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Abstract 

With the deep integration and development of artificial intelligence technology in the economy 
and society, intelligent manufacturing provides a new opportunity for “overtaking in corners” to 
improve green total factor productivity. In order to clarify the relationship between the application 
of intelligent manufacturing and local green development, based on the panel data of 262 cities at or 
above the prefecture level in China from 2008 to 2019, this paper analyzes the impact of intelligent 
manufacturing on the total factor productivity of urban green and investigates the role of man-machine 
matching in it by using the panel smooth transformation regression model. The research results show 
that the development of intelligent manufacturing can obviously promote the urban green total factor 
productivity, but this promotion effect will show an invisible slowdown with the continuous improvement 
of the application level of intelligent manufacturing. At the same time, intelligent manufacturing can 
significantly improve the green total factor productivity of China’s non-resource cities, cities with  
a high level of digital economy development, and eastern regional cities. Further research found that 
when the man-machine matching degree crossed the threshold, intelligent manufacturing could fully 
release the promotion of green total factor productivity. The research conclusions and suggested 
measures are of great significance for China to grasp the technical characteristics and advantages of 
intelligent manufacturing and promote low-carbon economic transformation.

Keywords: intelligent manufacturing, green total factor productivity, panel smooth transformation 
regression model, man-machine matching degree, sustainable development
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Introduction

Since the reform and opening up, China has made 
great achievements in economic construction. However, 
behind the rapid economic growth, is the depletion 
of resources and the deterioration of the ecological 
environment. Faced with the dual constraints of 
resource shortage and environmental carrying capacity, 
the contradiction between energy consumption and 
ecological environment governance has never been 
systematically resolved [1, 2]. The report of the 20th 
National Congress of the Party pointed out: “We should 
persistently promote green and low-carbon development, 
establish and improve a green and low-carbon circular 
development economic system, and promote green and 
low-carbon economic and social development”. Indeed, 
industrial development has reached an important 
period of having to change the development model of 
“environment for growth”, and it is urgent to improve 
green total factor productivity. In the context of the 
pursuit of building a strong country with quality, 
through the introduction of modern machinery and 
equipment, accelerating technological innovation, and 
increasing environmental regulation, it can promote the 
transformation and upgrading of traditional industries 
such as steel, non-ferrous metals, chemicals, and 
building materials, so as to greatly improve the degree 
of green production and resource utilization efficiency. 
This not only helps to promote the coordination and 
unity of economic, social, and ecological benefits, but 
also has great significance for achieving the goal of 
“carbon peak and carbon neutrality” [3].

With the in-depth development of the new round 
of scientific and technological revolution, the cross-
border integration and deep application of digital 
technologies such as big data, cloud computing, and 
blockchain with various fields of economy and society 
have spawned a new economic form represented by 
intelligent manufacturing. With its powerful integration 
characteristics, intelligent manufacturing architecture 
is divided into five parts: resource layer, ubiquitous 
network layer, service platform layer, intelligent cloud 
service application layer, and safety management and 
specification layer, so that it can quickly penetrate into 
the whole product life cycle, promote the re-optimization 
and integration of industrial chain resources and 
information, reduce the consumption rate of energy 
resources in the supply chain, and accelerate the low-
carbon economic transformation [4, 5]. At the same 
time, with the continuous development and innovation 
of intelligent manufacturing, the mobility barriers 
between regions have been greatly reduced, and the 
socio-economic effects have been effectively increased 
by stimulating innovation efficiency and optimizing 
industrial structure, thus enhancing the regional green 
total factor productivity. It can be seen that intelligent 
manufacturing, as the core driving force of the new 
round of industrial transformation, will reconstruct 
all links of economic activities, form new intelligent 

demands in various fields, and promote the overall 
leap of social productivity. However, the application 
of intelligent manufacturing in China is still in the 
initial stage of exploration. As far as the current trend 
of digital transformation is concerned, how to build 
sustainable competitiveness by changing the traditional 
technology model, accelerate the release of green 
development potential by intelligent technologies such 
as machine learning, knowledge mapping, and human-
computer interaction, and enhance green total factor 
productivity has become a key breakthrough in grasping  
a new round of scientific and technological revolution 
and new opportunities for industrial transformation in 
the future.

In view of this, this paper uses panel data from China 
City from 2008 to 2019 and focuses on the influence 
mechanism of intelligent manufacturing on urban green 
total factor productivity. At the same time, the PSTR 
model is used to analyze whether the man-machine 
matching degree is helpful to tap the technological 
and structural dividends of intelligent manufacturing 
in green and low-carbon transformation. Finally, the 
realization path of promoting the green and high-quality 
development of the urban economy under the application 
conditions of the new generation of information 
technology is put forward in order to provide a useful 
reference for relevant theoretical research and policy 
practice.

The rest of the article is arranged as follows: 
The second chapter provides a literature review 
on the connotation and measurement of intelligent 
manufacturing, the influencing factors of energy 
utilization efficiency, and the mechanisms of intelligent 
manufacturing affecting energy utilization efficiency. 
The third chapter puts forward the research hypothesis 
of this paper, combs the influence path of intelligent 
manufacturing on energy utilization efficiency, and 
what role man-machine matching plays in this process.  
The fourth chapter describes the data and methods 
used in this paper. The fifth chapter uses a series of 
mathematical statistical models to verify the influence 
of intelligent manufacturing on energy efficiency 
and the threshold effect of man-machine matching. 
The sixth chapter summarizes the full text, provides 
corresponding policy suggestions, and expounds  
on the research limitations and future prospects. See 
Fig. 1 for an overview of the article.

Literature Review

Intelligent manufacturing, as the adhesive of the 
organic integration of intelligence and industrialization, 
how to fully release the boosting power of intelligent 
manufacturing to urban green total factor productivity 
and empower the real economy to optimize factor 
allocation and improve output efficiency has become  
a hot issue of concern to the government and scholars 
in recent years. After sorting out the existing literature, 
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the research related to the theme of this paper can be 
roughly divided into the following aspects:

The first is about the connotational interpretation and 
measurement evaluation of intelligent manufacturing. As 
a deep integration of artificial intelligence and advanced 
manufacturing technology, intelligent manufacturing 
promotes the digitalization, networking, intelligent 
transformation, and upgrading of the industrial chain 
value chain through intelligent perception, human-
computer interaction, decision-making, and execution 
technology [6, 7]. Wang et al. proposed that intelligent 
manufacturing, a new manufacturing method, would 
reconstruct all aspects of the manufacturing life cycle, 
such as products, production, and services, trigger 
complementary technological progress and innovation, 
and promote the overall leap of social productivity [8]. 
For the scientific measurement of the development level 
of intelligent manufacturing, some scholars use the 
methods of entropy weight and fuzzy comprehensive 
evaluation to measure it. For example, Yang et al. 
constructed a multi-dimensional analysis index system 
of intelligent manufacturing in China from three 
dimensions: input, output, and technology, and used a 
generalized Bonferroni curve to describe its temporal 
and spatial evolution and convergence [9]. According 

to the industry classification standards, attributes, and 
names, few scholars match the manufacturing industry 
classification published by the International Robotics 
Federation with the manufacturing sub-sectors in China 
and then calculate the number of industrial robots 
installed, so as to measure the regional intelligent 
manufacturing level [10-12].

