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Abstract

This paper explores the impact of digital economy, population, affluence, technology, and other factors 
on carbon emissions, with panel data for 13 cities in the Beijing-Tianjin-Hebei urban agglomeration 
from 2011-2019. To overcome the negative influences of multicollinearity among independent variables 
under acceptable bias, we extended the traditional STIRPAT model and adopted the Partial Least 
Squares Regression (PLSR) algorithm. Results show that the digital economy has a directly dampening 
effect on carbon emissions, and the effect will diminish as the digital economy develops. Besides, under 
different development levels, differences are significant in terms of the impact of population, affluence, 
technology, urbanization rate and industrial structure on carbon emissions. Academically, we applied 
the PLSR method to the study of the relationship between digital economy and carbon emissions  
for the first time, which enhanced the credibility of the research conclusions. In addition, analysis based 
on samples from China's Beijing-Tianjin-Hebei urban agglomeration also provides more empirical 
evidence for related research. Practically, we recommend such policies as developing digital cities, 
promoting low-carbon concepts, and accelerating industrial transformation for the Beijing-Tianjin-
Hebei region to achieve the "dual-carbon" goals and high-quality economic development.
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Introduction

Over the past century, the rapid development of 
human society has led to a continuous increase in 

the consumption of energy sources, such as coal and 
oil, resulting in a growing volume of greenhouse gas 
emissions, and an increasingly severe global warming 
trend. Data released by the International Bank for 
Reconstruction and Development (IBRD) shows that 
in 2005, China’s carbon emissions reached a staggering 
5.825 billion tons, which made it the world’s leading 
carbon emitter. Since then, China has topped the list 
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of global carbon emissions. To reduce the emissions,  
a series of measures have been proposed. The introduction 
of the Dual Carbon Goals in 2020 further demonstrates 
China's commitment to a low-carbon development 
path and its determination to join other countries  
in addressing the global warming issue.

Located in the North China Plain, the Beijing-
Tianjin-Hebei urban agglomeration has a large 
economic scale and strong development vitality.  
In 2005, the carbon emissions intensity in the 
region was 3.50 t CO2/10,000 yuan, but by 2019, it 
had decreased to 1.49 t CO2/10,000 yuan, marking  
a reduction of 57.4%. This achieved and exceeded  
the 2020 carbon reduction target of a 40%-45% 
reduction in carbon emissions intensity compared to 
the 2005 level1. However, there is still a long way to 
go in promoting low-carbon coordinated development 
in this region. In 2019, the carbon emissions of the 
Beijing-Tianjin-Hebei urban agglomeration were 
1,262.84 million tons, a slight increase compared to 
2018. The economic development in this region is 
not sufficiently balanced, with striking differences in 
industry and energy consumption structures among 
cities. Relevant carbon reduction theories, methods, 
and policy support are in urgent need. In recent years, 
driven by technologies like artificial intelligence, China 
is undergoing a transition from traditional economy to 
digital economy. In 2022, the scale of China’s digital 
economy reached 50.2 trillion yuan, a 10.3% year-on-
year increase2. While the digital economy is rapidly 
advancing, its ability to improve resource utilization 
efficiency and drive green technological innovation 
has led an increasing number of people to study its 
carbon reduction effects. The overall level of digital 
economic development in the Beijing-Tianjin-Hebei 
urban agglomeration ranks at the forefront in China, 
and significant progress has been made in carbon 
reduction efforts. Therefore, this region can serve as a 
good example for research. Exploring driving factors 
of carbon emissions under the background of digital 
economy in this region not only provides a theoretical 
basis for promoting carbon reduction through the 
regulation of relevant factors, but also serves as a leading 
and demonstrative role in guiding the formulation of 
environmental protection measures in other parts of 
the world, thereby promoting the development of global 
environmental protection efforts.

1	 Carbon emission related data were taken from the Carbon 
Emission Accounts & Datasets in July 2023: https://www.
ceads.net.cn/

2	 Digital economy related data were taken from “China  
Digital Economy Development Research Report (2023)” 
in December 2023: http://www.caict.ac.cn/kxyj/qwfb/
bps/202304/t20230427_419051.htm

Literature Review

Carbon Emission Drivers

The earliest research on factors influencing carbon 
emissions primarily revolved around three factors: 
population, affluence, and technology. Many studies 
indicate that the growth of population and economy plays 
a promoting role in carbon emissions [1-3]. Zhu and Peng 
(2012) [4] conducted an in-depth study on the impact of 
population on carbon emissions and found that changes 
in population structure, rather than population size, 
are the main influencing factors on carbon emissions. 
Regarding the impact of economic growth on carbon 
emissions, an increasing number of studies have shifted 
from linear to non-linear models, verifying an inverted 
U-shaped relationship, where economic growth initially 
promotes and later inhibits carbon emissions. Bibi et al. 
(2021) [5] and Aslan et al. (2018) [6] both confirmed this 
conclusion. As for the impact of technology on carbon 
emissions, the majority of literature indicates a negative 
correlation between the two [7, 8]. Chen et al. (2023) 
[9] decompose technology into production technology, 
energy-saving technology and energy substitution 
technology. They found that energy-saving technology 
and energy substitution technology have a positive 
reducing effect on carbon emissions, while production 
technology has almost no impact. In addition to these 
three factors, a substantial amount of research has found 
that the increase in the level of urbanization and changes 
in industrial structure also have a significant impact on 
urban carbon emissions [10-13].

