Utilization and Characterization of Microbes for Heavy Metal Remediation

Imran¹,², Asad Ali Khan³, Abid Kamal⁴, Abdulwahed Fahad Alrefaei⁵, Wajid Zaman⁶*

¹College of Engineering, Agriculture Aviation Innovation Lab, South China Agriculture University, Guangzhou, China
²Ministry of Agriculture, Extension Wing, Govt of Khyber Pakhtunkhwa, Pakistan
³Department of Agronomy, The University of Agriculture, Peshawar, Pakistan
⁴Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, Pakistan
⁵Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
⁶Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea

* e-mail: wajidzaman@yu.ac.kr

Received: 20 February 2024
Accepted: 8 April 2024

Abstract

Heavy metals in forest soils have substantial ecological implications, affecting the soil and the surrounding ecosystem. These naturally occurring elements, with high atomic weights, become toxic at elevated concentrations. Notable heavy metals in forest soils include lead, cadmium, mercury, and arsenic. The profound toxicity of heavy metal pollution poses a significant risk to modern agriculture, with the potential for accumulation in crops and soils, threatening food security. A crucial aspect of addressing this challenge involves promptly restoring disrupted agricultural land. This study contributes to agricultural soil restoration by employing a combination of microorganisms, which have proven effective in alleviating heavy metal pollution. When paired with Sunflower (Helianthus annus), the combination ensures soil restoration and enhances food security. The study investigated microorganisms from contaminated soil, revealing Gram-negative bacilli and cocci arrangements. The colony characteristics, including hues and diameters, were assessed, with notable findings in samples 1, 2, and 5. The microbial ability to remove heavy metals (Pb, As, Hg, Ni, and Cd) was quantified, highlighting the diverse capacities among isolates. Selected isolates (1, 3, 6, 7, and 10) exhibited 25% higher biomass accumulation than the control, extracting at least 40 mg/L of each metal. Bacterial identification using a Vitek 2 Compact analyzer revealed Pantoea sp., Achromobacter denitrificans, Klebsiella oxytoca, Rhizobium radiobacter, and Pseudomonas fluorescens. Biocompatibility testing led to the formation of consortia for soil remediation, with Coalition D (Achromobacter denitrificans, Klebsiella oxytoca, and Rhizobium radiobacter in a 1:1:2 ratio) confirming the effective removal of Ni and Pb. Various consortia showed differing performances in removing composite contaminants, with Coalition D being promising, indicating a potential for phytoremediation. Optimal cultivation conditions were identified, with Coalition D excelling at metal removal and biomass accumulation. The temperature, pH, and soil conditions were crucial for Coalition D efficiency, and combining them with phytoremediation techniques showed promise. Laboratory experiments with sunflower seedlings confirmed the efficacy of Coalition D in enhancing soil phytoremediation, improving plant survival, and removing mixed heavy metals.

Keywords: contamination, heavy metal, soil and ecosystem health, bioremediation, microbes
Introduction

Heavy metals in forest soil can originate from natural geological processes such as the weathering of rocks and volcanic activity. Human activities, including mining, industrial emissions, agricultural practices, and the use of certain pesticides and fertilizers, introduce heavy metals into forest ecosystems [1]. Over time, these heavy metals accumulate in forest soils through deposition from the atmosphere or runoff from nearby contaminated areas. The accumulation depends on factors such as soil pH, organic matter content, and the specific characteristics of the heavy metals involved [2].

High concentrations of heavy metals can alter the physical, chemical, and biological properties of forest soils, affecting nutrient cycling, microbial activity, and overall soil fertility [3, 4]. Soil pH crucially determines the availability and mobility of heavy metals [5]. Plants in forest ecosystems absorb heavy metals from the soil. The extent of uptake depends on the plant species and the specific metal. Once absorbed, heavy metals accumulate in various plant tissues, potentially affecting vegetation health and the entire food web [6, 7].

