affecting the temporal variation  
of TSM. This study provides insights into the spatiotemporal variations in TSM and its influencing 
factors in the semi-arid agro-pastoral ecotone.

Keywords: semi-arid agro-pastoral ecotone, temporal variation, spatial pattern empirical orthogonal 
function (EOF), geographical detector model (GDM)
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Introduction

The semi-arid agro-pastoral ecotone represents  
a transitional zone from semi-arid areas to arid areas, and 
from agriculture to animal husbandry, and its ecological 
environment is complex and fragile [1-3]. As a result of 
climate change and human activities, the agro-pastoral 
ecotone is facing various environmental challenges, 
including droughts, soil erosion, water scarcity, and 
more [4, 5]. Among these issues, water resources have 
become a particularly prominent challenge, which 
is related to the variation of top soil moisture (TSM). 
TSM is a vital factor constraining regional development, 
with significant spatiotemporal variability [6]. Previous 
studies indicated that its spatiotemporal distribution was 
impacted by climate change, and human activities were 
also undeniably affecting the distribution and quality 
of water resources [7, 8]. This variability considerably 
affects water resource management and ecosystem 
restoration efforts [9]. Therefore, the study of spatial 
heterogeneity of TSM and its response to environmental 
factors holds significant implications for regional 
hydrological research.

TSM spatiotemporal variability exhibits different 
characteristics in different regions. In humid and 
semi-humid climate zones, the spatial pattern of TSM 
significantly correlated with topography under the wetter 
condition [10]. On a plateau hillside, TSM follows the 
same spatial pattern along the hill- slope [11]. In tropical 
regions, the seasonal fluctuations of precipitation and 
evaporation significantly influence the variability of 
TSM [12]. In semi-arid areas, the combination of scarce 
rainfall and high evaporation intensifies the variability 
of TSM [13, 14]. Climate factors have a significant 
impact on TSM in the semi-arid agro-pastoral ecotone. 
Moreover, in the agro-pastoral ecotone, land use also 
influenced the spatial variability of TSM [15, 16]. 
Regarding soil moisture in the semi-arid agro -pastoral 
transition zone, the research [17] primarily focused 
on the temporal variation analysis of soil moisture, 
and lacked a comprehensive analysis of its spatial 
distribution. However, the spatial analysis of TSM in the 
agro-pastoral ecotone should also be fully considered.

The spatial distribution of TSM is influenced by the 
combined influence of climate, soil, topography and 
vegetation type [18, 19]. Different climatic conditions 
directly determine the intensity of precipitation and 
evapotranspiration processes. In regions with limited 
vegetation and arid climates, the correlation between 
precipitation and TSM is stronger compared to areas 
with dense vegetation and higher humidity [20]. Drought 
was also the main influencing factor of spatial patterns 
in TSM. In some studies, drought indices were employed 
to predict changes in soil moisture, among which the 
standardized precipitation evapotranspiration index 
(SPEI) was found to be effective and readily accessible 
for forecasting soil moisture fluctuations [21-23]. Penna 
et al. [24] study on soil moisture spatial variations in 
sloped topography indicates that slope account for the 

majority of the soil moisture spatial variation. Different 
soil types directly impact the retention and permeability 
of soil moisture. In addition, vegetation dynamics 
also strongly influence the water-energy cycles in the 
region [25]. Although some studies had focused on the 
influencing factors of spatiotemporal changes in TSM 
[26, 27], the comprehensive effects of climate, soil, and 
terrain on different vegetation types of TSM in semi-
arid agro-pastoral ecotone with diverse vegetation had 
not been thoroughly studied.

The research about how various factors drive 
changes in soil moisture across different vegetation 
types and the impact of interactions between single 
and multiple factors on soil moisture could contribute 
to the optimization of water resource management and 
allocation, enhancing utilization efficiency, while also 
deepening our understanding of the intricate interactions 
among climate, vegetation, soil, terrain, and TSM. It 
provides scientific support for ecological restoration 
and protection, and offers direction for sustainable soil 
moisture management, agricultural production, and 
ecosystem preservation. Therefore, the spatiotemporal 
changes of TSM in the semi-arid agro-pastoral ecotone 
and the driving effects of climate, soil, and topography 
on TSM under different vegetation types need to be 
explored. Accordingly, the objectives of this study were 
to (1) decompose TSM and the influencing variables 
based on Empirical Orthogonal Function (EOF), and 
characterize the spatiotemporal patterns of TSM; (2) 
analyze the driving effects of environmental factors on 
the spatial variations of TSM under different vegetation 
types based on the geographical detector model (GDM); 
(3) explore the driving effects of climate factors and 
NDVI on the temporal variation of TSM.

Material and Methods 

Study Areas

The Sanggan River Basin (SRB) is located in 
northern China and is situated within the semi-arid 
agro-pastoral ecotone (Fig. 1a). The annual precipitation 
was approximately 405 mm and the average temperature 
was approximately 7ºC over the period 2003-2022. The 
precipitation in this area is concentrated in summer. The 
overall topography is low in the middle and high in the 
south and north. The main soil types are castanozem 
soil, castano-cinnamon soil, cinnamon soil and fluvo-
aquic soil. The vegetation types mainly included 
cultivated vegetation, broadleaf forest, grassland and 
shrubland (Fig. 1b). 