In the past decade, with the rapid development of 
digital economy, more and more scholars have begun 
to explore the impact of digital economic development 
on carbon emissions. There are currently conflicting 
opinions on the impact of digital economy on carbon 
emissions. According to Zhou et al. (2019) [14], the rapid 
development of the information and communication 
technology industry has led to an increase in carbon 
emissions due to the industry’s extensive use of carbon-
intensive intermediate products. Dong et al. (2022) [15], 
using data from 60 countries and regions worldwide, 
found that the growth of the digital economy has a 
positive impact on the scale of carbon emissions, but 
has a negative impact on carbon emissions intensity. 
Domestic scholars like Xiang et al. (2023) [16], based on 
panel data of Chinese cities, argue that the development 
of the digital economy can significantly reduce the 
carbon emissions intensity in various regions of China. 
Huo et al. (2022) [17] reached similar conclusions. 
However, Miao et al. (2022) [18] and Ge et al. (2022) 
[19] found an inverted U-shaped nonlinear relationship 
between the development of the digital economy in 
Chinese cities and carbon emissions.
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Research Methods for Analyzing Factors 
Influencing Carbon Emissions

Currently, there are numerous research methods 
for analyzing the factors influencing carbon emissions. 
The mainstream methods include the Logarithmic 
Mean Divisia Index (LMDI) decomposition method 
and the extended STIRPAT model analysis method. 
LMDI decomposition can be traced back to the 1990s 
[20]. Subsequently, many scholars combined the LMDI 
decomposition method with the Kaya identity to analyze 
the factors influencing carbon emissions. O'Mahony 
(2013) [21] and Mousavi (2017) [22] used the Kaya-
LMDI model to decompose the factors influencing 
carbon emissions in Ireland and Iran, calculating the 
contributions of various factors to carbon emissions 
and providing recommendations for carbon reduction. 
Compared to the LMDI decomposition method, the 
extended STIRPAT model is more flexible in variable 
selection and is used by more researchers [23]. When 
using the linear regression method to analyze the 
STIRPAT model, serious multicollinearity problems 
often occur among variables. For this reason, scholars 
have tried a variety of methods to solve it. These 
methods can be mainly categorized into three types. 
The first is traditional subset selection methods, 
including stepwise regression and optimal subset. 
Shuai et al. (2018) [24] and Qin et al. (2019) [25] used 
stepwise regression, sequentially introducing significant 
variables based on their partial correlation coefficients, 
to establish a regression equation for investigating the 
key factors of carbon emissions in China. Tan et al. 
(2015) [26] established multivariate statistical models 
through optimal subset regression to predict carbon 
emissions in Malaysia. Both of these methods address 
the issue of multicollinearity by adding or removing 
variables. The second category is shrinkage methods, 
also known as regularization, which includes ridge 
regression, Lasso regression, and elastic net. Wang et 
al. (2013) [27] used ridge regression to fit the extended 
STIRPAT model to explore the factors influencing 
carbon emissions in Guangdong Province. This method 
solved the multicollinearity problem by introducing 
an L2 regularization term. In addition, many scholars 
have applied this method to fit models for factors 
influencing carbon emissions [28-30]. Yang et al. (2018) 
[31] and Huang et al. (2023) [32] combined the STIRPAT 
model with principal component analysis and Lasso 
regression respectively to explore the influencing factors 
of carbon emissions. Different from ridge regression, 
Lasso regression solves the multicollinearity problem 
by introducing the L1 regularization term. The third 
category is dimensionality reduction methods, including 
principal component regression(PCR) and partial least 
squares regression(PLSR). Zhang et al. (2014) [33] 
used PCR to eliminate multicollinearity among various 
influencing factors of carbon emissions. Since PCR 
only considers the explanation of independent variables, 
PLSR also considers whether the extracted principal 

components have the greatest explanatory power for the 
dependent variable. Therefore, PLSR is considered to be 
better than PCR. Li et al. (2020) [34] and Su et al. (2020) 
[35] used the PLSR method to analyze the influencing 
factors of carbon emissions in Shanghai and Fujian 
Province, China respectively.

In addition to the LMDI decomposition method 
and the extended STIRPAT modeling approach, some 
other methods have also been used for the research of 
factors influencing carbon emissions. For instance, 
Wang et al. (2021) [36] used the random forest method 
in machine learning to analyze the influencing factors 
of carbon emissions in 73 cities along the Yangtze 
River Economic Belt, and conducted an analysis based 
on regional differences. Yu et al. (2022) [37] used a 
Panel Vector Autoregression (PVAR) model to examine 
the long-term dynamic relationships between carbon 
emissions, imports of cultural products, income, and 
other variables. 

Research on Carbon Emissions in the 
Beijing-Tianjin-Hebei Region

The relevant research on carbon emissions in the 
Beijing-Tianjin-Hebei region has been concentrated 
on the period after 2015. Wen et al. (2016) [38] set up 
different development scenarios to predict the carbon 
emission peak before 2050 in the Beijing-Tianjin-Hebei 
region, and put forward a series of carbon emission 
reduction suggestions. Research by Bai et al. (2021) [39] 
found that Hebei’s carbon emission reduction process is 
slower than that of Beijing and Tianjin, which is more 
obvious in less developed cities in Hebei. Zhang et al. 
(2019) [40] pointed out that, compared to Beijing and 
Tianjin, Hebei has greater potential in carbon emissions 
reduction and should take on more responsibilities. Wang 
et al. (2022) [41] and Li et al. (2023) [42] respectively 
studied the factors influencing carbon emissions in the 
Beijing-Tianjin-Hebei region from the perspectives of 
supply-side reform and the industrial chain. 

A comprehensive review of existing research reveals 
the following main shortcomings:

(1) Analyses of the factors influencing carbon 
emissions in the Beijing-Tianjin-Hebei region mostly 
remain at the provincial level, with relatively few studies 
exploring the topic at the city level. Research conducted 
at the city level can better capture regional variations 
and provide a larger sample size.

(2) When applying the extended STIRPAT model 
to analyze factors influencing carbon emissions, 
most literature tends to use ridge regression methods 
to address multicollinearity issues, with minimal 
utilization of partial least squares regression. However, 
in cases where there are numerous independent variables 
and a limited sample size, PLSR can better handle high-
dimensional data through dimensionality reduction, 
thereby achieving estimates superior to ridge regression.

(3) When investigating the impact of  digital 
economy on carbon emissions, most literature conducts 
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overall analyses of the study area without considering 
variations in the digital economic development within 
regions.