The second is about the calculation and influencing 
factors of urban green total factor productivity. Most 
scholars use the stochastic frontier method, data 
envelopment analysis, the Solow residual method, and 
the algebraic index method to measure and analyze the 
green total factor productivity of different industries 
or regions, and it has become mainstream practice to 
modify the radial distance function and mixed distance 
function based on the data envelopment analysis method 
[13-15]. Tian et al. (2022) and Cheng et al. (2022) used 
the directional distance function and mixed distance 
function to calculate the green total factor productivity, 
respectively, and described its temporal and spatial 
evolution and convergence [16, 17]. Both showed that 
the green total factor productivity of various provinces 
in China was increasing year by year, and there were 
obvious regional differences. At the same time, the 
improvement of technical efficiency played a key role 

Fig. 1. A general picture of research.
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in promoting the green transformation of social and 
economic development modes. Sun et al., based on the 
three-stage DEA dynamic analysis model of spatial 
heterogeneity, found that the growth of green total 
factor productivity in China showed a geographical 
“blockchain” convergence trend, and there was an 
obvious radiation-driven effect [18]. In addition, the 
existing literature summarizes that technological 
innovation ability, industrial capital intensity, industrial 
structure, innovative human capital, environmental 
regulation, and other factors can effectively affect 
urban green total factor productivity, but the research 
conclusions revealed are not the same [19-22].

The third is the research on the mechanism and path 
of innovation in intelligent manufacturing affecting 
urban green total factor productivity. Because the 
concept of intelligent manufacturing has been put 
forward for a short period of time, there are few studies 
on the relationship between intelligent manufacturing 
and green total factor productivity, focusing on whether 
the application of artificial intelligence, big data, and 
other technologies can promote the improvement of 
urban green total factor productivity by optimizing the 
institutional environment, correcting the mismatch of 
factors, improving labor productivity, and exerting the 
effects of energy saving and carbon reduction [23-25]. 
Acemoglu et al. [26], and Li et al. [27] all show that 
with the continuous improvement of policies such as 
intelligent manufacturing, smart cities, and integration 
of the two industries, the algorithmic ability and 
digital intelligent decision-making ability of artificial 
intelligence technology can analyze, supervise, and limit 
the negative externalities of “three high” enterprises, 
improve the efficiency and green production of raw 
materials and products, and thus promote green. At 
the same time, in the context of man-machine division 
of labor and cooperation, when enterprises integrate 
technologies such as big data, cloud computing, and 
deep learning into their production activities, they 
should minimize the loss of production efficiency caused 
by man-machine mismatch and avoid weakening the 
promotion effect of intelligent manufacturing on green 
total factor productivity.

To sum up, the existing literature has done a lot of 
useful research on intelligent manufacturing and urban 
green total factor productivity, which provides ideas 
and experience enlightenment for this paper, but there 
are still some shortcomings in the following aspects: 
First, there are few studies on whether intelligent 
manufacturing has environmental dividends at home 
and abroad, the theoretical research foundation is 
weak, and the empirical research is still in its infancy. 
Moreover, few studies pay attention to the nonlinear 
relationship between intelligent manufacturing and 
green total factor productivity. Second, most of the 
existing research focuses on the provincial level, 
and few literatures discuss the effect of intelligent 
manufacturing applications based on city-level data. 
Thirdly, there are few studies to discuss whether 

blindly using intelligent manufacturing technology  
can improve urban green total factor productivity from 
the perspective of man-machine matching. Moreover, 
most of the previous studies used an ordinary threshold 
model to analyze the threshold effect of variables. 
Although the threshold can be obtained, it is still solved 
on the basis of a linear model; that is, the transformation 
of intelligent manufacturing near the threshold has 
abrupt characteristics that do not conform to the display 
law.

The research contributions of this paper are as 
follows: (1). Based on the data of China City, this 
paper quantitatively evaluates the impact of intelligent 
manufacturing on green total factor productivity 
and expands the research perspective and content of 
intelligent technology supporting the green development 
of industries represented by robots (2). Different 
from the simple geographical location division for 
heterogeneity analysis, this paper embeds factors 
such as urban location, resource endowment, and 
digital economy development level into the panoramic 
logical framework chain of intelligent manufacturing  
and green total factor productivity to identify the 
heterogeneous influence of intelligent manufacturing 
on green total factor productivity. These conclusions 
are more helpful for administrative departments and 
enterprise managers to take corresponding measures to 
make up for the shortcomings. (3). From the perspective 
of man-machine matching, this paper uses the PSTR 
model to identify the boundary conditions of intelligent 
manufacturing, promote green total factor productivity, 
and better describe the nonlinear relationship between 
economic variables. This provides valuable policy 
enlightenment for better realizing “man-machine 
coexistence”.

Influence Mechanism and Research  
Hypothesis

Different from computer integrated manufacturing, 
intelligent manufacturing has the characteristics  
of self-perceived learning, independent decision-
making, and self-adaptive adjustment. It can realize 
the digitalization of production links, industrial chain 
transformation, and human-computer interconnection 
through key technologies such as the Internet of 
Things, cyber-physical systems, cloud computing, and 
large-scale data analysis, so as to enhance green total 
factor productivity with a lower energy consumption 
production mode and a stronger development 
paradigm. Based on the existing literature research 
and endogenous growth theory, combined with the 
properties of intelligent manufacturing, this paper 
studies the influence mechanism and effect of intelligent 
manufacturing on green total factor productivity, and 
the specific theoretical logical framework is shown in 
Fig. 2.
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accurate supply chain management and financial 
management, reduce material waste, reduce warehousing 
pressure, and reduce operating costs. At the same time, 
by introducing highly flexible production equipment, 
mainly CNC machine tools and robots, enterprises can 
comprehensively collect and deeply analyze the data of 
“people, machines, materials, methods, environment, 
and measurement”, effectively cope with the complexity 
of production activities, explore the deep-seated reasons 
leading to production bottlenecks and product defects, 
and continuously improve production efficiency and 
product quality, thus preventing overcapacity and 
environmental pollution and boosting green total factor 
productivity. In addition, on the basis of the deep 
integration of mobile internet, artificial intelligence, and 
the manufacturing industry, with the help of intelligent 
connection carriers such as search engines, social media, 
e-commerce platforms, and application stores, multi-
party market transaction subjects are brought together 
to break through the blocking points of key links in the 
economic cycle process such as production, exchange, 
and sales, and accurately capture, analyze and meet 
the needs of consumers in real time, so as to promote 
dynamic feedback and two-way interaction between 
consumers and production subjects, thus achieving more 
flexible and efficient production methods and improving 
the market [30-32].