Data Source and Processing

In the study, the in-situ measurements of TSM 
sampling points were conducted on 11 September 
2022 (Fig. 1a). Random locations of 27 samples were 
selected throughout the entire research area. A 0-10 cm 
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soil sample at each location is taken from the sampling 
point using a soil auger, subsequently subjected  
to oven drying at a controlled temperature of 105ºC  
for a duration of 12 hours, until achieving a state of 
constant mass. These sampling points were used to 
verify the validity of downloaded TSM data. Based on 
the concept of the “Universal Triangle” for validation 
[28], if the relationship between TSM and MODIS  
LAI/LST consistent with the relationship between  
in-situ TSM measurements and MODIS LAI/LST,  
the TSM data is considered reliable (Fig. 2).

We have selected a total of 12 representative 
indicators for factors such as climate conditions, 

terrain, soil, and vegetation factor, including climate 
factors such as precipitation, temperature, potential 
evapotranspiration (PET), SPEI; terrain factors such 
as Digital Elevation Model (DEM) and slope; and soil 
factors such as soil organic carbon (SOC), soil bulk 
density (SBD), sand, silt, and clay content; and vegetation 
factor such as NDVI. TSM and the climate variables of 
temperature, PET, precipitation were derived from the 
National Qinghai-Tibetan Plateau Scientific Data Center 
with a resolution of 1km (https://data.tpdc.ac.cn/). Based 
on precipitation and PET, SPEI could be calculated. 
NDVI was derived from MODIS product MOD13A 
with 1 km resolution (https://www.earthdata.nasa.gov/). 

Fig. 1. Location of SRB and Land Cover Composition and Proportional Distribution of Vegetation Types in SRB.

Fig. 2 TSM data and their relationships with MODIS land surface data: a) relationship between in situ TSM and MODIS LAI  
b) relationship between in situ TSM and MODIS LST c) relationship between TSM and MODIS LAI d) relationship between TSM  
and MODIS LST.
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The topsoil texture of SOC, SBD, sand, silt, and clay 
fractions were derived from the Harmonized World Soil 
Database (https://www.fao.org/). The DEM with 30 m 
resolution were downloaded from the ASTER GDEM 
product, and slope was calculated from it (https://www.
earthdata.nasa.gov/). Vegetation types data were derived 
from the 1:1 million vegetation types in the Data Center 
for Resources and Environmental Sciences, the Chinese 
Academy of Sciences (RESDC) (http://www.resdc.cn).

Analysis Methods 

EOF Decomposition for TSM

TSM varied greatly at different times and 
locations, which were controlled by different types of 
environmental factors. Decomposing TSM into spatial 
and temporal components to decipher different types of 
effects are critical to understand its variations, which can 
be performed by EOF. EOF analysis is a widely applied 
statistical method for analyzing large multi-dimensional 
data sets [29]. It can capture the primary trends of 
variability within TSM data and analyze the spatial 
distribution and disparities of TSM. This allows us to 
discern the significance of each pattern in the dataset, 
thereby focusing on the most representative aspects 
within the data. With the aid of these patterns, we can 
identify spatial discrepancies in TSM and reveal the 
spatial distribution patterns underlying these variations. 
The EOF was expressed as:
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where the left side is the original time series of TSM, 
and EOF (x, y)i and PC(t)i represent the spatial pattern 
and temporal component of each mode, respectively. 

A detailed description of EOF can be found in previous 
studies [30-32].

Geographical Detector Model (GDM) 

Geographic detectors are a spatial statistical 
method that reveals driving factors by detecting the 
spatial stratification heterogeneity of elements [33]. 
They utilize q statistics as a quantitative tool to assess 
spatial heterogeneity, analyze influential factors, 
and explore the intricate interplay between various 
variables. Geographic detectors can determine whether 
there is an interaction between the two factors, as well 
as the strength, direction, linearity, or nonlinearity 
of the interaction, by calculating and comparing the q 
values of each single factor and the q values after the 
superposition of the two factors [34]. The principle of 
them can be expressed as:
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where q represents the influence of the factor on  
the spatial change of TSM. The higher value of q 
indicates a greater influence. N is the number of samples, 
and σh

2  and σ2 refer to the local variance of TSM within 
stratum h and the global variance of TSM, respectively. 
A detailed description of GDM can be found in previous 
studies [35, 36].

Results and Discussion

Spatiotemporal Variation of TSM  

The spatial pattern of TSM was presented in 
Fig. 3, which decreased gradually from southeast to 

Fig. 3. The distribution of averaged TSM over 2003-2022 in SRB.
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located in the southwest region, generally decreasing 
from the southwest to the surrounding areas, while 
the high center was located in the southeast. The third 
time coefficient (PC3) was bounded by 2010 and 2017, 
which were the time points from positive to negative 
and from negative to positive, respectively (Fig. 4f).  
This indicated that the southeastern region had 
experienced a “dry - wet - dry” change.