To address the aforementioned issues, this paper 
takes the data of 13 cities in the Beijing-Tianjin-Hebei 
region from 2011 to 2019 as samples, then uses the 
entropy method to calculate the development level of the 
digital economy and extends it to the STIRPAT model. 
Finally, the impact of each factor on carbon emissions 
is evaluated through the PLSR method. Moreover, 
considering the significant regional differences in the 
level of digital economic development in the Beijing-
Tianjin-Hebei region, hierarchical clustering is used 
to classify cities into three categories for comparative 
analysis and presents tailored proposals. On the one 
hand, this paper aims to investigate whether and 
how digital economy affects carbon emissions, while 
also discussing the impact of other factors on carbon 
emissions. On the other hand, using the Beijing-Tianjin-
Hebei urban agglomeration in China as a research 
sample, it can provide reference and inspiration for 
carbon reduction in other regions worldwide. Therefore, 
the paper holds significant theoretical and practical 
guidance implications.

Material and Methods

STIRPAT Model

In 1997, Dietz and Rosa proposed a stochastic model 
capable of hypothesis testing, the Stochastic Impacts by 
Regression on Population, Affluence, and Technology 
(STIRPAT) model, to explain the impact of human 
activities on the environment [43]:
	 	

where I, P, A, and T represent the environmental 
impact, population size, affluence, and technological 
level, respectively. In this paper, I is characterized by 
carbon emissions and denoted as C. P, A, and T are 
year-end population (in millions), per capita GDP (in 
ten thousand yuan per person), and energy intensity 
(in tons of standard coal per hundred thousand yuan), 
respectively. To investigate the impact of digital 
economic development on carbon emissions, the level 
of digital economic development (D) is introduced 
into the model. Furthermore, two additional variables, 
urbanization rate (U) and industrial structure (the 
proportion of the secondary industry in GDP, S), are 
included in the model. Finally, the extended STIRPAT 
model is obtained as Equation (1).

	 	 (1)

	 	 (2)

To address heteroscedasticity in the data, taking the 
logarithm of both sides of Equation (1) yields Equation 
(2), where the independent variables are lnD, lnP, lnA, 
lnT, lnU and lnS, the dependent variable is lnC, lna is 
the constant term, lne represents the error term, and 
β1~β6 are the elasticity coefficients for each independent 
variable.

PLSR Algorithm

When using the ordinary least squares method 
for regression analysis, if there is a multicollinearity 
problem between variables, the estimated coefficients 
and significance will be invalid [44]. PLSR is a 
regression method suitable for small sample sizes and 
able to address multicollinearity problems without the 
need to remove any independent variables. It was first 
proposed by Wold and Albano. The specific modeling 
steps for the single-factor PLSR model are as follows3 
[45].

Principal Component Extraction

After standardizing the dependent variable y(y∈Rn) 
and the set of independent variables X(X = (x1, x2, ···, 
x6), xj∈Rn) separately, we can obtain Y0(Y0∈Rn) and  
X0. By extracting one component t1 from X0 , t1 = X0w1,  
||w1|| = 1, we can calculate w1 : 

	 	 (3)

By implementing regression of X0and Y0  on t1,  
X0 = t1p1

T + X1 and Y0 = t1r1+Y1, where p1 and r1 are 
regression coefficients. The corresponding residual 
matrices are X1 = X0-t1p1

T  and Y1 = Y0-t1r1. Then, X0 is 
replaced by X1  and Y0  by Y1 , the above operations are 
repeated to obtain w2, t2, X2, Y2, ... , and the iteration is 
continued accordingly. Cross validity can be used to 
determine the number of extracted components th to stop 
the iteration.

Calculating the Regression Model

After obtaining the component t1,t2, ···, tm(m<A,  
A = rank(X)), the regression model of Y0 with respect to  
t1,t2, ···, tm is as follows:

	 	(4)

where . If (whj* is the 

j-th component of wh*), we can obtain the standardized 
estimation equation in Equation (5).

3	 The equations related to the PLSR model are all cited from 
pages 111 to 127 of reference [45].
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	 	 (5)

By following the standardized reverse process, 
Equation (5) can be converted back into its non-
standardized form. 

Analysis of Carbon Emissions in the Beijing-
Tianjin-Hebei Urban Agglomeration

The carbon emissions data in this paper are obtained 
from the China Emission Accounts and Datasets 
(CEADs)4. This dataset takes into account carbon 
emissions from 47 social and economic sectors, 17 
types of fossil fuels, and cement production processes, 
with comprehensive and reliable results [46-49]. The 

4	 Carbon emission related data were taken from the Carbon 
Emission Accounts & Datasets in July 2023: https://www.
ceads.net.cn/

carbon emissions data from 11 prefecture-level cities 
in Hebei Province are aggregated at the provincial level 
and plotted in Fig. 1. From the figure, it can be observed 
that, between 2011 and 2019, the total carbon emissions 
in the Beijing-Tianjin-Hebei region showed a decreasing 
trend from 2013 to 2015 and an increasing trend in other 
years. Hebei had the highest carbon emissions, followed 
by Tianjin, and Beijing had the lowest. Lower carbon 
emissions in Tianjin and Beijing indicates that Hebei 
was the dominant source in this region.

To further explore the spatiotemporal variations 
in carbon emissions among the 13 cities, ArcGIS 
10.7 software is utilized to create carbon emissions 
distribution maps for the Beijing-Tianjin-Hebei urban 
agglomeration in 2011 and 2019. Additionally, tools 
such as the mean center and standard deviation ellipse 
are used to compare the spatial distribution differences 
in carbon emissions between different periods.  
The changes in the carbon center of the region from 2011 

Fig. 1. Composite Graph of Carbon Emissions in the Beijing-Tianjin-Hebei Region.

Fig. 2. Carbon Distribution in the Beijing-Tianjin-Hebei Urban Agglomeration in 2011.
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to 2019 are illustrated in Fig. 2 and Fig. 3, and relevant 
geographic parameters are provided in Table 1.