Secondly, from the perspective of industrial chain 
reform, based on the economic characteristics of strong 
permeability, wide coverage, and high innovation, 
intelligent manufacturing can break the spatial stability 
of the industrial chain, promote the interconnection and 
integrated sharing of factor resources, and accelerate 
enterprises to get rid of obstacles such as geographical 

Direct Influence Path of Intelligent Manufacturing 
on Green Total Factor Productivity

Promoting green total factor productivity can 
be regarded as an overall and systematic long-term 
process. External shocks such as environmental 
regulation and market competition will induce the 
“extensive extension” industry development mode to 
turn to “intensive connotation”, which will drive green 
total factor productivity in a limited, short-term, and 
discontinuous way. However, the fundamental way to 
effectively improve green total factor productivity is 
through continuous technological progress [28, 29].  
As a major technological innovation in the era of 
Industry 4.0, intelligent manufacturing takes the 
digitalization, networking, and intelligent integration of 
the product life cycle value chain as the main line and 
realizes efficient, high-quality, low-consumption, green, 
and safe manufacturing and service with the support 
of vertical management and control integration within 
enterprises and networked collaborative consumers.

First of all, from the perspective of the production 
subject (enterprise), intelligent manufacturing empowers 
the real economy, and the process of digitalization, 
networking, and intelligence in the manufacturing 
industry is accelerated, which helps to promote 
the ubiquitous connection and optimal allocation 
of resource elements. Based on the comprehensive 
consideration of production technology, operation 
management, and other data, enterprises can improve 
existing production processes, such as product R&D 
and design, manufacturing, logistics, and warehousing, 
order acquisition, and service tracking, with the help 
of blockchain and BDA technology, to achieve more 

Fig. 2. Theoretical analysis diagram.
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location and factor endowment, thus comprehensively 
accelerating the pace of industrial chain extension, 
supply chain filling, value chain jumping, and innovation 
chain upgrading in the economic system, forming 
a multi-node and strongly related product network, 
technology network, and market network, and finally 
expanding enterprises’ own products and markets [33, 
34]. This not only provides a new opportunity for 
improving green total factor productivity, but also 
creates a new dynamic foundation for developing 
the cooperation mechanism of industrial clusters and 
optimizing the ecosystem. In addition, industrial chain 
integration under the empowerment of “wisdom” 
will blur the boundaries of production and business 
activities among different types of enterprises, improve 
the convenience and utilization efficiency of resource 
acquisition, reduce unnecessary waste, and thus provide 
beneficial conditions for improving the environmental 
performance of enterprises.

Finally, from the perspective of workers, with the 
popularization of unmanned factories and intelligent 
production systems, it will replace most workers engaged 
in simple production tasks, such as assembly workers 
and data loggers on production lines, so that they can be 
liberated from heavy physical labor and repetitive labor. 
The spare time can be adapted to technological changes 
and new work requirements by constantly learning and 
upgrading their own skills, thus accelerating the release 
of the promotion effect of intelligent manufacturing on 
green total factor productivity in a wider coverage and 
more diverse subject levels [35, 36]. At the same time, 
although intelligent manufacturing can replace material 
production labor and all kinds of repetitive work, the 
operation, maintenance, and research and development 
of intelligent machines still need a large number of high-
quality talents to participate. This means that enterprises 
need to recruit more technical frontier employees 
and employees with rich management experience, 
accelerate the penetration of artificial intelligence 
and green technology, and optimize management 
processes, thus providing more human capital for the 
improvement of green total factor productivity [37, 38]. 
In addition, with the increase of highly skilled workers 
and the construction of the industrial internet, relying 
on the information interaction mode of intelligence, 
customization, and dynamic feedback, the “learning by 
doing” effect among workers can be realized, which will 
drive the cleaner production cost curve of enterprises to 
move to the left, thus reducing the average production 
cost. To sum up, this paper puts forward research 
hypothesis 1:

Hypothesis 1: Intelligent manufacturing affects 
green total factor productivity by empowering the real 
economy, changing the industrial chain, and replacing 
workers.

Indirect Dynamic Mechanism of Intelligent 
Manufacturing on Green Total Factor Productivity

Intelligent manufacturing, as a new manufacturing 
mode, uses the new generation of information and 
communication technology (ICT) and artificial 
intelligence technology to break down the barriers 
between design, manufacturing, and service, realize 
cross-domain global information integration and deep 
interaction between information and manufacturing 
space, effectively improve traditional industrial 
production lines, and then improve production efficiency 
and quality. With the continuous transformation of 
social productive forces and production relations 
by intelligent manufacturing, production tasks are 
becoming more and more complicated and specialized, 
and “machine substitution” is gradually changing 
into “man-machine matching”, which has spawned 
new decision-making paradigms and organizational 
paradigms. The so-called man-machine matching 
refers to the cooperative work and interaction between 
human beings and robots, computers, or other intelligent 
systems, aiming at combining the intelligence of 
machines with human creativity and decision-
making ability to achieve more efficient, accurate, and 
innovative work. Therefore, under the background of 
intelligence, the social demand for human capital is 
changing from quantity to quality, which improves the 
complementary requirements of human capital and 
material capital. In the initial stage of the development 
of intelligent manufacturing, the technical complexity 
of the production environment is low, and machinery 
and equipment are usually used to perform repetitive, 
high-intensity, and routine tasks, such as assembly, 
inspection, packaging, and other routine manual tasks 
on the production line, without the direct participation 
of workers, so that they have more time and energy to 
engage in creative and high value-added work [39, 40]. 
Enterprises can also produce the same or even more 
products with lower labor costs. However, with the wide 
application of machines and automation equipment, low-
skilled workers cannot dynamically match the complex 
environment of artificial intelligence development, 
and it is difficult to alleviate the negative effects of 
technological changes on human capital. According 
to the theory of employee organization matching, the 
application of intelligent technology cannot be separated 
from the matching of high-quality employees, and the 
combination of information technology and highly-
skilled human capital can create higher production 
efficiency. In difficult-to-code and unconventional tasks 
such as R&D design, production deployment, and post-
operation maintenance, workers with low education 
levels can’t quickly adapt to and assist intelligent 
devices to extract valuable information and knowledge 
from massive data, thus failing to provide more accurate 
and comprehensive data support for the completion of 
production tasks, causing labor productivity loss and 
ultimately reducing green total factor productivity [41, 
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42]. At the same time, the mismatch between man and 
machine is likely to cause the parameters of intelligent 
equipment, such as accuracy, speed, or pressure, to be 
inconsistent with the product requirements, which will 
lead to a decline in the accuracy and quality stability of 
products produced by enterprises, invisibly slow down 
the market competitiveness of enterprises themselves, 
and restrict the optimization of intelligent technology 
on the efficiency of resource allocation. Therefore, it is 
worth knowing that even if intelligent manufacturing 
technology is rapidly updated and iterated in the face 
of complex tasks, only by improving the cooperative 
matching ability between workers and machinery and 
equipment can intelligent manufacturing promote green 
total factor productivity to the greatest extent. Moreover, 
the improvement of man-machine matching is helpful to 
realize more refined energy management. By optimizing 
the operating parameters of the machine and the work 
arrangement of human employees, human resources 
can be allocated reasonably, and energy consumption 
and waste discharge in enterprises can be reduced, 
thus achieving a more efficient, safer, and more stable 
production process and green production [43, 44].