Forest-dwelling organisms, including insects, fungi, and larger fauna, may be exposed to heavy metals through soil and plant pathways. Bioaccumulation in wildlife can adversely affect reproduction, growth, and overall health. Heavy metals can leach from forest soils into groundwater or surface water, impacting water quality [8] and posing downstream risks to aquatic ecosystems and human water supplies.

Sustainable forest management practices can minimize the introduction of heavy metals [9, 10]. Remediation techniques, such as phytoremediation (using plants to extract or stabilize contaminants) and soil amendments, can mitigate the impact of heavy metals [11].

Monitoring and comprehending the dynamics of heavy metals in forest soils are essential for sustainable ecosystem management, conservation, and the protection of human and wildlife health [12]. Heavy metal toxicity in soil and plants has significant implications for human health because these elements can accumulate in consumable crops, entering the human food chain [13]. This contamination directly threatens human well-being through various pathways, such as the consumption of tainted food and water and the inhalation of polluted air [14]. This study examined the adverse effects of heavy metal toxicity in soil and plants on human health.

The challenges posed by rapid population growth and industrialization necessitate a comprehensive strategy considering social justice, technological innovation, environmental sustainability, and international cooperation [15]. Sustainable farming practices must align with prudent land use and resource management to ensure long-term global food security [16]. On the other hand, the escalating human load, which diminishes soil fertility by depleting nutrients and organic matter while introducing contaminants such as pesticides, heavy metals, and hydrocarbons, threatens these endeavors [17].

When plants absorb heavy metals from contaminated soil, these toxic elements concentrate in the edible parts, such as fruits, vegetables, and grains [18], leading to chronic exposure and potential adverse health effects. Common toxic heavy metals include lead, cadmium, mercury, and arsenic, which can cause various health issues, including neurological disorders, kidney damage, cardiovascular problems, and cancer [19, 20]. Children, pregnant women, and the elderly are particularly vulnerable because of their developing bodies or weakened immune systems [21].

The bioaccumulation of heavy metals in the human body over time suggests that even low levels of exposure can lead to long-term health problems [22, 23]. In addition, heavy metals can undergo biomagnification in the food chain, posing higher exposure risks for individuals consuming animal products from contaminated areas [24].

Mitigating the adverse health effects of heavy metal toxicity involves improving soil and water quality through remediation techniques [25], implementing strict industrial and agricultural regulations [26], and promoting awareness and safe practices among vulnerable communities [27]. Addressing heavy metal contamination in soil and plants is vital for safeguarding human health and ensuring food safety [28]. Global concerns regarding heavy metal poisoning in agricultural areas are escalating [29, 30]. As and Hg, often originating from industrial facilities, along with metals such as Cd, Pb, Zn, and Cu from fertilizers, including organic ones [31], contribute to soil contamination. These persistent metals alter the biochemical processes crucial for crop production, posing risks through bioaccumulation and biomagnification in the food chain [32]. Agricultural and industrial practices, including transportation, garbage burning, mining, and oil spills, intensify heavy metal pollution in soils [33].

Agricultural practices introduce heavy metals through excessive fertilizer and pesticide use, harming the environment by affecting plant growth [34]. Removing heavy metals from soil involves physicochemical and biological techniques. Although physicochemical methods can significantly alter soil quality, they are expensive and labor-intensive. Alternatively, biological techniques, such as bioremediation, utilizing microorganisms and plants (phytoremediation), provide a more economical and environmentally friendly alternative [35, 36]. Bioremediation, emphasizing microbial activity, shows promise in removing heavy metals through various methods [37].

Microorganisms are crucial in soil restoration, and selecting resilient strains is vital. Proteobacteria show resilience to lead and zinc, while Bacteroidetes and Firmicutes are suitable for arsenic-contaminated environments [38, 39]. The oxidation states of heavy metals, such as Cu, Se, Pb, Cr, As, and Ni, affect their mobility and toxicity [40, 41]. Microorganisms can alter these states through enzymatic transformations, with certain bacteria displaying high biosorption capacities [42, 43]. Hence, using microbes and plants together is a practical strategy for influencing metal phosphates [44],...
producing chelating agents, and causing redox shifts that affect heavy metal mobility [45, 46]. Sunflower (Helianthus annuus) is a viable option for improving agricultural soils, demonstrating resistance to heavy metal toxicity and effective detoxification of contaminated sites through its concentration of heavy metals in the root system [47-52].