From Fig. 2 and Fig. 3, it can be observed that the 
major axis of the carbon emissions standard deviation 
ellipse in the Beijing-Tianjin-Hebei region is oriented in 
the southwest-northeast direction. Moreover, the ratio 
of the ellipse’s major axis to its minor axis is relatively 
large, indicating that the distribution of carbon emissions 
in this region is not uniform, and there is a significant 
spatial variation in carbon emissions among the cities 
[50]. Carbon emissions in the Beijing-Tianjin-Hebei 
region are primarily concentrated around the Beijing-
Tianjin-Tangshan and Shijiazhuang-Handan areas. From 
2011 to 2019, there was an eastward shift in the carbon 
center of this region, transitioning from Bazhou District 
in Langfang City to Jinghai District in Tianjin City, with 
an increasingly pronounced spatial disparity in carbon 
emissions.

Measurement and Regional Classification of 
Digital Economic Development Level

Indicator Selection

Based on the review of literature, this paper 
constructs a measurement system for the development 
level of the digital economy from four dimensions: 
digital infrastructure, digital industry development, 
digital innovation capability, and digital inclusive 
finance [51, 52] (Table 2). Using this system, the digital 

economic development index for 13 cities in the Beijing-
Tianjin-Hebei region from 2011 to 2019 is calculated. 
Data for each indicator are obtained from “China City 
Statistical Yearbook,” “Hebei Statistical Yearbook,” 
the State Intellectual Property Office, and the Peking 
University Digital Inclusive Finance Index. A small 
amount of missing data can be supplemented through 
linear interpolation and exponential smoothing methods.

Calculation of Digital Economic Development Index

The entropy method is used to assess the level of 
digital economic development. According to the method 
used by the World Economic Forum to construct the 
Network Readiness Index (NRI) [53], all indicator data 
in the paper are standardized and controlled within the 
range of 1-7. By calculating the information redundancy, 
the weights of each indicator are obtained. Based on 
the weighted indicators, a linear weighted calculation is 
performed on the standardized data to obtain the Digital 
Economic Development Index of 13 cities in the Beijing-
Tianjin-Hebei region for the years 2011-2019 (Table 3).

From Table 3, it can be seen that the digital economic 
development in the Beijing-Tianjin-Hebei region showed 
an overall upward trend between 2011 and 2019. Among 
the 13 cities, Beijing had the highest level of digital 
economic development, far surpassing the other 12 
cities, with Tianjin ranking second. In Hebei Province, 
the 11 prefecture-level cities were ranked from 3rd to 
13th, with Shijiazhuang, Langfang, and Qinhuangdao 

Fig. 3. Carbon Distribution in the Beijing-Tianjin-Hebei Urban Agglomeration in 2019.

Year Longitude Latitude Location

2011 E 116°37'22.637'' N 39°4'38.506'' Langfang City, Bazhou District

2019 E 116°46'5.862'' N 39°2'30.537'' Tianjin City, Jinghai District

Table 1. Carbon center parameters.
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taking relatively higher levels, while Handan, Xingtai, 
and other areas had lower levels. In terms of growth 
rate, Zhangjiakou, Baoding, and Xingtai had a relatively 
high increase in their digital economic development 
in 2019 compared to 2011, all exceeding 90%, while 
Tianjin, Tangshan, and Handan had lower growth rates, 
all below 80%.

Hierarchical Clustering

Considering the significant regional disparities in 
the level of digital economic development within the 
Beijing-Tianjin-Hebei urban agglomeration, and the 
varying impact of different levels of digital economic 
development on carbon emissions, this paper categorizes 
the 13 cities in the Beijing-Tianjin-Hebei region into 
three groups based on their levels of digital economic 
development for separate analysis. In contrast to the 

Primary 
Indicator Secondary Indicator Measurement Indicator Unit Attribute

Digital Economic 
Development 

Index

Digital Infrastructure

International internet users per hundred 
people / Positive

Mobile phones per hundred people / Positive

Number of post offices per square 
kilometer / Positive

Digital Industry 
Development

Proportion of information, computer 
services, and software professionals % Positive

Per capita telecom service total Yuan Positive

Per capita postal service total Yuan Positive

Digital Innovation 
Capability

Expenditure on science and technology  Ten thousand yuan Positive

Proportion of enrolled students in regular 
higher education institutions % Positive

Number of digital economy-related patents 
per ten thousand people / Positive

Digital Inclusive Finance

Coverage depth index / Positive

Usage depth index / Positive

Digitalization degree index / Positive

2011 2012 2013 2014 2015 2016 2017 2018 2019

Beijing 3.360 3.768 4.252 4.551 4.802 5.046 5.208 5.895 6.125

Tianjin 2.436 2.719 2.948 2.988 3.009 3.286 3.441 3.591 3.701

Shijiazhuang 1.870 2.073 2.404 2.390 2.625 2.846 3.155 3.342 3.516

Tangshan 1.573 1.786 1.945 1.940 2.110 2.302 2.457 2.558 2.675

Handan 1.286 1.390 1.528 1.644 1.787 1.979 2.146 2.150 2.279

Zhangjiakou 1.276 1.469 1.602 1.693 1.904 2.077 2.261 2.313 2.428

Baoding 1.371 1.544 1.760 1.788 2.074 2.231 2.383 2.495 2.638

Cangzhou 1.312 1.439 1.627 1.724 1.814 2.048 2.227 2.366 2.482

Qinhuangdao 1.802 2.228 2.239 2.527 2.676 2.886 3.077 3.192 3.330

Xingtai 1.201 1.363 1.514 1.500 1.761 1.986 2.152 2.240 2.335

Langfang 1.795 1.945 2.285 2.297 2.624 2.846 3.252 3.259 3.384

Chengde 1.278 1.463 1.664 1.696 1.840 2.066 2.270 2.359 2.426

Hengshui 1.278 1.415 1.594 1.637 1.849 2.019 2.236 2.341 2.397

Table 2. Indicator system for the level of development of the digital economy.

Table 3. Beijing-Tianjin-Hebei Urban Agglomeration Digital Economic Development Index.