Effects of Environmental Factors on TSM

The Impact of Influencing Factors  
on the Spatial Variation of TSM

The correlation between TSM and climate factors 
and NDVI was presented in Fig. 5. In most regions, 
there existed a positive correlation between TSM and 
NDVI, with a more pronounced effect observed in the 
northern periphery and central valley areas. Broadleaf 
forest demonstrates the highest average correlation 
with TSM among different vegetation types, followed 
by cultivated vegetation, grassland and shrubland. 
Precipitation and SPEI exhibited a positive correlation 
with TSM. Increased precipitation contributes to TSM 
replenishment, and the lower the SPEI value, the drier 
the region, indicating that drought had an inhibitory 
effect on TSM. Among different vegetation types, 
grassland exhibited the highest average correlation 
between precipitation and TSM, followed by shrubland, 
broadleaf forest and cultivated vegetation. The highest 
average correlation between precipitation and grassland 
may be due to the strongest correlation between 
precipitation and TSM in areas with limited vegetation 
[20]. The average correlation between precipitation of 
cultivated vegetation in the north and east and TSM was 
low. This discrepancy may arise from human activities, 
particularly irrigation, which can influence the spatial 
distribution of soil moisture under farmland and 
subsequently the relationship between precipitation and 
soil moisture. Previous studies have demonstrated that 
human activities constitute the foundation for disparities 
in the trends of precipitation and soil moisture [37]. 
At the same time, human activities (i.e., land leveling) 
will reduce the impact of topography under cultivated 
vegetation. Shrubland demonstrate the highest average 
correlation between SPEI and TSM, followed by 
grassland, broadleaf forest, and cultivated vegetation. 
The spatial distribution of temperature and Pet 
correlations with TSM reveals similar patterns. Negative 
correlations were predominantly found in regions 
with higher elevation in the southern and western 
peripheries, while positive correlations were prominent 
in the northeastern areas. Among vegetation types, 
cultivated vegetation exhibited the highest average 
correlation between Pet and TSM, followed by broadleaf 
forest, grassland and shrubland. Broadleaf forest showed  
the highest average correlation between temperature  
and TSM, followed by cultivated vegetation, grassland, 
and shrubland.

northwest over 2003 to 2022. Overall, areas with higher 
elevation tend to exhibit higher averaged TSM values. 
The areas with high TSM were mainly distributed in 
higher altitudes on the southwestern and southeastern 
edges, with vegetation types mainly being grassland 
and shrubland. The areas with low TSM were mainly 
distributed in lower altitudes in the center of the 
watershed, with vegetation types mainly being cultivated 
vegetation. The TSM of different vegetation types  
had spatial differences, with shrubland (0.122 / m3·m-3) 
being the highest, followed by broadleaf forest  
(0.118 / m3·m-3), grassland (0.116 / m3·m-3), and cultivated 
vegetation (0.115 / m3·m-3).

Variation of Spatial and Temporal  
Decomposition

The spatial and temporal variations of TSM over the 
SRB were decomposed by the EOF. The first three EOFs 
of TSM were explained 54.64%, 15.80% and 7.56%, 
respectively, of the total variations of TSM (Fig. 4). 
They altogether explained 78.00% of the total variation, 
illustrating that the majority of spatial variability  
in TSM could be explained by the first three EOFs.

The first EOF mode (EOF1) explained 54.64% 
of the total variance, which represented the mainly 
spatiotemporal variability of TSM (Fig. 4a). The values 
in the first mode were all positive, indicating that the 
consistency of TSM variability (increase or decrease) 
in the study area. It is noted that significant variations 
of TSM were found in the northeast of the SRB and 
at the junction of Shanyin and Ying County in the 
central region. The first time coefficient (PC1) showed 
a large interannual variability (Fig. 4d). From 2003 to 
2022, PC1 showed an overall upward trend, indicating 
an increasing trend in the region, especially in the 
northeast and central regions. The time series from 2004 
to 2011 was negative, and the time coefficient after 2012 
was basically positive, reaching the maximum value in 
2021. They indicated an “increase - decrease - increase” 
pattern in TSM.

The second EOF mode (EOF2) explained about 
15.80% of the total variance (Fig. 4b). In general, 
there were similar variation trends in the southwest 
and in the northeast, with opposite trends in these  
two zones, indicating that the EOF2 of TSM had regional 
complexity. The center of the absolute high value  
was in the southwest, indicating that the TSM changes  
in the southwest were sensitive. The second time 
coefficient (PC2) showed a fluctuating upward trend, 
with a smaller range of changes than PC1 (Fig 4e). PC2 
was basically positive after 2013, with a significant 
increase from 2003 to 2004. This indicates that the 
changes in TSM in the southwest were relatively 
sensitive, with sharp TSM changes from 2003 to 2004. 
After 2008, the overall TSM in the region exhibited  
a downward trend.

The third EOF mode (EOF3) explained about 7.56% 
of the total variance (Fig. 4c). The positive center was 
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Calculate the q values of each factor using a factor 
detector to quantify its explanation for TSM spatial 
variation. The greater the q statistic is, the stronger 
the explanatory power of the influencing factor.  
Table 1 reveals that precipitation and SPEI were the 
primary influencing factors of EOF1, exhibiting q values 
of 0.30 and 0.36, respectively, with an explanatory 
power above 30%. SPEI, precipitation, DEM, Pet, 
and slope were the main influencing factors of EOF2. 
The explanatory power of SPEI and precipitation 
was above 50%, while the explanatory power of 
DEM, Pet, and Slope is above 20%. Pet, temperature, 
precipitation, DEM, and SPEI were the main influencing 
factors of EOF3. The explanatory power of Pet and 

temperature was above 30, while the explanatory power 
of precipitation, DEM, and SPEI was above 20%. 
Precipitation and SPEI were the main influencing factors 
on the spatial variation of TSM, which had a significant 
impact on all three modes after TSM decomposition. 