Material and Methods

Microorganisms were cultured in a liquid medium enriched with heavy metals (0.4g KH₂PO₄, 3.0g (NH₄)₂SO₄, 3.0g NaC₂H₃O₆, 0.01g CuSO₄, 0.005g ZnSO₄, 0.001g FeSO₄, 0.2g CdCl₂, 0.5g MgSO₄, 0.1g MnSO₄, 8.0g peptone, 5.0g maltose, 20.0g agar-agar, and 1 L water). Subsequently, microorganisms were retrieved after being cultured. One gram of soil was added to 100 mL of sterile medium, and the mixture was agitated for 24 hours at 25 °C and 100 rpm in an LSI-3016A shaker–incubator [2, 3]. Pure isolates were produced by seeding 1 mL of the liquid culture onto a solid medium of the same composition and incubating it for 24 hours at 25 °C in a TSO–1/80 SPU thermostat. The morphological traits were determined using single colonies produced on ordinary agar via the streak plate method. The Gramme method describes the biochemical profile of the cell wall, and an Axio Scope A1 microscope (Zeiss, Jena, Germany) was used to observe the samples. The samples were tested for their capacity to take up heavy metals from the nutrient medium while retaining biomass growth compared to the control (no heavy metals) to identify promising strains. The consortia were formed based on biocompatibility testing, and their capacity to absorb heavy metals and combinations was evaluated [2, 4]. After selecting a consortium for soil purification, its effect on plant growth and development was examined, particularly through the synthesis of phytohormones, including indoleacetic acid.

Isolated microorganism inoculums were added to beef extract broth to assess potential metal uptake (Pb, Ni, As, Cd, and Hg). Flasks were incubated in an LSI-3016A shaker at 100 rpm and 25 °C for five days after adding metal salts (Na₂AsO₄, Pb(NO₃)₂, Ni(NO₃)₂, Cd(NO₃)₂, and Hg(NO₃)₂) at 1 mg/mL. The residual heavy metals were analyzed using an ICPE-9820, Shimadzu, Kyoto, Japan, atomic emission spectrometer with standard metal ion reductions as reference samples. After centrifuging the culture medium, the supernatant was hydrolyzed to form consortia for soil remediation. Coalition D, seeding them on Petri dishes, and providing them with water [27]. An atomic emission spectrometer measured the remaining metals in the soil after ten days of germination. Every experiment was run in triplicate, and statistical analysis was conducted using Microsoft Office 2007 (excel sheet analysis) with a t-test.

Statistical Analysis

Data were statistically analyzed using the method reported elsewhere [31], and means were compared with the LSD test (P < 0.05). The significance of the main effects and treatments in a control vs. rest comparison was determined through ANOVA. A two-way ANOVA compared the treated conditions (Factors A, B, and C) with the non-treated plots (control vs. rest) and assessed their significance relative to the control. The ANOVA output commonly presents the main effect of the “control vs. rest” factor.