Li W., et al.3254

subjective division into high, medium, and low categories 
of the Digital Economic Development Index, the use of 
hierarchical clustering is more objective and reasonable. 
As an unsupervised learning approach, hierarchical 
clustering continuously merges similar samples into 
clusters by calculating the distances between samples. 
Eventually, all samples are merged into one large cluster. 
In this paper, the 2019 Digital Economic Development 
Index of the 13 cities is taken as the samples, and the 
Ward method (sum of deviation square method) is used 
for hierarchical clustering. When class Gp and class Gq 
are merged into class Gr , the formula for calculating the 
distance between class Gr  and other class Gk  is shown as 
Equation (6), where ni is the number of samples included 
in class Gi, and the inter-class distance D is calculated 
from the sum of squared deviations. The hierarchical 
clustering dendrogram (Fig. 4) is generated based on the 
calculation results [54]. 

	 	 (6)

As shown in Fig. 4, Beijing has the highest level 
of digital economic development, forming a separate 

category labeled as H region. Tianjin, Shijiazhuang, 
Qinhuangdao, and Langfang are intermediate, forming  
the M region. The remaining eight cities, including 
Tangshan and Baoding, exhibit relatively lower levels 
of digital economic development and are designated  
as the L region. The specific classification details are 
presented in Table 4.

Results and Discussion

Descriptive Statistics

This study is based on Equation (2), in which carbon 
emissions and the digital economic development index 
have been explained above, and the remaining variables 
are taken from “China Statistical Yearbook” and “China 
Urban Statistical Yearbook.” The descriptive statistics 
for each variable are presented in Tables 5-7.

Multicollinearity Test

H region (Beijing) is adopted as an example and 
a correlation test is conducted on each independent 
variable. The results are shown in Table 8. It can be 
observed that the independent variables are not mutually 
independent, indicating a severe multicollinearity 

Fig. 4. Hierarchical Clustering Dendrogram.
Note: In the picture, BJ, TJ, SJZ, QHD, LF, TS, BD, HD, XT, CZ, HS, ZJK, and CD respectively represent Beijing, Tianjin, Shijiazhuang, 
Qinhuangdao, Langfang, Baoding, Hengshui, Xingtai, Cangzhou, Hengshui, Zhangjiakou, and Chengde.

Classification Cities

High Digital Economic Development Level (H region) Beijing

Medium Digital Economic Development Level (M region) Tianjin, Shijiazhuang, Qinhuangdao, Langfang

Low Digital Economic Development Level (L region) Tangshan, Baoding, Handan, Xingtai, Cangzhou, Hengshui, 
Zhangjiakou, Chengde

Table 4. Regional Classification of Digital Economic Development Levels in the Beijing Tianjin-Hebei Urban Agglomeration.



Examining Carbon Emission Drivers in the Digital Economy Era... 3255

problem. By calculating the Variance Inflation Factor 
(VIF) values of the influencing factors through Ordinary 
Least Squares (OLS) regression (Table 9), for all six 
factors the VIF values far exceed the upper limit of 10. 
This suggests that the coefficients and their significance 
obtained from the OLS regression are not reasonable 
and cannot serve as the basis for analysis.

Partial Least Squares Regression (PLSR)

To address the problem of multicollinearity, this 
study employs PLSR to analyze the log-transformed 
extended STIRPAT model (Equation 2).

Variable Unit Sample 
Size Mean Standard 

Deviation Minimum Maximum

Carbon Emissions (C) Million tons 9 91.72 3.97 85.56 98.00

Digital Economic Development 
Level (D) - 9 4.78 0.91 3.36 6.13

End-of-Year Population (P) Million people 9 13.41 0.38 12.78 13.97

Energy Intensity (T) Tons of standard coal/
Million yuan 9 30.70 7.46 20.81 43.04

Per Capita GDP (A) Ten thousand yuan 9 11.34 2.71 8.17 16.42

Urbanization Rate (U) % 9 86.69 0.38 86.20 87.35

Industrial Structure (S) % 9 20.25 2.28 16.16 23.09

Variable Unit Sample 
Size Mean Standard 

Deviation Minimum Maximum

Carbon Emissions (C) Million tons 36 86.05 54.67 21.15 160.33

Digital Economic Development 
Level (D) - 36 2.78 0.54 1.79 3.70

End-of-Year Population (P) Million people 36 7.18 3.44 3.01 11.08

Energy Intensity (T) Tons of standard coal/
Million yuan 36 92.19 32.11 42.22 172.00

Per Capita GDP (A) Ten thousand yuan 36 6.35 2.59 3.57 12.07

Urbanization Rate (U) % 36 62.61 12.45 48.45 84.31

Industrial Structure (S) % 36 42.88 6.87 31.53 54.33

Variable Unit Sample 
Size Mean Standard 

Deviation Minimum Maximum

Carbon Emissions (C) Million tons 72 84.93 92.82 10.52 415.98

Digital Economic Development 
Level (D) - 72 1.91 0.40 1.20 2.68

End-of-Year Population (P) Million people 72 6.97 2.56 3.49 11.73

Energy Intensity (T) Tons of standard coal/
Million yuan 72 111.19 25.40 66.00 175.00

Per Capita GDP (A) Ten thousand yuan 72 3.85 1.76 2.00 8.79

Urbanization Rate (U) % 72 49.88 5.81 40.33 64.32

Industrial Structure (S) % 72 47.66 6.96 28.72 60.08

Table 5. Descriptive statistics of variables in the H Region from 2011 to 2019.

Table 6. Descriptive statistics of variables in the M Region from 2011 to 2019.

Table 7. Descriptive statistics of variables in the L Region from 2011 to 2019.
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Determination of Model Principal Components

All analyses related to PLSR in this study are carried 
out using SIMCA 14.1 software. Initially, the number 
of model principal components is determined through 

a cross-validity test, and the cross-validity indicators 
are presented in Table 10. In the table, R2X(cum) and 
R2Y(cum) respectively represent the percentage of 
X and Y matrix information that the PLSR model  
can explain, and Q2(cum) is used to evaluate the 
predictive ability of the model. When Q2≥0.0975, 
adding new principal components significantly improves  
the model; otherwise, the further introduction  
is halted [55]. Based on the cross-validity indicators,  
1, 4, and 5 principal components were successively 
extracted for the three regions. It can be observed 
that R2X(cum), R2Y(cum), and Q2(cum) all exceed 
0.7, indicating that the established PLSR model is 
relatively precise, and the number of extracted principal 
components is reasonable.