To sum up, this paper puts forward research 
hypothesis 2:

Hypothesis 2: Man-machine matching degree 
is an important dynamic mechanism for intelligent 
manufacturing to improve green total factor productivity.

Methods and Data Source

Variable

Explained Variable

Green total factor productivity in cities (CGTFP). 
CGTFP integrates environmental resources into the 
analysis framework of economic growth and becomes 
an important indicator to measure the coordination 
between resources, the environment, and economic 
development. Referring to the research ideas of 
published literature [45-47], this paper constructs an 
evaluation index system for urban green total factor 
productivity and uses the non-radial and non-angular 
relaxation directional distance function (SBM) under the 
hypothesis of variable scale returns (VRS) to measure it, 
combined with the global ML index. Specific indicators 
are selected as follows:

1. Factor input. Based on the theory of production 
factors, labor, capital, and energy consumption are 
selected as the input indicators of factors. Among 
them, labor input is represented by the sum of the 
number of employees in units and the number of 
private and individual employees at the end of each 
city. Capital investment refers to the practice of 
published literature, using the perpetual inventory 
method to calculate the actual capital stock of the city  
as a proxy variable [48]. The calculation formula is:  

Kit = (1 − d) Ki,t−1 + Iit. Where Kit and Iit respectively 
represent the capital stock of city i in the t year and 
the newly-increased social fixed asset investment. The 
capital stock in the base period is K0 = I0/(gi + d), g is 
the geometric growth rate of fixed assets investment in 
each city, and d is the depreciation rate of fixed assets, 
which is set at 10.96%. Considering the serious lack 
of energy consumption data such as coal and oil at the 
city level, this paper refers to the practice of Guan et al. 
[49] and selects the electricity consumption of the whole 
society in each city as the proxy variable of energy 
consumption.

2. Expected output variables. The GDP of each city 
in China is measured, and the year 2008 is used as the 
base period to reduce it, so as to eliminate the influence 
of price factors.

3. Unexpected output variables. Referring to the 
practices of Peng et al. [50], the three industrial wastes 
(industrial SO2 emissions, industrial wastewater 
emissions, and industrial soot emissions) in cities are 
selected as proxy variables of unexpected output.

Core Explanatory Variable

At present, there are no unified measures for 
intelligent manufacturing in domestic and foreign 
literature, and there are two mainstream practices: one 
is to select the proportion of information transmission, 
computer services, and software industry’s total fixed 
assets in GNP to represent intelligent manufacturing 
[51, 52]. The other is to measure it by using the 
installation density or penetration of industrial robots 
[53, 54]. With the continuous development of robot 
technology, the intelligent manufacturing mode with 
green, digital, and intelligent as the core is becoming 
the main direction of industrial development, which 
is of great significance to improve the added value of 
products, improve the working environment, and reduce 
labor intensity. In view of this, this paper refers to the 
research ideas of published literature [55-57], and the 
Batik tool variable method was used to calculate the 
penetration of industrial robots in China to measure 
intelligent manufacturing. Specifically, according to 
the China industry categories published by IFR and the 
National Economic Industry Classification (GB/T4754-
2002), this paper obtains the number of industrial robots 
installed in various industries in China, selects 2005 
as the reference year to calculate the weight of robot 
installation density in sub-industries in China, and then 
calculates the penetration of industrial robots at the city 
level. The calculation formula is as follows:

  (1)

In Eq. (1), i, j and t respectively represent industry, 
city, and year; robotit represents the number of industrial 
robots installed in industry i in the t year; labori,t=2005 and 
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laborj,t=2005 represents the labor force scale of industry i 
and city j in 2005, respectively.

Threshold Variable

Man-machine matching (Match). Man-machine 
matching can fully reflect the workers’ proficiency in the 
operation of intelligent mechanical equipment and judge 
whether to accelerate the work process and improve 
production efficiency through the powerful computing 
power and data processing ability of the machine. 
In view of this, this paper refers to the practices of 
published literature [58, 59], and uses the coordination 
degree between the intelligent manufacturing level and 
human capital to measure the man-machine matching 
degree. The specific calculation formula is as follows:

  (2)

  (3)

  (4)

Control Variable

In order to minimize the error caused by the 
omission of important variables in the causal inference 
of the model, this paper selects the following control 
variables according to the research perspective of 
existing literature (1). Urbanization level (Urban).  
The continuous improvement of urbanization levels will 
accelerate the flow of production factors and industrial 
agglomeration, which will directly affect the original 
economic development system and environmental 
quality of the city. Therefore, referring to the practice 
of Xiao et al. [60], the proportion of the urban resident 
population to the total population is selected to measure 
it (2). The degree of opening up (Open). Because  
the introduction of foreign advanced factor resources 
can accelerate domestic technological change  
and institutional mechanism innovation, resulting in 
a “pollution halo” effect, thus improving economic 
production efficiency, at the same time, the introduction 
of high-pollution and high-emission enterprises 
has aggravated the pressure on the local ecological 
environment. Therefore, referring to the practice of 
Dong et al. [61], the proportion of actually used foreign 
investment in GDP is selected to measure it (3). The size 
of the city (Cis). With the deepening of urbanization, the 
“urban diseases” such as personnel congestion and waste 
of resources have increased sharply, which has hindered 
the development of an urban green economy. Therefore, 
referring to Yang et al. [62], the urban population 
density at the end of the year is selected to measure 
it (4). Industrial structure (Ins). Considering that the 
environmental effect and green economy effect played 
by the tertiary industry in the process of social and 
economic development account for a large proportion,  

it is measured by the proportion of the added value of the 
tertiary industry and the added value of the secondary 
industry with reference to the practice of Xu et al. [63]. 
(5). Degree of financial development (Fin). Schumpeter’s 
growth model shows that financial development can 
reduce the information asymmetry between capital 
demanders, improve the efficiency of rational allocation 
of financial resources, and provide a financial guarantee 
for industrial green technology innovation. Therefore, 
according to Chiu et al. [64], the loan balance of urban 
financial institutions is selected as the proportion of 
GDP (6). Industrial energy consumption intensity 
(Energy). With the increase in energy consumption 
intensity, regional environmental quality deteriorates, 
which further restricts the sustainability of urban 
economic growth and further affects green total factor 
productivity. Therefore, referring to the practice of Lyu 
et al. [65], the proportion of urban industrial electricity 
consumption in industrial added value is selected to 
measure it.