The influencing factors and explanatory power of 
TSM spatial variation vary among different vegetation 
types (Table 2). The spatial changes of TSM under 
different vegetation types were closely related to 
precipitation and SPEI. Precipitation was the most 
significant climate factor that influences variation of 
soil moisture [38]. Precipitation plays a more important 
role than temperature in explaining changes in soil 
moisture in arid areas [39]. For the EOF1 of TSM,  

Fig. 4 (a, b, c) the first three leading EOF modes and (d, e, f) their corresponding time coefficients of TSM 
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the explanatory power of DEM, slope, temperature, 
Pet and NDVI on the TSM of broadleaf forest was 
significantly higher than that of other vegetation types; 
Precipitation and SPEI had strong explanatory power 
for TSM of all vegetation types, but they had the 
highest explanatory power for broadleaf forest, both 
above 35%; SOC, clay, sand and silt content all had 
explanatory power above 10% for grassland, higher 
than other vegetation types. For the EOF2 of TSM, 
precipitation and SPEI have strong explanatory power 
for all vegetation types, with the highest explanatory 
power for grassland, both higher than 55%; The 
explanatory power of DEM, slope, temperature, and 
Pet on the TSM of broadleaf forest was significantly 
higher than that of other vegetation types; NDVI and 
SOC had the highest explanations for shrubland, with 
0.17 and 0.26, respectively; Clay, sand and silt content 
all had an explanatory power of over 10% for grassland, 
which was higher than other vegetation types. For 
the EOF3 of TSM, DEM, precipitation and Pet had 
strong explanatory power for the TSM of grassland, 
all above 30%; The explanatory power of temperature 
and Pet on shrubland was higher than that of other 
vegetation, with values of 0.39 and 0.41, respectively; 
The explanatory power of precipitation, temperature, 
Pet and SPEI on broadleaf forest was relatively high, 

all higher than 20%; The explanatory power of each 
factor on the TSM of cultivated vegetation was relatively 
low, with Pet having the highest explanatory power 
at 0.25. The effects of temperature and Pet on EOF2 
and EOF3 were more significant than EOF1, which 
may be related to the concentration of cities and high 
population density in the southwestern region, where 
temperature and evaporation had a greater impact 
on TSM. Human activities exacerbate the urban heat 
island effect, leading to higher temperatures, which 
in turn increase the rate of evaporation. In addition, 
the topography also had a significant impact. Previous 
studies have shown that TSM increases with decreasing 
altitude, and depression may also accumulate soil water, 
leading to the accumulation of soil water [37, 40]. 
There were also studies indicating that in controlling 
the spatial variability of regional TSM, soil properties 
may exceed meteorological forcing [41], and clay content 
and silt content increase the retaining ability of a soil, 
which could effectively maintain soil moisture. On the 
contrary, sand content enhances soil drainage, making 
it difficult for water to remain in the soil. Therefore, 
the correlation coefficient between soil moisture and 
sand content were negative, while clay content and silt 
content were positively correlated [42]. In addition, the 
vegetation structure and root distribution characteristics 

Fig. 5. Spatial distribution of correlations of TSM and a) NDVI, b) Precipitation, c) SPEI, d) potential evapotranspiration and e) 
temperature in SRB from 2003 to 2022. The null values indicate insignificant correlation (P<0.05).

Table 1. The q values of influencing factors in the first three modes of TSM.

DEM Slope Pre Temp Pet SPEI NDVI Clay Sand Silt SBD SOC

EOF1 0.06 0.08 0.30 0.01 0.07 0.36 0.02 0.04 0.04 0.05 0.04 0.05 

EOF2 0.29 0.24 0.51 0.17 0.27 0.58 0.02 0.07 0.07 0.07 0.13 0.08 

EOF3 0.24 0.15 0.25 0.31 0.37 0.21 0.00 0.08 0.10 0.09 0.11 0.09 
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of grassland caused variation of soil texture and have 
an impact on soil infiltration capacity [43]. In all spatial 
modes, grassland soil moisture and soil texture show a 
certain correlation.

The interaction detection results indicated that the 
interaction of influencing factors mainly manifests 
as mutual enhancement and nonlinear enhancement, 
indicating that the superposition of two factors will 
enhance the explanatory power of a single factor on 
TSM spatial variation. . This suggests that the spatial 
variation of TSM is not solely governed by a single 
factor but is primarily influenced by a combination of 
multiple factors (Fig. 6). For the EOF1 of TSM, the 
interaction between temperature and SPEI had the 
highest explanatory power for TSM changes, followed 
by the combination of Pet and SPEI, DEM and SPEI. For 

the EOF2 of TSM, the interaction between temperature 
and SPEI had the highest explanatory power for TSM 
changes, followed by the combination of silt content and 
SPEI, sand content and SPEI. For the EOF3 of TSM, 
the interaction between Pet and SPEI had the highest 
explanatory power for TSM changes, followed by the 
combination of temperature and SPEI, precipitation and 
Pet. Although the explanatory power of the soil factor 
for TSM changes was relatively low, its interaction 
with other factors enhances its explanatory power, 
especially when combined with climatic factors. The 
interaction of the soil factor with precipitation and 
SPEI had a higher explanatory power for EOF1 of TSM 
than 30%, and a higher explanatory power for EOF2 of 
TSM than 50%, significantly improving the explanatory 
power of the soil factor. The dominant interactions 

Table 2. The q values of influencing factors in the first three modes of TSM under different vegetation types.