Identification of Specific Points

In PLSR, the presence of specific points can affect the 
model’s fitting performance, and they need to be removed 

Variable lnD lnU lnP lnS lnA lnT

lnD 1.000

lnU 0.991*** 1.000

lnP -0.966*** -0.969*** 1.000

lnS 0.966*** 0.969*** -0.979*** 1.000

lnA 0.965*** 0.966*** -0.985*** 0.996*** 1.000

lnT -0.933*** -0.956*** 0.976*** -0.978*** -0.984*** 1.000

Note: *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively.

Components R2X R2X(cum) R2Y R2Y(cum) Q2 Q2(cum)

H region

1 0.98 0.98 0.76 0.76 0.724 0.724

2 0.00326 0.984 0.163 0.923 -0.452 0.696

3 0.0123 0.996 0.0221 0.945 -0.0238 0.689

M region

1 0.687 0.687 0.766 0.766 0.758 0.758

2 0.197 0.884 0.0798 0.845 0.329 0.838

3 0.077 0.961 0.045 0.891 0.232 0.875

4 0.0284 0.989 0.0315 0.922 0.224 0.903

5 0.00607 0.995 0.000667 0.923 -0.462 0.894

L region

1 0.45 0.45 0.605 0.605 0.594 0.594

2 0.277 0.728 0.081 0.686 0.19 0.672

3 0.175 0.902 0.0614 0.747 0.185 0.732

4 0.0697 0.972 0.0979 0.845 0.372 0.832

5 0.016 0.988 0.0553 0.901 0.33 0.887

6 0.0119 1 0.00685 0.907 0.0549 0.894

Variable VIF 1/VIF

lnD 1422.99 0.000703

lnU 1347.29 0.000742

lnP 1307.52 0.000765

lnS 761.37 0.001313

lnA 248.41 0.004026

lnT 65.82 0.015194

Mean VIF 858.9

Table 8. Correlation Test Results.

Table 10. PLSR cross-validity indicators.

Table 9. Multicollinearity Test Results.
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before refitting the model. The T2 elliptical figure is used 
to observe the distribution and similarity structure of 
sample points on the T1/T2 plane, and it can identify 
specific points with values far from the average level 
of the sample point set [56]. As seen from Fig. 5, Fig. 6, 
and Fig. 7, the sample points from the three regions all 
fall within the T2 ellipse. Therefore, there are no specific 
points, and subsequent analysis can be carried out.

Regression Results and Variable 
Importance in Projection (VIP)

For each of the three regions, a PLSR model is 
constructed with the appropriate number of principal 
components. The standardized coefficients for each 
variable are shown in Table 11. These standardized 
coefficients are then transformed into their non-
standardized form, yielding non-standardized estimation 
equations for the three regions:
H region: 

	 	

M region: 

	 	

L region: 

	 	

In PLSR, the commonly used indicator for comparing 
the explanatory power of various independent variables 
on the dependent variable is called Variable Importance 
in Projection (VIP). The calculation method for this 
indicator is shown in Equation (7) [45], where whj is used 
to measure the marginal contribution of the independent 
variable xj to the construction of component th, and 
Rd(Y;t1, ···, tm)represents the cumulative explanatory 
power of components t1, ···, tm on the dependent variable, 
carbon emissions. For H, M, and L regions, m is 1, 4, 
and 5 respectively.

	 	 (7)

When VIP≥1, it is considered that the variable  
has a significant impact on carbon emissions. When 
1>VIP≥0.5, the impact is moderate. When 0.5>VIP≥0.2, 
the impact is relatively small. However, when VIP<0.2, 
it is considered that the variable has almost no impact on 
carbon emissions.

Empirical Results Analysis

As shown in the results of Table 11, The VIP 
values of almost all variables are greater than 0.2, 
which supports the rationality of the selection of 
influencing factors and the setting of the extended 
STIRPAT model. On the whole, the results show that, 
like the traditional factors of population, affluence and 

Fig. 5. T2 Elliptical Figure for the H Region.

Fig. 6. T2 Elliptical Figure for the M Region.
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technology, the digital economy and industrial structure 
have also proved to produce a non-negligible impact 
on the carbon emissions of the Beijing-Tianjin-Hebei 
urban agglomeration. More importantly, the impact of 
these factors on carbon emissions shows a general and 
significant difference in the three regions. In this regard, 
we will analyze one by one according to the influencing 
factors:

(1) Digital economy. The results in Table 11 reveal 
that the estimated coefficients of lnD are all negative 
under the H, M and L regions, and the VIP values are 
all greater than 0.5, indicating that the digital economy 
has a stable and significant inhibiting effect on carbon 
emissions. This is consistent with the finding of Zhu 
et al. [52]. The digital economy mainly affects carbon 
emissions from two aspects of enterprise production  
and governance. On the one hand, by utilizing more 
data and information, digital technology can directly 
optimize a company’s production solutions, which 
reduces energy waste and contributes to carbon 
reduction, such as the use of unmanned workshops and 
smart logistics. On the other hand, digital technology 
facilitates the sharing of knowledge elements and 
the allocation of market resources, which promotes 
green technological innovation and the development 
of the carbon trading market, thereby improving the 
governance of carbon emissions. What’s more, from 
the value of the estimated coefficient (L: -2.4536<M: 
-0.8288<H: -0.0974), we can further find that the carbon 
emission reduction effect of the digital economy is 
characterized by marginal decline. This implies a late-
mover advantage, that is, cities at a lower level of digital 
economic development will have a stronger potential 
to reduce carbon emissions, which does not support 
the more common U-shaped conclusion [18, 57, 58]. 
A reason for this may be that the development of the 
digital economy in the Beijing-Tianjin-Hebei region was 
already at a high level during the observation period, 
and the relationship between the digital economy and 
carbon emissions had already passed the inflection point 
period.