Research and Data Methodology

SBM-GML Model

By sorting out the existing research, the 
measurement methods of urban green total factor 
productivity mainly focus on data envelopment analysis 
(DEA) and stochastic frontier methods (SFA). Among 
them, the DEA method can avoid the resulting bias 
caused by the preset production function form and 
the distribution characteristics of error terms, so it 
has obvious advantages in measuring the production 
efficiency of multi-input and multi-output independent 
decision-making units. Therefore, this paper uses data 
envelopment analysis to measure urban green total factor 
productivity. At the same time, considering that the 
traditional DEA method often leads to biased results due 
to different radial and angular choices in the production 
efficiency calculation process, in order to eliminate this 
bias, this paper imitates the ideas of published literature 
[66, 67] and constructs a super-efficient slacks-based 
measure (SBM) model with unexpected output, which 
solves the problem that the traditional DEA model does 
not consider the input or output variables to some extent. 
The model is constructed as follows:

  (5)
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  (6)

In Eqs. (5) and (6), M, S1, and S2 respectively 
represent the input-output variables in the effective 
production decision-making unit in the system; Sx, 
Sg and Sb are slack variables; λ is the weight matrix; ρ 
represents the target efficiency value, ρ∈[0,1]. As far as 
a specific production decision-making unit is concerned, 
when ρ = 1, it shows that the decision-making unit is 
completely effective, the factor input ratio is optimal, 
and there is no efficiency loss caused by unexpected 
output redundancy and insufficient expected output. 
When  0≤ρ<1, it shows that the production decision-
making unit has the problem of efficiency loss, which 
can be improved by optimizing the configuration of 
elements. It should be noted that a larger ρ value means 
the lower inefficiency value calculated by the distance 
function in the SBM direction, so the 1 – ρ conversion 
is carried out in the process of actually calculating the 
efficiency value.

Considering that the directional distance function 
is a production possibility set constructed by using 
the current production technology, it is impossible 
to make cross-period comparisons or even draw  
the conclusion of “technological retrogression”.  
In view of this, referring to the idea of global reference 
modeling proposed by Zhan et al. [68], this paper 
constructs a global production technology set including 
all sample points, that is, PG (x) = P1(x1)⋃P2(x2)⋃…
⋃Pt(xt), so as to determine the optimal frontier.  
At the same time, this paper combines the global 
production technology set with Malmquist-Luenberger 
(ML) to construct the global ML (GML) index, so as 
to solve the non-transitivity defect of the traditional  
ML index and avoid the problem of linear  
programming without a solution. The specific expression 
is as follows:

  (7)

In Eq. (7), CGTFPt
t+1 represents the change rate of 

urban green total factor productivity in the period from 
t to t+1 of each production decision-making unit and 
can be further divided into technical progress index 

(GTC) and technical efficiency index (GEF), namely  
CGTFPt

t+1 = GTCt
t+1 + GEFt

t+1.

Econometric Model

1. Benchmark regression analysis model. In order 
to verify the direct impact of intelligent manufacturing 
on urban green total factor productivity, combined 
with research hypothesis 1, this paper constructs the 
following panel econometric model:

  
(8)

Where α0 represents a constant term; α1 and α2 
represent regression coefficients to be fitted and 
calculated; Subscripts i and t represent individuals 
and time, respectively. Control represents all control 
variables except the core explanatory variables; λi stands 
for individual fixation effect and vt stands for time 
fixation effect; εit represents the random disturbance 
term that obeys the white noise process. Considering 
that there may be a nonlinear relationship between 
intelligent manufacturing and urban green total factor 
productivity, this paper puts the square term (IMit

2) of 
intelligent manufacturing into the model framework 
for investigation, and in order to avoid collinearity, IM 
is decentralized and then multiplied by square, thus 
establishing the following econometric model:

  (9)

2. Panel smooth conversion regression model. In 
order to verify the channel effect of man-machine fit in 
the process of intelligent manufacturing affecting urban 
green total factor productivity, this paper constructs a 
panel smooth conversion model with man-machine fit 
as the conversion variable. By replacing the discrete 
characteristic function in the panel threshold regression 
model, this model realizes the smooth transition of 
model parameters between different regression “zones” 
and then better identifies the heterogeneity of section 
units. In view of this, the article refers to the practices 
of Wu et al. [69] and makes the following provisions on 
the model form:

 
(10)

In Eq. (10), β1 and β2 represent the estimation 
coefficients of linear and nonlinear parts of intelligent 
manufacturing, respectively; g(Subit; γj; cj) is  
a bounded continuous transformation function with 
man-machine matching degree as the transformation 
variable, and the function value range is [0,1], which is 
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specifically expressed as the following logical function 
form:

 (11)

In Eq. (11), γj represents the smooth conversion 
coefficient of the conversion function, and the values 
are all greater than 0. The conversion speed between 
different conversion mechanisms is determined by 
the smooth conversion coefficient. cj represents the 
position parameter, which is the inflection point of 
conversion between different mechanisms, that is, the 
threshold value. m represents the position parameter of 
the conversion function, that is, where m conversion 
occurs. It should be noted that: (1). When m = 1,  
γ = 1, g(Subit; γj; cj) is smoothly converted between 0 and 
1, and the smooth conversion coefficient is divided into 
low-range system and high-range system (2). When m = 1,  
γ → ∞, the model is transformed into a two-system 
PTR model (3). When m = 2, the transfer function 
gets the minimum value at (c1 + c2)/2 (4). When γ → 0, 
regardless of the value of m, the model degenerates into 
the traditional linear fixed effect model.

Before estimating the PSTR model, it is necessary to 
test the existence of a nonlinear relationship. The original 
hypothesis of the linear test is H0:γ = 0, which shows 
that the model has only one operating mechanism and 
is suitable for estimation by using a linear framework. 
The alternative hypothesis is  H1:γ ≠ 0, which shows 
that it is reasonable to use the PSTR model to explore 
the relationship between intelligent manufacturing and 
urban green total factor productivity. In the specific test 
process, the first-order Taylor expansion of the transfer 
function g(Subit; γj; cj) is often used to construct the 
auxiliary regression model, and the specific expression 
is as follows:

  
  (12)

In Eq. (12), Rm is the remainder of the Taylor 
expansion; δ1, δ2, ..., δm is the multiplier of γ, that is, the 
existence test parameter of system transformation. In 
the auxiliary function, the Lagrange multiplier method 
(LM), the Lagrange multiplier method (LMF), and the 
likelihood logarithm method (LRT), which are gradually 
equivalent to the χ2 distribution, are constructed to test 
the parameters. The specific expressions are as follows:

  (13)

  (14)

  (15)

In Eqs. (13) to (15), k represents the number of 
explanatory variables; SSR0 and SSR1 respectively 
represent the sum of squares of residuals under linear 
and nonlinear conditions.

Data Source

Following the principle of data availability and 
consistency of statistical caliber, this paper selects the 
panel data of 262 cities at the prefecture level and above 
in China from 2008 to 2019 as the research sample after 
excluding the urban samples with the above variables 
missing for four years or more. The original data for 
all variables mainly comes from the China Statistical 
Yearbook, the China Environmental Statistical 
Yearbook, the China Energy Statistical Yearbook, 
the China City Statistical Yearbook, the International 
Robot Union database, the CNRDS database, the EPS 
database, and the statistical bulletins of cities.

Results and Discussion

Analysis of Benchmark Regression Results

Considering that the F statistic of the likelihood ratio 
test is 21.58 and the Hausman test is 52.06, both of them 
reject the original hypothesis at the level of 1%. So, this 
paper chooses the two-way fixed effect model for fitting 
calculations according to the econometric model set 
in Equation (8). At the same time, in order to prevent 
heteroscedasticity, sequence correlation, and cross-
section correlation from causing biased and inconsistent 
estimation results, this paper adopts clustering robust 
standard errors to deal with them and uses a feasible 
generalized least squares method (FGLS) for auxiliary 
verification. The specific estimation results are shown in 
Table 1.