DEM Slope Pre Temp Pet SPEI NDVI Clay Sand Silt SBD SOC

Grassland 0.05 0.09 0.25 - 0.07 0.34 0.02 0.13 0.13 0.11 0.06 0.11

Shrubland 0.04 - 0.16 - 0.02 0.17 - 0.05 0.07 0.08 0.01 0.14

EOF1 Broadleaf forest 0.19 0.17 0.40 0.12 0.17 0.37 0.12 0.05 0.06 0.04 0.08 0.07

Cultivated vegetation 0.01 0.02 0.27 0.02 0.05 0.32 0.01 0.03 0.03 0.03 0.01 0.03

Grassland 0.29 0.18 0.56 0.14 0.27 0.63 0.06 0.11 0.13 0.13 0.07 0.14

EOF2 Shrubland 0.23 0.04 0.51 0.13 0.18 0.54 0.17 0.07 0.10 0.10 0.05 0.26

Broadleaf forest 0.43 0.31 0.53 0.34 0.38 0.54 0.12 0.09 0.11 0.04 0.13 0.12

Cultivated vegetation 0.12 0.10 0.42 0.04 0.10 0.49 0.01 0.02 0.02 0.03 0.04 0.03

Grassland 0.30 0.09 0.32 0.29 0.37 0.23 0.24 0.10 0.13 0.11 0.09 0.11

EOF3 Shrubland 0.20 0.05 0.22 0.37 0.41 0.16 0.21 0.22 0.26 0.25 0.21 0.24

Broadleaf forest 0.19 0.11 0.26 0.23 0.24 0.30 0.02 0.07 0.07 0.07 0.08 0.07

Cultivated vegetation 0.10 0.06 0.15 0.18 0.25 0.19 0.06 0.01 0.03 0.05 0.03 0.02

Note: ‚ - ‚ indicates that the q value did not pass the significance test

Fig. 6. The interactive effects among factors on the first three modes of TSM, including a) EOF1, b) EOF2, c) EOF3. Notes: Pre 
(Precipitation), Temp (Temperature), Pet (Potential evapotranspiration), SPEI (Standardized Precipitation Evapotranspiration Index), 
SBD (Soil Bulk Density), SOC (Soil Organic Carbon).
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Fig. 7. The interactive effects among factors on the first three modes of TSM under different vegetation types, including a) 
cultivated vegetation, b) grassland, c) broadleaf forest, d) shrubland. Notes: Pre (Precipitation), Temp (Temperature), Pet (Potential 
evapotranspiration), SPEI (Standardized Precipitation Evapotranspiration Index), SBD (Soil Bulk Density), SOC (Soil Organic Carbon).
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vary among different vegetation types (Fig. 7). Under 
the type of cultivated vegetation, the combination of 
factors with the highest explanatory power for the first 
two modes was temperature and SPEI, while Pet and 
SPEI had the highest explanatory power for EOF3. 
The combination of temperature and SPEI had the 
strongest explanatory power for the TSM changes in 
the first three modes of grassland. For the first three 
modes of TSM in broadleaf forest, the combinations 
of factors with the highest explanatory power were 
respectively temperature and precipitation, Pet and 
precipitation, and Pet and SPEI. The combination with 
the highest explanatory power for the first three modes 
of TSM in shrubland was temperature and SPEI, SOC 
and precipitation, and temperature and precipitation, 
respectively. The combination of various influencing 
factors enhances the explanatory power of TSM spatial 
changes, indicating that the spatial changes of TSM 
were driven by a combination of multiple factors. In this 
study, the combination of precipitation, SPEI, and other 
factors significantly improved the explanatory power of 
TSM spatial changes, especially when combined with 
temperature and Pet. The spatial variability of TSM was 
more influenced by the comprehensive effects of climate 
factors. The combination of DEM, NDVI, and climate 
factors had also improved the explanatory power of 
different vegetation types, especially grassland and 
broadleaf forest. 

The Impact of Influencing Factors  
on the Temporal Variation of TSM

Interannual changes of TSM and temperature, 
precipitation, Pet, SPEI, NDVI in Fig. 8. The TSM 

showed a fluctuating upward trend. The interannual 
changes in temperature and Pet were not significant and 
showed a fluctuating upward trend. In 2005, 2009 and 
2011, the precipitation in the region was low, and the 
Pet and Temp were high, so it was relatively dry, which 
had a significant impact on TSM and resulted in lower 
TSM values. The high values of TSM in 2003, 2013 and 
2016 were significantly affected by precipitation. NDVI 
showed a fluctuating upward trend between 2001 and 
2020, which was related to changes in TSM.

In order to study the influence of environmental 
variables on the temporal variation of TSM under 
different vegetation types, correlation analysis was 
performed on the first three PCs of TSM and the 
environmental variable PC1 (Table 3). Due to the fact 
that the first mode of climatic factors was both explained 
above 95% of the total variance, and that of NDVI is 
above 75%, they already capture the major variations of 
SRB. Therefore, the analysis will be conducted using 
PC1 of the environmental factors. Precipitation and 
NDVI were significantly positively correlated with the 
PC1 of TSM, while Pet, temperature, and NDVI were 
significantly positively correlated with the second time 
coefficient of TSM. This indicated that precipitation and 
NDVI were important factors affecting the temporal 
variation of regional soil moisture, and precipitation 
was one of the main sources of soil moisture. Both 
exhibited similar interannual variation characteristics, 
with a decrease in precipitation leading to drought and, 
to some extent, causing a decrease in TSM. Vegetation 
has an important impact on the temporal variation of 
soil moisture, and its growth increases the demand for 
water, which may lead to the decrease in soil moisture. 
In addition, temperature could affect the evaporation  

Fig. 8. Interannual changes of TSM and a) precipitation, b) temperature, c) potential evapotranspiration, d) SPEI, e) NDVI in SRB from 
2003 to 2022.
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of soil moisture, thereby affecting the temporal variation 
of soil moisture. 