(2) Population. There is a clear regional heterogeneity 
in the impact of population on carbon emissions, but 
with little difference between the effects of population 
size (total population) and population structure 

(urbanization rate). As can be seen from Table 11, the 
estimated coefficients of lnP and lnU are both negative 
and the VIP values are less than 0.5 in region H. In 
regions M and L, the estimated coefficients of lnP and 
lnU are both positive and the VIP values are greater than 
0.5. All results suggest that demographic factors, both in 
terms of size and structure, remain important factors in 
the growth of carbon emissions in regions M and L, but 
not in region H. This is in line with the actual situation 
of population growth in the Beijing-Tianjin-Hebei 
region. In region H, i.e. Beijing, the total population 
has not grown since 2016 and the urbanization rate 
has remained above 85%. Its demographic situation 
has basically stabilized, so the impact of population 
on carbon emissions is weak. In contrast, population 
changes are more pronounced in Hebei and Tianjin, 
especially the urban population. From 2011 to 
2019, the urban population of Hebei has increased  
by 13.22 million, and the urbanization rate increased  
by 16 percentage points. Tianjin’s total population has 
risen by 18% and the urbanization rate has increased 
by nearly 10 percentage points. The massive influx 
of people from rural to urban areas has created more 
demand for energy from both living and production 
sources, which has led to an increase in carbon 
emissions in these regions [4].

(3) Regional affluence. As for GDP per capita, its 
estimated coefficient is still significantly positive in 
region L, but the opposite result is obtained in other 
regions, which demonstrates that the positive correlation 
between urban economic growth and carbon emissions 
will be eroded in regions with high levels of digital 
economic development. This is because the development 
of digital economy has also led to the development of 
low-carbon economy to a certain extent, which reduces 
the dependence on energy. As the core industry of the 
digital economy, the ICT industry has inherent low-
carbon attributes. The technical characteristics of 
“virtual” and “dematerialization” make its economic 
activities not directly dependent on fossil energy [59]. 
Moreover, the combination of digital technology and 
traditional industries has also led to the transformation 
and upgrading of industrial structure, which has 
improved production efficiency and promoted the 
development of an intensive economy [52]. More 

Fig. 7. T2 Elliptical Figure for the L Region.
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generally, H and M regions also have higher per capita 
GDP. As shown in Tables 5 to 7, the average per capita 
GDP of H and M regions in 2011-2019 is 113,400 and 
63,500 yuan, respectively, which is 2.94 and 1.65 
times that of L region. According to the environmental 
Kuznets curve theory, the economic growth of these 
regions with higher GDP per capita no longer increases 
carbon emissions, but rather has a dampening effect.  

(4) Technology level. As shown in Table 11, the 
estimated coefficients of lnT in the H, M, and L 
regions are 0.1133, -1.1237, and-1.4059, respectively, 
and the VIP values are all greater than 1.0. The results 
show that technological progress will be conducive 
to the reduction of carbon emissions in H area, but 
not conducive to M and L areas. In other words, the 
energy rebound effect is proved to exist, but only in M 
and L regions. This is closely related to the industrial 
structure in three regions. The results in Tables 5 to 7 
show that the share of the secondary sector in Region 
H is only 20.25%, which is much lower than 42.88 % 
and 47.66 % in the M and L regions. Manufacturing 
still occupies a high proportion in M and L regions, 
and the consumer demand for industrial products is still 
strong in both regions. Therefore, the decline in energy 
costs brought about by technological progress has not 
only failed to reduce total energy consumption, but has 
stimulated consumption demand and ultimately led to 
an increase in carbon emissions [60]. In Beijing (Region 
H), where the focus of economic development has long 
since shifted to greener service industry, advances in 
energy-saving technologies may further deepen the 
concept of low-carbon consumption, so the effect of 
energy conservation and emission reduction will be 
more pronounced. However, how the industrial structure 
affects the carbon emissions in these areas, we will 
discuss in the next paragraph.

(5) Industrial structure. The estimation coefficient 
of lnS is significantly positive in H region and negative 
in another two regions, indicating that the proportion 
of secondary industry in Beijing has a positive 
relationship with carbon emissions, and has a reverse 
relationship in M and L regions. Since the proportion 
of the secondary industry in Beijing, Tianjin and Hebei 
actually showed a downward trend (i.e., industrial 
structure upgrading) during the sample observation 

period, the results further revealed that the upgrading 
of industrial structure could not effectively reduce the 
total carbon emissions in Hebei and Tianjin, which was 
contrary to the research conclusions of Yang et al. and 
Wu et al. [61, 62]. However, combined with the actual 
industrial development in the Beijing-Tianjin-Hebei 
region, we can pry into some reasonable explanations. 
Firstly, manufacturing remains an important pillar of 
economic growth in Tianjin and Hebei, with an average 
contribution rate of 37% and 38.1%, respectively, much 
higher than Beijing’s 18%. Although the proportion 
of manufacturing industry in Hebei and Tianjin is 
declining, the scale has increased by 62.5% and 50.7% 
respectively, which greatly weakens the carbon reduction 
effect of industrial structure upgrading. Secondly, as the 
largest carbon emission sector [63], there are significant 
differences in the development of the construction 
industry in the three regions. Compared with Beijing 
and Tianjin, the proportion of the construction industry 
in Hebei has increased instead of decreasing (from 
5.6% to 5.9%), which has promoted the growth of major 
carbon emissions in M and L regions. 

Conclusions and Policy Recommendations

Nowadays, with the continuous breakthrough 
of digital core technology represented by artificial 
intelligence, the development of digital economy has 
brought earth-shaking changes to residential life and 
enterprise production. So, as a hot topic in China’s urban 
economy, how does it affect carbon emissions? Driven 
by digital technology, how has the relationship between 
traditional factors and carbon emissions changed? 
To answer these questions, based on the panel data of 
Beijing-Tianjin-Hebei urban agglomeration in China 
from 2011 to 2019, this paper uses STIRPAT model and 
PLSR method to systematically explore the influencing 
factors of carbon emissions in Beijing-Tianjin-Hebei 
region after considering the factors of digital economy. 
In order to better observe the regional heterogeneity 
characteristics of their influences, we divided all cities 
into three categories according to the level of digital 
economic development, namely H, M and L regions, and 
conducted a sub-sample regression. 