Considering the robustness of the model, this paper 
still reports the estimation results of the POLS and RE 
models. As can be seen from Table 1, the results without 
adding the lag term show that the average estimation 
coefficient of intelligent manufacturing is 0.014 and 
it is significant at the significance level of 1%, which 
indicates that intelligent manufacturing has a significant 
promotion effect on urban green total factor productivity. 
The possible reason behind this is that with the powerful 
cloud computing capability of artificial intelligence, 
production links such as material supply, product 
R&D design, intelligent scheduling, product quality 
traceability, and management are connected in series, 
and all production indicators are monitored in real time, 
thus reducing the incidence of human errors and the 
waste of resources caused by the inefficient connection 
of various production links, promoting the improvement 
of production efficiency and production scale, and 
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ultimately improving the green total factor productivity 
of the whole industry [70, 71]. At the same time, with 
the application of intelligent manufacturing in energy 
operation control and comprehensive energy services 
for end users, the use of traditional energy sources such 
as coal and oil by enterprises has been reduced, and 
the popularization of renewable energy and equipment 
has been accelerated, thus promoting the transition 
of energy development modes from consumption to 
sustainable, renewable, and more environmentally 
friendly development tracks and realizing the transition 
from “end pollution control” to “source control”. From 
the square term of intelligent manufacturing, its fitting 
coefficient is -0.05, and it has passed the significance 
test of 10%, which shows that the blind promotion 
of intelligent manufacturing does not promote urban 
green total factor productivity. At the same time, after 
considering heteroscedasticity, autocorrelation, and 
cross-section correlation, FGLS estimation results still 
support this conclusion. Intelligent manufacturing does 
not mean the blunt embedding of digital technology, but 
promotes the multi-directional integration of production 
business, enterprise organizational structure, and 
business model in a data-driven way, which is bound 
to have a threshold requirement for material capital 
and high-knowledge compound talent endowment, thus 

affecting the realization of multi-party collaboration in 
the industrial value chain, leading to a hidden slowdown 
in the promotion effect of intelligent manufacturing on 
green total factor productivity.

Endogenous Treatment

Although more control variables were selected 
to alleviate the endogenous problems caused by 
missing important variables and measurement errors 
when analyzing the relationship between intelligent 
manufacturing and urban green total factor productivity, 
the model setting still faces the simultaneous endogenous 
problems of mutual causality. In view of this, considering 
the rigor of the conclusion, this paper refers to the ideas 
of published literature [72]. We selected the product 
of the average penetration of industrial robots and the 
first-order difference of the penetration of industrial 
robots in other cities in the same province except this 
city to construct the tool variable and adopted the two-
stage least square method (2SLS) to deal with it. At the 
same time, considering the heteroscedasticity and serial 
autocorrelation of macroeconomic variables, this paper 
further uses the two-step optimal generalized moment 
method (GMM) to test it, so as to obtain more accurate 
parameter estimation results.

Table 1. Benchmark regression result.

Variable POLS RE FE FGLS FE FGLS

IM
0.009** 0.006** 0.014*** 0.007* 0.024** 0.021**

(2.15) (1.98) (2.61) (1.73) (2.41) (2.15)

IM2
-0.05* -0.004*

(-1.72) (-1.82)

Urban
0.119*** 0.175 0.147*** 0.167* 0.118*** 0.118***

(5.70) (0.89) (4.74) (1.73) (5.63) (5.43)

Open
-0.051 -0.066 -0.070* -0.054* -0.081 -0.049

(-1.56) ( -1.46) (-1.69) (-1.86) (-1.41) (-1.54)

Cis
0.122** 0.137 0.146* 0.138* 0.121 0.123**

(2.38) (1.55) (1.69) (1.88) (0.93) (2.49)

Fin
-0.026 -0.039 -0.012** -0.066* -0.047* -0.170

(-0.78) (-0.34) (-2.41) (-1.94) (-1.71) (-0.82)

Energy
-0.018* -0.063 -0.028* -0.037** -0.065* -0.087*

(-1.74) (-0.25) (-1.79) (-2.07) (-1.92) (-1.94)

Ins
0.014*** 0.010*** 0.013*** 0.025*** 0.024*** 0.014***

(6.57) (5.95) (3.36) (5.36) (5.05) (6.64)

Constatn
0.732*** 0.697*** 0.765*** 0.626*** 0.773** 0.743***

(8.42) (8.13) (6.08) (9.35) (8.53) (6.56)

R2 0.6942 0.7594 0.7632 0.7125 0.8703 0.7721

Note: * * *, * *, and * mean significant at 1%, 5%, and 10% significance levels, respectively. The following table is the same.
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As can be seen from Table 2, the models have 
all passed the unidentifiable test, weak instrumental 
variable test, and over-identification test, and it shows 
that after eliminating the possible endogenous problems, 
the influence utility of intelligent manufacturing in 
promoting urban green total factor productivity still 
supports the conclusions in the benchmark regression 
analysis, and even the estimation coefficient has 
increased slightly.

Endogenous Treatment

In order to ensure the reliability of the benchmark 
regression results, this paper uses the following three 
methods to demonstrate:

1. Tail-shrinking treatment. If industrial development 
is hindered by force majeure or major natural disasters, 
all kinds of enterprises will face huge competitive 
risks, prolonged financing projects, oversaturation 
of the market, and difficulties in realizing products, 
which will lead to outliers in the sample data and thus 
bias the regression results. Therefore, in this paper, all 
continuous variables are truncated by 1% up and down 
and then re-estimated by the fixed effect model.

2. Change the sample size. Because Chinese 
municipalities (Beijing, Tianjin, Shanghai, and 
Chongqing) have taken the lead in issuing relevant 
plans, standards, and supporting policies for intelligent 
manufacturing and there is heterogeneity between 
them and other cities in terms of digital infrastructure 
construction, innovation ability, resource endowment, 
and personnel training, this paper excludes them and re-
estimates them by using a fixed effect model.

3. Change the explanatory variables. Referring to the 
practice of Sheng et al. [73], the penetration of industrial 
robots at the city level is re-calculated by replacing the 
installed number of industrial robots with the stock of 
industrial robots, and the fixed effect model is used for 
re-estimation.

According to the results of the robustness test  
(Table 2), intelligent manufacturing has a positive effect 

on urban green total factor productivity at least at the 
level of 5% significance, and the only difference is that 
the estimation coefficient changes slightly, which fully 
shows that the benchmark regression results are reliable 
and robust.