Results and Discussion

Microorganism Isolation and Characteristics

Experimental findings revealed that all identified microorganisms were Gram-negative bacilli, typically occurring singly or in pairs, except for sample 8, where cocci were found arranged in chains resembling streptococci. The colonies exhibited a variety of colors, including yellow, orange, light brown, or light beige, with samples 1, 2, and 5 appearing predominantly yellow [28, 29]. Samples 4 and 6 displayed the largest colony diameters, ranging from 2.0 to 3.5 mm and 2.1 to 2.8 mm, respectively [30, 31]. Notably, samples 1, 2, and 5 were consistently distinguished by their yellow hue. The ability of the microorganisms to acquire biomass and eliminate specific heavy metals, including Pb, As, Hg, Ni, and Cd, varied among isolates (Table 1). The selected isolates (1, 3, 6, 7, and 10) showed 25% higher biomass accumulation than the control, extracting at least 40 mg/L of each metal. Bacterial identification using a Vitek 2 Compact analyzer revealed Pantoaea sp., Achromobacter denitrificans, Klebsiella oxytoca, Rhizobium radiobacter, and Pseudomonas fluorescens. These isolates were further tested for biocompatibility to form consortia for soil remediation. Coalition D, with Achromobacter denitrificans, Klebsiella oxytoca, and
Rhizobium radiobacter at a (1:1:2) ratio, demonstrated effective removal of Ni and Pb. The study explored various Coalition D alternatives based on biocompatibility tests, with Coalition D showing promising properties for further investigation and consideration in soil remediation scenarios. The study highlights the potential use of Achromobacter sp. for the bioremediation of heavy metal-contaminated soils, highlighting its ability to immobilize and remove divalent cadmium [53, 54]. Achromobacter denitrificans was reported to produce phytohormones, organic acids, siderophores, and ammonia, highlighting its multifunctional capabilities [55]. Klebsiella bacteria, including Klebsiella oxytoca isolates, showed resistance against various heavy metals [56]. Certain Rhizobium species, in addition to having heavy metal resistance, can act as biofertilizers because of their nitrogen-fixing capacity [39, 57].

Heavy Metal Removal Efficiency

Due to the predominant presence of Gram-negative bacilli arrangements among the isolated microorganisms, the colonies presented a diverse array of hues, encompassing tones of yellow, orange, light brown, or light beige, with samples 1, 2, and 5 manifesting a predominant yellow coloration. Samples 4 and 6 were distinguished by their conspicuous colony diameters. Conversely, sample 8 deviated from this pattern, exhibiting cocci akin to those resembling streptococci. The microbial ability to remove heavy metals, as detailed in Table 2, varied among isolates. Samples 1, 3, and 7 showed the highest Pb removal, ranging from 22.04 mg/L to 74.26 mg/L. Selected isolates (1, 3, 6, 7, and 10) showed 25% higher biomass accumulation than the control, extracting a minimum of 40 mg/L of each metal. Bacterial identification using a Vitek 2 Compact analyzer revealed Pantoea sp., Achromobacter denitrificans, Klebsiella oxytoca, Rhizobium radiobacter, and Pseudomonas fluorescens.

The biocompatibility testing led to the formation of consortia, with Coalition D exhibiting impressive results in removing Ni (98.22 mg/L) and Pb (91.13 mg/L). On the other hand, mercury adversely affected biomass accumulation. Various consortia of alternatives were explored based on biocompatibility tests (Fig. 1). Coalition D, with a ratio of Achromobacter denitrificans, Klebsiella oxytoca, and Rhizobium radiobacter, and Pseudomonas fluorescens.

Table 1. Deposition of various heavy metals and biomass in an environment of each metal.