The temporal variability of soil moisture was closely 
related to climate factors and NDVI. There is a significant 
positive correlation between precipitation and the PC1 of 
TSM. Precipitation was the main source of soil moisture, 
and the interannual changes of precipitation and TSM 
have similar characteristics, indicating that precipitation 
had a significant impact on the temporal changes of 
soil moisture. Temperature could affect the evaporation 
of soil moisture, thereby affecting variability of soil 
moisture. Therefore, temperature and evapotranspiration 
were also important factors in the temporal variation 
of soil moisture. Climate factors explain more about 
the temporal variation of TSM, especially precipitation 
[34]. In addition, there is a high correlation between the 
temporal variation of NDVI and TSM, and vegetation 
cover was an important factor affecting the temporal 
variability of soil moisture. Higher NDVI values were 
usually associated with sufficient soil moisture, while 
lower values indicated drought or insufficient moisture. 
Research has shown that in the time domain, changes 
in soil moisture typically occur one month before 
changes in NDVI, with the positive impact of increased 
soil moisture promoting plant growth and ecosystem 
recovery [44].

In summary, our results explored the spatiotemporal 
changes of TSM in the semi-arid agricultural pastoral 
ecotone and the driving effects of climate, terrain, 
and soil on TSM. This is of great significance for  
the management of water resources in the agricultural 
and pastoral ecotone in the future, and contributes  
to the allocation and management of regional water 
resources. However, our research still has some 
limitations, such as the impact of human activities within 
the study area: ecological engineering and artificial 
irrigation, which have not been taken into account. For 
example, excessive exploitation of water resources could 
reduce regional groundwater resources [45], thereby 
affecting surface water; The construction of ecological 
engineering, such as the “Grain for Green” program on 
the Loess Plateau, had an impact on the dynamic changes 
of soil moisture [46]; Artificial irrigation will restore the 
upper soil moisture to a certain extent [47]. Therefore, 
further research is needed to elucidate the comprehensive 
impact of various factors such as nature and humans  
on TSM.

Conclusions

This study explored the spatiotemporal changes of 
TSM in the semi-arid agro-pastoral ecotone and the 
driving effects of climate, terrain, and soil on TSM. 
Spatiotemporal patterns of TSM were analyzed using 
EOF, and the decomposed patterns, based on GDM, 
were utilized to explore the impact of the single and 
multiple factors on different vegetation types of TSM.

(1) Climate factors were the main influencing factors 
on the global spatial variation of TSM, while topography 
and soil texture had an impact on local spatial changes 
in TSM. The impact of various factors under different 
vegetation types varies. Climate factors had a more 
significant impact on broadleaf forest compared to other 
vegetation types, with soil texture having a greater 
impact on grassland and topography having a smaller 
impact on cultivated vegetation. 

(2) The influencing factors did not independently 
affect TSM, but rather a combination of multiple factors. 
The interaction of influencing factors mainly manifests 
as mutual enhancement and nonlinear enhancement. 
The impact of combined factors was greater than that 
of a single factor, among which the combination of 
climate factors had the strongest explanatory power 
for the spatial variability of TSM. The combination of 
temperature and SPEI had a stronger explanatory power 
for the TSM under cultivated vegetation, grassland  
and shrubland, while the combination of temperature 
and precipitation had a stronger explanatory power for 
the TSM under broadleaf forest. 

(3) Precipitation and TSM exhibit similar interannual 
variations, and there was a significant positive 
correlation between precipitation and NDVI with the 
temporal variation of TSM. Thus, precipitation and 
NDVI were the most important factors affecting the 
temporal variation of TSM.
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Time series of SM Temp Pet Pre SPEI NDVI

1 0.181 0.055   0.454*  0.334   0.581**

2  0.503*   0.687** -0.263 -0.322   0.562**

3 0.267 0.243 -0.212 -0.247 0.330

Note: * and ** represent p<0.05 and p<0.01, respectively

Table 3. Correlation analysis of time coefficients of climatic factors, NDVI, and TSM.



Nan Cui, et al.5062

Conflict of Interest

The authors declare no conflict of interest.

Reference

1. CHEN W., LI A., HU Y., LI L., ZHAO H., HAN X., 
YANG B. Exploring the long-term vegetation dynamics of 
different ecological zones in the farming-pastoral ecotone 
in northern China. Environmental Science and Pollution 
Research. 28 (22), 27914, 2021.

2. WANG L., WANG X., WANG D., QI B., ZHENG S., 
LIU H., LUO C., LI H., MENG L., MENG X., WANG Y. 
Spatiotemporal Changes and Driving Factors of Cultivated 
Soil Organic Carbon in Northern China’s Typical Agro-
Pastoral Ecotone in the Last 30 Years. Remote Sensing. 13 
(18), 3607, 2021.

3. YUE Y., GENG L., LI M. The impact of climate change on 
aeolian desertification: A case of the agro-pastoral ecotone 
in northern China. Science of The Total Environment. 859, 
160126, 2023.

4. LI X., XU X., TIAN W., TIAN J., HE C. Contribution of 
climate change and vegetation restoration to interannual 
variability of evapotranspiration in the agro-pastoral 
ecotone in northern China. Ecological Indicators. 154, 
110485, 2023.

5. PENG Y., MI K., QING F., XUE D. Identification of the 
main factors determining landscape metrics in semi-arid 
agro-pastoral ecotone. Journal of Arid Environments. 124, 
249, 2016.