Our research mainly draws the following 
conclusions: (1) Compared with the performance of 
other factors in different regions, the digital economy is 
the most stable source of carbon reduction, which has 
a significant inhibitory effect on carbon emissions in 
all regions. However, the carbon reduction capacity of 
the digital economy will decline as the level of digital 
economy development continues to rise. (2) Traditional 
demographic, economic and technological factors still 
limit low-carbon development in M and L regions, 
which has a strong positive correlation with carbon 
emissions. Nonetheless, this relationship does not exist 
in H-Region. (3) The carbon-reducing effect of industrial 
structural upgrading has proven to be a failure. In M and 

Variable H region M region L region
lnD -0.0974*** -0.8228** -2.4536**
lnP -0.0371* 0.5826*** 0.7657**
lnA -0.1090*** -0.3670** 0.0628***
lnT 0.1133*** -1.1237*** -1.4059***
lnU -0.0149 0.4039** 2.6573**
lnS 0.0726** -0.4411* -0.2988**

Note: *, **, and *** represent VIP values in the ranges of 0.2 
to 0.5, 0.5 to 1, and greater than or equal to 1, respectively.

Table 11. PLSR coefficients of influencing factors.
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L regions, the decline in the share of secondary industry 
plays a positive role on carbon emissions. 

There are also many studies on the influencing 
factors of carbon emissions and the impact of digital 
economy on carbon emissions [4, 7, 12, 18, 19, 52]. 
The difference with these studies is that we use a new 
methodology and a new sample. The introduction 
of the PLSR method solves the multicollinearity 
problem that traditional OLS estimation is difficult to 
overcome, which makes our research conclusions more 
convincing than other studies. Taking the Beijing-
Tianjin-Hebei urban agglomeration as a sample, rather 
than all provinces or cities, we also provide a new and 
more specific evidence for the carbon reduction effect  
of the digital economy. All the findings expand the 
application scope of STIRPAT theoretical model, as well 
as enriching the related research on digital economy and 
carbon emissions. In addition to the academic value, 
some important implications are also proposed.

(1) Accelerate the process of urban digitization and 
build a new pattern of digital economy. At present, the 
difference in digital economy development within the 
Beijing-Tianjin-Hebei city cluster is too large, which 
is not conducive to the improvement of the overall 
digital economy level in the region. In this regard, the 
radiation effect of Beijing’s digital economy should 
be enhanced, while accelerating the pace of digital 
economy development in other regions. In terms of 
overall layout, more efforts should be made to support 
Tianjin to rapidly become the second growth pole of 
digital economy development in the city cluster, so as 
to form the “2+11” pattern of coordinated development 
of digital cities. From the perspective of policy 
practice in each region, Beijing should accelerate the 
construction of “digital economy benchmark city”, 
especially digital core technology innovation, such 
as precision sensors, integrated circuits, operating 
systems, industrial software, and databases, etc., so as 
to provide technological support for the development 
of digital industries in other regions. Tianjin should 
constantly enrich digital application scenarios and 
improve the digital industrial chain, and strengthen 
technical exchanges and cooperation with Beijing. Hebei 
should continue to increase the construction of digital 
infrastructure, such as cross-regional data centers and 
cloud computing platforms, and quickly expand the 
overall scale of digital economy. 

(2) Improve the quality of urbanization and advocate 
a low-carbon lifestyle. For M and L regions, the rise of 
urbanization level and the expansion of population size 
are the two major obstacles to carbon emission reduction. 
It does not work to simply reduce the population or lower 
the urbanization rate. Instead, the following two aspects 
can be considered: Firstly, considering that cities in 
Hebei are experiencing a rapid increase in urbanization 
rates, construction experiences of Beijing and Tianjin 
should be followed. Urban planning and land-use 
management should be strengthened to avoid disordered 
construction and excessive development. Furthermore, 

low-carbon lifestyles should be actively promoted 
among the public, such as walking, cycling, and energy 
conservation, to reduce the negative environmental 
impact of individual lifestyles.

(3) Deepen industrial transformation and optimize 
energy structure. In recent years, cities in the Beijing-
Tianjin-Hebei region have been undergoing industrial 
transformation and upgrading, as well as improvement 
of energy utilization technologies, which have yielded 
positive carbon reduction results. Currently, energy 
intensity and the proportion of the secondary industry 
in Beijing have decreased to relatively low levels, 
leaving limited room for further carbon reduction. 
In contrast, other areas in the Beijing-Tianjin-Hebei 
region, especially heavy industrial cities like Tianjin 
and Tangshan, still need to promote carbon reduction 
by optimizing their industrial structure and improving 
energy efficiency. First of all, Tianjin and Hebei 
should strengthen cooperation with Beijing in high-
tech industries, actively foster emerging industries, 
and promote industrial transformation and upgrading. 
Secondly, as China’s major steel production province, 
Hebei needs to control high carbon-emitting industries 
and curb the expansion of heavily polluting industries. 
In addition, for areas with intensive secondary 
industries in the urban agglomeration, there should be 
active promotion of clean energy adoption, along with 
research and application of energy-saving technologies 
to enhance the energy efficiency of relevant facilities.

However, this paper still has some limitations. 
First, since the PLSR approach does not overcome 
the endogeneity problem, the relationship between 
digital economy and carbon emission obtained in this 
paper is a correlation relationship rather than a causal 
relationship, which may reduce the persuasiveness of the 
explanation and the reliability of the recommendations. 
Correspondingly, as the PLSR method cannot identify  
a causal relationship, we have not been able to dig deeper 
into the impact mechanism of the digital economy on 
carbon emissions, but only explored the heterogeneous 
effects of its region. The solution of these problems 
needs the improvement of PLSR tools and further 
research in the future.
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