<table>
<thead>
<tr>
<th>Microorganism Isolates</th>
<th>Hg</th>
<th>Ni</th>
<th>Cd</th>
<th>As</th>
<th>Pb</th>
<th>Control (No Metal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.88 ± 0.06</td>
<td>0.82 ± 0.05</td>
<td>0.68 ± 0.05</td>
<td>0.75 ± 0.04</td>
<td>0.86 ± 0.07</td>
<td>0.89 ± 0.07</td>
</tr>
<tr>
<td>2</td>
<td>0.52 ± 0.04</td>
<td>0.86 ± 0.05</td>
<td>0.20 ± 0.04</td>
<td>0.24 ± 0.05</td>
<td>0.85 ± 0.07</td>
<td>0.81 ± 0.05</td>
</tr>
<tr>
<td>3</td>
<td>0.85 ± 0.07</td>
<td>0.91 ± 0.06</td>
<td>0.75 ± 0.05</td>
<td>0.75 ± 0.06</td>
<td>0.84 ± 0.07</td>
<td>0.91 ± 0.05</td>
</tr>
<tr>
<td>4</td>
<td>0.56 ± 0.04</td>
<td>0.56 ± 0.03</td>
<td>0.53 ± 0.04</td>
<td>0.65 ± 0.04</td>
<td>0.64 ± 0.05</td>
<td>0.91 ± 0.05</td>
</tr>
<tr>
<td>5</td>
<td>0.27 ± 0.03</td>
<td>0.43 ± 0.02</td>
<td>0.42 ± 0.04</td>
<td>0.35 ± 0.04</td>
<td>0.54 ± 0.04</td>
<td>0.93 ± 0.05</td>
</tr>
<tr>
<td>6</td>
<td>0.84 ± 0.05</td>
<td>0.76 ± 0.05</td>
<td>0.83 ± 0.03</td>
<td>0.94 ± 0.04</td>
<td>0.64 ± 0.06</td>
<td>0.90 ± 0.05</td>
</tr>
<tr>
<td>7</td>
<td>0.75 ± 0.05</td>
<td>0.91 ± 0.06</td>
<td>0.64 ± 0.05</td>
<td>0.74 ± 0.05</td>
<td>0.83 ± 0.07</td>
<td>0.88 ± 0.05</td>
</tr>
<tr>
<td>8</td>
<td>0.38 ± 0.03</td>
<td>0.58 ± 0.03</td>
<td>0.43 ± 0.06</td>
<td>0.24 ± 0.04</td>
<td>0.34 ± 0.03</td>
<td>0.88 ± 0.05</td>
</tr>
<tr>
<td>9</td>
<td>0.20 ± 0.02</td>
<td>0.57 ± 0.03</td>
<td>0.74 ± 0.07</td>
<td>0.15 ± 0.04</td>
<td>0.34 ± 0.03</td>
<td>0.84 ± 0.05</td>
</tr>
<tr>
<td>10</td>
<td>0.80±±0.05</td>
<td>0.71±±0.08</td>
<td>0.65±±0.06</td>
<td>0.95±±0.06</td>
<td>0.75±±0.07</td>
<td>0.97±±0.06</td>
</tr>
</tbody>
</table>

Table 2. Various Heavy metals Absorption (mg/L) absorption by the individual microbe.