6. XIU Y., WANG N., LIU S., GUO Z., PENG F. Impact of 
Agricultural Use of Sand Land on Water Yield Services 
under Different Development Intensities in the Agro-
Pastoral Ecotone of Northern Shaanxi. Geofluids. 2022, 1, 
2022.

7. ANEKE F., ADU J. Adsorption of Heavy Metals from 
Contaminated Water using Leachate Modular Tower. Civil 
Engineering Journal. 9 (6), 1522, 2023.

8. NWORIE F. S., MGBEMENA N., IKE-AMADI A. C., 
EBUNOHA J. Functionalized Biochars for Enhanced 
Removal of Heavy Metals from Aqueous Solutions: 
Mechanism and Future Industrial Prospects. Journal of 
Human, Earth, and Future. 3 (3), 377, 2022.

9. TONG Y., WANG Y., SONG Y., SUN H., XU Y. 
Spatiotemporal variations in deep soil moisture and its 
response to land-use shifts in the Wind–Water Erosion 
Crisscross Region in the Critical Zone of the Loess Plateau 
(2011-2015), China. CATENA. 193, 104643, 2020.

10. BROCCA L., MORBIDELLI R., MELONE F., 
MORAMARCO T. Soil moisture spatial variability in 
experimental areas of central Italy. Journal of Hydrology. 
333 (2-4), 356, 2007.

11. HU W., SHAO M.A., WANG Q.J., REICHARDT K. 
Soil water content temporal-spatial variability of the 
surface layer of a Loess Plateau hillside in China. Scientia 
Agricola. 65 (3), 277, 2008.

12. PERCY M.S., RIVEROS-IREGUI D.A., MIRUS  
B.B., BENNINGER L.K. Temporal and spatial  
variability of shallow soil moisture across four planar 
hillslopes on a tropical ocean island, San Cristóbal, 
Galápagos. Journal of Hydrology: Regional Studies. 30, 
100692, 2020.

13. JANA R.B., ERSHADI A., MCCABE M.F. Examining 
the relationship between intermediate-scale soil moisture 

andterrestrial evaporation within a semi-arid grassland. 
Hydrology and Earth System Sciences. 20 (10), 3987, 2016.

14. JARIHANI B., SIDLE R., BARTLEY R., ROTH C., 
WILKINSON S. Characterisation of Hydrological 
Response to Rainfall at Multi Spatio-Temporal Scales in 
Savannas of Semi-Arid Australia. Water. 9 (7), 540, 2017.

15. PEI H., LIU M., SHEN Y., XU K., ZHANG H., LI Y., LUO 
J. Quantifying impacts of climate dynamics and land-use 
changes on water yield service in the agro-pastoral ecotone 
of northern China. Science of The Total Environment. 809, 
151153, 2022.

16. YANG L., HORION S., HE C., FENSHOLT R. Tracking 
Sustainable Restoration in Agro-Pastoral Ecotone of 
Northwest China. Remote Sensing. 13 (24), 5031, 2021.

17. YAO S.X., ZHAO C.C. Temporal and spatial 
characteristics of soil moisture dynamics in fixed dune of 
the Horqin sandy land. IOP Conference Series: Earth and 
Environmental Science. 346 (1), 012001, 2019.

18. WU J., CHEN X., LOVE C.A., YAO H., CHEN X., 
AGHAKOUCHAK A. Determination of water required 
to recover from hydrological drought: Perspective from 
drought propagation and non-standardized indices. Journal 
of Hydrology. 590, 125227, 2020.

19. ZHAO W., FANG X., DARYANTO S., ZHANG X., 
WANG Y. Earth Surface Processes and Environmental 
Sustainability in China Factors influencing soil moisture 
in the Loess Plateau, China: a review. Earth and 
Environmental Science Transactions of the Royal Society 
of Edinburgh. 109 (3-4), 501, 2018.

20. SEHLER R., LI J., REAGER J., YE H. Investigating 
Relationship Between Soil Moisture and Precipitation 
Globally Using Remote Sensing Observations. Journal of 
Contemporary Water Research & Education. 168 (1), 106, 
2019.

21. BARNARD D.M., GERMINO M.J., BRADFORD J.B., 
O’CONNOR R.C., ANDREWS C.M., SHRIVER R.K. 
Are drought indices and climate data good indicators of 
ecologically relevant soil moisture dynamics in drylands? 
Ecological Indicators. 133, 108379, 2021.

22. SIMS A.P., NIYOGI D.D.S., RAMAN S. Adopting 
drought indices for estimating soil moisture: A North 
Carolina case study: ESTIMATING SOIL MOISTURE. 
Geophysical Research Letters. 29 (8), 24, 2002.

23. WANG H., ROGERS J.C., MUNROE D.K. Commonly 
Used Drought Indices as Indicators of Soil Moisture in 
China. Journal of Hydrometeorology. 16 (3), 1397, 2015.

24. PENNA D., BORGA M., NORBIATO D., DALLA 
FONTANA G. Hillslope scale soil moisture variability in 
a steep alpine terrain. Journal of Hydrology. 364 (3-4), 311, 
2009.

25. WANG X., ZHANG B., XU X., TIAN J., HE C. Regional 
water-energy cycle response to land use/cover change in 
the agro-pastoral ecotone, Northwest China. Journal of 
Hydrology. 580, 124246, 2020.

26. WANG Y., ZHANG Y., YU X., JIA G., LIU Z., SUN L., 
ZHENG P., ZHU X. Grassland soil moisture fluctuation 
and its relationship with evapotranspiration. Ecological 
Indicators. 131, 108196, 2021.