Analysis of Path Mechanisms

Heterogeneity Analysis

1. Resource endowment. According to the National 
Sustainable Development Plan for Resource-Based Cities 
(2013-2020) issued by the State Council, the sample is 
divided into resource-based cities and non-resource-
based cities for regression estimation. At the same time, 
according to the differences in resource development 
degree and sustainable development ability of cities, 
resource-based cities are further classified into four 
types: growth type, mature type, recession type, and 
regeneration type, so as to more clearly define the future 
development direction and key tasks of various cities. 
From the regression results, it is not difficult to see that 
intelligent manufacturing plays a more significant role 
in promoting the green total factor productivity of non-
resource-based cities, while the influence of resource-
based cities is not significant. This shows that the 
unbalanced and uncoordinated contradiction between 
resource development, economic and social development, 
and ecological environment protection in resource-based 
cities is still outstanding at this stage, and the pressure 
of maintaining stability is great, which makes it difficult 
for intelligent manufacturing to break the industrial 
“path dependence” development pattern of resource-
based cities relying on traditional mining and smelting 
resources and cannot effectively drive the improvement 
of green total factor productivity [74]. For non-resource-
based cities, the lack of resource endowment makes 
them more dependent on technological innovation 
to improve the efficiency of resource utilization, 
thus promoting economic development. Intelligent 
manufacturing adopts advanced technologies such as 

Table 2. Endogenous treatment and robustness test results.

Variable
Endogenous treatment Robustness test

IV2SLS GMM Tail shrinking 
treatment

Change the sample 
size

Replace explanatory 
variables

IM
0.051*** 0.121*** 0.053*** 0.014** 0.019**

(3.58) (2.60) (3.89) (2.16) (2.13)

Control variable Control Control Control Control Control

Weak instrumental 
variable test 191.079

Unidentifiable test 339.642***

Over-identification 
test 0.386 1.12 0.887

R2 0.8158 0.7932 0.7054 0.7187 0.7866
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big data, cloud computing, and the Internet of Things, 
which effectively promote the transformation of an 
enterprise’s production organization mode to large-scale 
personalized customization, so that product designers 
and producers can accurately distinguish users’ explicit 
needs from real needs, so as to carry out customized 
R&D and flexible production and improve the green 
performance of products. At the same time, under the 
blessing of industrial intelligence, enterprises in non-
resource-based cities will design product recycling and 
reuse processes based on user preferences, effectively 
reducing resource and energy consumption.

2. Digital economy. The rapid development of 
the digital economy has created a good development 
condition and technical environment for the artificial 
intelligence industry, and intelligent manufacturing to 
improve the efficiency and accuracy of the manufacturing 
process by using advanced manufacturing technologies 
such as artificial intelligence, big data analysis, and 
industrial robots and make more intelligent decisions 
for enterprises in product design, production planning, 
and supply chain management. In view of this, this 
paper refers to the practice of Zhao et al., which takes 
the development of the internet as the measurement 
core, uses the principal component analysis method to 
measure the development level of the digital economy 
in each city, and estimates the sample division with the 
median value [75]. According to the regression results, 
intelligent manufacturing can significantly promote 
green total factor productivity only in cities with a 
high level of digital economy development. This means 
that the digital economy is profoundly changing the 
traditional manufacturing industry and reshaping the 
traditional manufacturing model. By introducing new 
technologies, new processes, and new equipment that 
are environmentally friendly, the efficiency of enterprise 
resource use and total factor productivity are improved, 
and the coordinated progress of economic, social, and 
ecological benefits is realized.

3. Urban location. As the sample involves 262 cities 
at or above the prefecture level in China, the regional 
span is large, and there are differences in policy 
planning, location advantages, industrial bases, and 

resource endowments among cities, resulting in certain 
heterogeneity in their respective levels of intelligent 
manufacturing development and industrial ecological 
environment. At the same time, with the continuous 
acceleration of urbanization, there is a spatial dependence 
on carbon emissions and energy consumption between 
neighboring cities [76]. In view of this, referring to 
China’s Physical Geography, this paper divides the urban 
geographical area of China into the east, the middle, 
and the west and further investigates the difference in 
the influence of intelligent manufacturing on the urban 
green total factor productivity. From Table 3, it is known 
that intelligent manufacturing has a significant role in 
promoting the green total factor productivity of cities in 
eastern China, but the central and western regions have 
not passed the significance test. This is closely related 
to the development trend that the regional distribution 
of intelligent manufacturing in China is “strong in the 
east and weak in the west”. The eastern coastal cities 
represented by Jiangsu, Zhejiang, and Guangdong 
have strong economic strength, abundant scientific and 
technological resources, and the development speed of 
intelligent manufacturing is relatively fast. Many large 
manufacturing enterprises have basically realized the 
transformation from mechanization to automation, 
creating sufficient space for improving green total factor 
productivity.

Channel Analysis

In order to further investigate the realization 
conditions of intelligent manufacturing promoting urban 
green total factor productivity, this paper constructs 
a panel smooth conversion model with man-machine 
matching degree as the threshold variable for estimation. 
Before model parameter estimation, it is necessary  
to calculate the cross-section heterogeneity test and  
non-reserved heterogeneity test of the PSTR model by 
LM, LMF, and LRT estimators in different position 
parameter dimensions. The specific results are shown  
in Table 4.

Table 3. Heterogeneity analysis results.

Variable
Resource endowment Digital economy Urban location

Resource-based 
cities

Non-resource 
cities

High digital 
economy

Low digital 
economy

Eastern 
region

Middle 
region

Western 
region

IM
0.018 0.015** 0.039** 0.008 0.105*** 0.030 0.009

(1.03) (1.99) (2.22) (1.08) (3.04) (1.34) (1.55)

Control 
variable Control Control Control Control Control Control Control

Regional effect Control Control Control Control Control Control Control

Time effect Control Control Control Control Control Control Control

R2 0.8792 0.7712 0.8687 0.6808 0.6387 0.7959 0.8681
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As can be seen from Table 4, when the position 
parameters take values of m = 1 and m = 2 respectively, 
the test results all indicate that the original hypothesis 
is rejected at the level of 1% significance, which means 
that the influence of intelligent manufacturing on 
urban green total factor productivity will change with 
the change of man-machine matching degree, and the 
model setting is reasonable. Furthermore, when m = 1, 
the values of AIC and BIC are smaller than those when 
m = 2, so the number of optimal transfer functions and 
the number of optimal position parameters of the model 
are established as 1. Based on the above test results, 
this paper further estimates the model parameters 
and obtains the regression coefficients of explanatory 
variables under different mechanisms. The results are 
shown in Table 5.

The results show that the estimated value of the 
position parameter is 0.1079, which means that when 
the man-machine matching degree is lower than 0.1079, 
the conversion function g(Subit; γj; cj)→0. The estimated 
coefficient of intelligent manufacturing in the linear 
part is -0.0511, and it has passed the test at the 1% 
significance level. When the man-machine matching 
degree is exactly 0.1079, the conversion function g(Subit; 
γj; cj) = 0.5, and the influence coefficient of intelligent 
manufacturing on urban green total factor productivity 

is -0.012 (-0.0511+0.5 * 0.0782). When the man-machine 
matching degree is higher than 0.1079, the transfer 
function g(Subit; γj; cj)→1, and the positive promotion 
effect of intelligent manufacturing on urban green total 
factor productivity gradually appear, with an influence 
coefficient of 0.0271 (-0.0511+0.0782). In addition, in 
order to more clearly depict the nonlinear influence of 
intelligent manufacturing on urban green total factor 
productivity, combined with the parameter estimation 
results in Table 5, this paper draws the transfer function 
diagram of the two, as shown in Fig. 3. When the 
transfer function g(Subit; γj; cj) fluctuates in the range 
of (0,1), the model realizes a smooth transition between 
different zones; that is, with the man-machine matching 
degree from weak to strong, the influence of intelligent 
manufacturing on urban green total factor productivity 
also changes from a negative inhibition effect  
to a positive promotion effect.