<table>
<thead>
<tr>
<th>Microorganism Isolates</th>
<th>Hg</th>
<th>Ni</th>
<th>Cd</th>
<th>As</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.44±2.23</td>
<td>48.10±2.36</td>
<td>57.51±2.65</td>
<td>37.44±1.65</td>
<td>62.15±3.17</td>
</tr>
<tr>
<td>2</td>
<td>13.32±0.96</td>
<td>47.41±2.04</td>
<td>19.14±1.14</td>
<td>25.76±1.03</td>
<td>46.02±2.25</td>
</tr>
<tr>
<td>3</td>
<td>73.08±3.82</td>
<td>53.32±2.29</td>
<td>62.41±2.99</td>
<td>40.03±1.60</td>
<td>73.10±2.55</td>
</tr>
<tr>
<td>4</td>
<td>41.44±1.70</td>
<td>36.08±1.62</td>
<td>38.50±1.85</td>
<td>33.21±1.43</td>
<td>34.76±1.77</td>
</tr>
<tr>
<td>5</td>
<td>21.46±1.01</td>
<td>39.74±1.22</td>
<td>16.72±0.87</td>
<td>28.47±1.31</td>
<td>36.02±1.66</td>
</tr>
<tr>
<td>6</td>
<td>51.33±2.31</td>
<td>47.32±2.13</td>
<td>78.02±3.67</td>
<td>44.37±1.86</td>
<td>51.14±2.35</td>
</tr>
<tr>
<td>7</td>
<td>61.57±3.16</td>
<td>56.96±2.90</td>
<td>41.65±2.04</td>
<td>59.52±2.86</td>
<td>74.26±3.42</td>
</tr>
<tr>
<td>8</td>
<td>32.34±1.68</td>
<td>48.19±1.97</td>
<td>29.97±1.44</td>
<td>24.57±1.03</td>
<td>25.11±1.16</td>
</tr>
<tr>
<td>9</td>
<td>64.38±2.64</td>
<td>43.50±2.11</td>
<td>11.84±0.50</td>
<td>10.36±0.41</td>
<td>22.04±1.06</td>
</tr>
<tr>
<td>10</td>
<td>56.16±2.75</td>
<td>43.32±2.21</td>
<td>53.46±2.19</td>
<td>43.45±2.16</td>
<td>46.36±2.04</td>
</tr>
</tbody>
</table>
oxytoca, and Rhizobium radiobacter (1:1:2), demonstrated effectiveness in removing heavy metals and showed promise in mixed heavy-metal contamination scenarios. The ability of Coalition D to synthesize phytohormones was highlighted, making Coalition D a promising choice (Table 3). Optimal cultivation conditions were identified, with temperature, pH, and soil conditions crucial for the efficiency of Coalition D. Coalition D, when combined with phytoremediation techniques, showed promise in enhancing plant survival and removing heavy metals from contaminated soil. Laboratory experiments with Sunflower seedlings confirmed the efficacy of Coalition D in enhancing soil phytoremediation. The study emphasizes the significant threat of heavy metal pollution to modern agriculture, jeopardizing food security [58]. The assembly of Coalition D microorganisms isolated from technogenic areas, particularly Coalition D, showed promise in addressing heavy metal pollution in agriculture and ensuring soil restoration and food security [59]. The effectiveness of Coalition D in removing heavy metals from contaminated soils, its ability to synthesize phytohormones, and its application in phytoremediation techniques make it a valuable solution for sustainable soil restoration in agriculture. Achromobacter denitrificans, Klebsiella oxytoca, and Rhizobium radiobacter efficiently remove heavy metals, such as Cd, Hg, As, Pb, and Ni [60]. Coalition D was designed to combat Pb, As, Hg, Ni, and Cd simultaneously, highlighting its effectiveness in mixed heavy-metal contamination scenarios. The collaborative approach involving Pseudomonas fluorescens, Pantoea sp., Achromobacter denitrificans, Klebsiella oxytoca, Rhizobium radiobacter, and Rhizobium radiobacter is a comprehensive method for heavy metal removal [14].

Biomass Accumulation and Coalition D Formation

The chosen isolates had a 25% higher biomass accumulation rate than the control and could extract at least 40 mg/L of each specific metal. Samples 1, 3, 6, 7, and 10 contained these bacteria. Fig. 2 presents various consortia of alternatives depending on the results of biocompatibility tests. A comprehensive and collaborative method for removing heavy metals from contaminated soils is shown (Table 4), using a variety of microbes, including Pseudomonas fluorescens, Pantoea sp., Achromobacter denitrificans, Klebsiella oxytoca, Rhizobium radiobacter, and Rhizobium radiobacter. The biomass acquisition and heavy metal removal abilities of the microbes varied. Samples 1, 3, and 7 showed the highest Pb removal. Selected isolates showed 25% higher biomass accumulation than the control, extracting at least 40 mg/L of each metal. Bacterial identification

Table 3. Synthesis of phytohormones by consortia.

<table>
<thead>
<tr>
<th>Indole-3-Acetic Acid, µg/mL of Nutrient Medium</th>
<th>Indole-3-Butyric Acid, µg/mL of Nutrient Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>A IA13.63±0.64</td>
<td>IA1.92±0.05</td>
</tr>
<tr>
<td>B IA12.32±0.54</td>
<td>IA0.62±0.05</td>
</tr>
<tr>
<td>C IA12.12±0.45</td>
<td>IA0.94±0.04</td>
</tr>
<tr>
<td>D IA16.03±0.94</td>
<td>IA2.02±0.06</td>
</tr>
</tbody>
</table>