27. ZHANG G., CHEN X., ZHOU Y., ZHAO H., JIN Y., 
LUO Y., CHEN S., WU X., PAN Z., AN P. Land use/
cover changes and subsequent water budget imbalance 
exacerbate soil aridification in the farming-pastoral 
ecotone of northern China. Journal of Hydrology. 624, 
129939, 2023.

28. FENG X., LI J., CHENG W., FU B., WANG Y., LÜ Y., 
SHAO M.A. Evaluation of AMSR-E retrieval by detecting 



Spatial Variation of Top Soil Moisture in Semi-Arid... 5063

soil moisture decrease following massive dryland  
re-vegetation in the Loess Plateau, China. Remote Sensing 
of Environment. 196, 253, 2017.

29. PERRY M.A., NIEMANN J.D. Analysis and estimation of 
soil moisture at the catchment scale using EOFs. Journal of 
Hydrology. 334 (3-4), 388, 2007.

30. JAWSON S.D., NIEMANN J.D. Spatial patterns from 
EOF analysis of soil moisture at a large scale and their 
dependence on soil, land-use, and topographic properties. 
Advances in Water Resources. 30 (3), 366, 2007.

31. WANG B., SUN R., DENG Y., ZHU H., HOU M. The 
Variability of Net Primary Productivityand Its Response to 
Climatic Changes Basedon the Methods of Spatiotemporal 
Decompositionin the Yellow River Basin, China. Polish 
Journal of Environmental Studies. 31 (5), 4229, 2022.

32. LIN M., HOU L., QI Z., WAN L. Impacts of climate 
change and human activities on vegetation NDVI in 
China’s Mu Us Sandy Land during 2000-2019. Ecological 
Indicators. 142, 109164, 2022.

33. WANG J.F., ZHANG T.L., FU B.J. A measure of spatial 
stratified heterogeneity. Ecological Indicators. 67, 250, 
2016.

34. WANG Z., WANG J., HAN J. Spatial prediction of 
groundwater potential and driving factor analysis based 
on deep learning and geographical detector in an arid 
endorheic basin. Ecological Indicators. 142, 109256, 2022.

35. WANG J.F., LI X.H., CHRISTAKOS G., LIAO Y.L., 
ZHANG T., GU X., ZHENG X.Y. Geographical Detectors‐
Based Health Risk Assessment and its Application in 
the Neural Tube Defects Study of the Heshun Region, 
China. International Journal of Geographical Information 
Science. 24 (1), 107, 2010.

36. WANG J.F., XU C.D. Geodetector: Principle and 
prospective. Acta Geographica Sinica. 72 (1), 116, 2017.

37. QIU J., GAO Q., WANG S., SU Z. Comparison of 
temporal trends from multiple soil moisture data sets and 
precipitation: The implication of irrigation on regional soil 
moisture trend. International Journal of Applied Earth 
Observation and Geoinformation. 48, 17, 2016.

38. BAI W., CHEN X., TANG Y., HE Y., ZHENG Y. Temporal 
and spatial changes of soil moisture and its response to 

temperature and precipitation over the Tibetan Plateau. 
Hydrological Sciences Journal. 64 (11), 1370, 2019.

39. SU B., WANG A., WANG G., WANG Y., JIANG T. 
Spatiotemporal variations of soil moisture in the Tarim 
River basin, China. International Journal of Applied Earth 
Observation and Geoinformation. 48, 122, 2016.

40. BURT T.P., BUTCHER D.P. Topographic controls of soil 
moisture distributions. Journal of Soil Science. 36 (3), 469, 
1985.

41. WANG T., LIU Q., FRANZ T.E., LI R., LANG Y., 
FIEBRICH C.A. Spatial patterns of soil moisture from two 
regional monitoring networks in the United States. Journal 
of Hydrology. 552, 578, 2017.

42. JOSHI C., MOHANTY B.P. Physical controls of near-
surface soil moisture across varying spatial scales in 
an agricultural landscape during SMEX02: PHYSICAL 
CONTROLS OF SOIL MOISTURE. Water Resources 
Research. 46 (12), 2010.

43. WU G.L., YANG Z., CUI Z., LIU Y., FANG N.F., SHI 
Z.H. Mixed artificial grasslands with more roots improved 
mine soil infiltration capacity. Journal of Hydrology. 535, 
54, 2016.

44. CHEN T., DE JEU R.A.M., LIU Y.Y., VAN DER WERF 
G.R., DOLMAN A.J. Using satellite based soil moisture 
to quantify the water driven variability in NDVI:  
A case study over mainland Australia. Remote Sensing of 
Environment. 140, 330, 2014.

45. NGUYEN T.G., HUYNH N.T.H. Characterization of 
Groundwater Quality and Human Health Risk Assessment. 
Civil Engineering Journal. 9 (3), 618, 2023.

46. YE L., FANG L., SHI Z., DENG L., TAN W. Spatio-
temporal dynamics of soil moisture driven by ‘Grain for 
Green’program on the Loess Plateau, China. Agriculture, 
Ecosystems & Environment. 269, 204, 2019.

47. VERMA H.P., SHARMA O.P., SHIVRAN A.C., 
YADAV L.R., YADAV R.K., YADAV M.R., MEENA 
S.N., JATAV H.S., LAL M.K., RAJPUT V.D. Effect of 
irrigation schedule and organic fertilizer on wheat yield, 
nutrient uptake, and soil moisture in Northwest India. 
Sustainability. 15 (13), 10204, 2023.