From this point of view, although intelligent 
manufacturing empowers the industrial chain with 
technologies such as cloud computing, blockchain, and 
automation, it can automatically adapt to and handle a 
variety of complex production tasks and can integrate, 
transform, and upgrade traditional production factors. 
However, intelligence is not a production subject that 
exists independently of human beings. When workers 

Table 4. Results of the cross-section heterogeneity test and the non-reserved heterogeneity test.

Statistic
m = 1 m = 2

LM LMF LRT LM LMF LRT

Cross-section heterogeneity test
(H0:r = 0; H1:r  = 1)

28.262 1.625 28.389 33.436 3.840 33.611

(0.029) (0.055) (0.028) (0.000) (0.000) (0.000)

Non-reserved heterogeneity test
(H0:r  = 1; H1:r  = 2)

5.725 0.871 5.730 12.112 0.689 12.135

(0.455) (0.515) (0.454) 0.736 (0.808) (0.735)

AIC -6.425 -6.421

BIC -6.390 -6.385

Note: The P value is in brackets, and m represents the dimension of the position parameter.

Table 5. Parameter estimation results of the PSTR model.

Variable
Linear part Nonlinear part

Parameter Estimated value Parameter Estimated value

IM β11 -0.0511*** β21 0.0782***

Urban β12 -0.0141*** β22 0.0396**

Cis β13 0.0069** β23 -0.0079*

Open β14 -0.0006* β24 0.0008**

Fin β15 -0.0007** β25 0.0064*

Energy β16 0.0037* β26 -0.0078*

Ins β17 0.0014* β27 0.0043**

γ 51.0297 m 0.1079
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and machines cannot fully cooperate, there will be  
a “Solo Paradox”, which will restrict the realization of 
a benign interaction between intelligent manufacturing 
and green total factor productivity [77-79].

Conclusions and Implications

Conclusions and Discussion

The development of intelligent manufacturing with 
data elements as the core has gradually become an 
important driving force to transform the economic 
development mode and realize sustainable green 
development. Based on the panel data of 262 cities in 
China from 2008 to 2019, this paper verifies the direct 
impact of intelligent manufacturing on green total 
factor productivity and uses the PSTR model to deeply 
explore the indirect impact mechanism of man-machine 
matching. The results show that: firstly, intelligent 
manufacturing can significantly improve urban green 
total factor productivity, and this conclusion still 
holds after a series of robustness tests and endogenous 
treatment. Secondly, from the results of heterogeneity 
analysis, intelligent manufacturing has significantly 
promoted the green total factor productivity of non-
resource cities, cities with high levels of digital economy 
development, and cities in the eastern region of China. 
Thirdly, from the results of channel analysis, it is found 
that with the continuous improvement of man-machine 
matching, the promotion of intelligent manufacturing to 
urban green total factor productivity has been further 
strengthened.

Different from previous studies, this paper not only 
innovatively constructs a unified logical framework 
of “IM – Match – CGTFP”, but also investigates the 
mechanism of IM on CGTFP by using city-level panel 
data. The conclusion of this paper is similar to that of 
published literature [80, 81], that is, the development of 

intelligent technologies such as the Internet, the digital 
economy, and robots can provide lasting kinetic energy 
for the improvement of CGTFP. However, different 
from the existing research, this paper considers that 
the complexity of economic phenomena often leads 
to a large number of nonlinear relationships among 
economic variables, and it will be difficult to effectively 
explain economic reality by ignoring this nonlinear 
relationship. Therefore, on the basis of analyzing the 
nonlinear characteristics of IM affecting CGTFP, this 
paper uses the PSTR model to test the role of man-
machine matching and provides a basis for better 
grasping the development law of intelligent technology.

Implications

The above conclusions provide important policy 
implications for China to deepen the application of 
intelligent manufacturing, promote the transformation 
and upgrading of traditional industries, and further 
improve the utilization rate of resources, energy, and 
environmental benefits. In view of this, this paper 
puts forward the following policy suggestions: First, 
improve the construction of digital facilities and 
extend the coverage, enrich the application scenarios 
of intelligent manufacturing in industrial production, 
energy saving, and consumption reduction, such as 
industrial quality inspection, intelligent warehousing, 
operation optimization, flexible production, etc., actively 
cultivate emerging business models and lead the green 
transformation of production methods. Second, fully 
consider the heterogeneity of urban location, resource 
endowment, industrial structure, and talent reserve, 
implement an intelligent manufacturing development 
strategy according to local conditions, and strive to 
make up for shortcomings, and forge long boards, thus 
effectively promoting the growth of green total factor 
productivity. For example, digital technology has the 
characteristics of high creativity, strong permeability, 
and wide coverage, so as to reduce the dependence 
of resource-based cities on traditional resources and 
strengthen the circular economy and green development. 
For cities in the central and western regions, we should 
strengthen the implementation of energy-saving and 
environmental protection measures, further eliminate 
backward industries with high energy consumption, 
encourage enterprises to strengthen the research 
and development and application of green intelligent 
technologies, and give some support in terms of 
funds, talents, and technology, so as to fully release 
environmental dividends. Third, enterprises should 
strengthen the introduction and training of talents 
with mathematical intelligence to improve the ability 
of man-machine matching. Through the integration of 
science and education, production and education, we 
will cultivate all kinds of talents with environmental 
awareness, engineering ability, and intelligent technical 
literacy, provide intellectual support for enterprises to 
realize intelligent and green transformation, give full 

Fig. 3. Transfer function diagram.
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play to the advantages of man-machine cooperation, 
and release the driving advantage of intelligent 
manufacturing on green total factor productivity.

Research Limitations and Prospects

Although this paper provides some enlightenment for 
the government’s decision-making and research in the 
field of intelligent manufacturing and promoting green 
economic development, there are still some limitations. 
First, based on the availability of data, this paper uses 
city-level data to discuss the impact of China’s intelligent 
manufacturing development level on green total factor 
productivity from 2008 to 2019. Future studies can 
explore how intelligent manufacturing restructures 
enterprise production processes by adjusting research 
methods and perspectives, thus affecting green total 
factor productivity. Secondly, from the perspective of 
the research area, as the vanguard of actively promoting 
the integration of intelligent manufacturing and the 
real economy, the artificial intelligence innovation and 
development pilot zone has played an important role in 
promoting new breakthroughs in a new generation of 
intelligent core technologies and promoting the effective 
transformation of ecological resources. Therefore, 
in the future, the artificial intelligence innovation 
development pilot area can be incorporated into the 
research framework, so as to draw more profound 
conclusions. Finally, this study is an empirical study 
at the level of statistics and econometrics, and the 
conclusion of the study does not provide a detailed 
operation plan. In future research, it will be beneficial 
to analyze the specific measures and experiences of 
intelligent manufacturing to improve the green total 
factor productivity in specific cases by using the method 
of case analysis.
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