Fig. 1. Various heavy metals (Cd, Ni, Hg, As, and Pb) trapped by different microorganisms.
revealed *Pantoea* sp., *Achromobacter denitrificans*, *Klebsiella oxytoca*, *Rhizobium radiobacter*, and *Pseudomonas fluorescens*. The selected isolates, *Pantoea* sp., *Achromobacter denitrificans*, *Klebsiella oxytoca*, *Rhizobium radiobacter*, and *Pseudomonas fluorescens*, underwent biocompatibility testing to form consortia for soil remediation. Coalition D, containing *Achromobacter denitrificans*, *Klebsiella oxytoca*, and *Rhizobium radiobacter* at a 1:1:2 ratio, effectively removed Ni and Pb. Various consortia performed differently, with Coalition D showing promise. The ability of a consortium to synthesize phytohormones has the potential for phytoremediation. Optimal cultivation conditions were identified, with Coalition D excelling at metal removal and biomass accumulation. The temperature, pH, and soil conditions are crucial for the efficiency of Coalition D. The study explored various Coalition Ds for heavy metal removal, with Coalition D being effective. Laboratory experiments with Sunflower seedlings confirmed the efficacy of Coalition D in enhancing soil phytoremediation, improving plant survival, and removing mixed heavy metals. The combination of *Achromobacter*, *Rhizobium*, and *Klebsiella* is proposed for agricultural use to remove heavy metals and promote plant development in contaminated areas [21, 61]. The Coalition D formed within the parameters of the project, particularly Coalition D, shows promise for heavy metal removal (Fig. 3) and plant development in mixed pollution settings [13, 43]. Plant inoculation with PGPR *Variovorax NB24* increased nickel accumulation in the roots and aerial parts, reducing heavy metal-induced oxidative stress and increasing biomass [15, 47].

Evaluation of Coalition D Performance

The ability of the microbes to accumulate biomass and remove specific heavy metals (Table 4) highlights a range of removal capacities among isolates. The selected isolates (1, 3, 6, 7, and 10) demonstrated 25% higher biomass accumulation than the control, extracting at least 40 mg/L of each metal. Bacterial identification using a Vitek 2 Compact analyzer revealed *Pantoea* sp., *Achromobacter denitrificans*, *Klebsiella oxytoca*, *Rhizobium radiobacter*, and *Pseudomonas fluorescens*.

<table>
<thead>
<tr>
<th>Coalition D</th>
<th>Heavy Metal Absorption, mg/L</th>
<th>Biomass Accumulation, g/L</th>
<th>Composite pollutants</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cd</td>
<td>Ni</td>
<td>Hg</td>
<td>As</td>
</tr>
<tr>
<td>A</td>
<td>38.10±1.87</td>
<td>42.81±2.10</td>
<td>19.03±0.93</td>
<td>41.91±2.06</td>
</tr>
<tr>
<td>B</td>
<td>18.95±4.12</td>
<td>44.40±4.04</td>
<td>23.41±2.33</td>
<td>48.01±2.60</td>
</tr>
<tr>
<td>C</td>
<td>58.08±2.85</td>
<td>21.73±1.07</td>
<td>14.65±0.72</td>
<td>26.19±1.28</td>
</tr>
<tr>
<td>D</td>
<td>38.10±1.87</td>
<td>42.81±2.10</td>
<td>19.03±0.93</td>
<td>41.91±2.06</td>
</tr>
</tbody>
</table>
Biocompatibility testing guided the formation of the consortium for soil remediation. Coalition D, with a 1:1:2 ratio of *Achromobacter denitrificans*, *Klebsiella oxytoca*, and *Rhizobium radiobacter*, effectively removed Ni and Pb (Fig. 3). Various consortia showed differential performance in removing composite contaminants, with Coalition D showing promise. The ability of the consortia to synthesize phytohormones indicated the potential for phytoremediation. Optimal cultivation conditions, which are crucial for the efficiency of Coalition D, were identified, with Coalition D excelling at specific metal removal and biomass accumulation. The temperature, pH, and soil conditions played vital roles, and combining them with phytoremediation techniques proved promising. Laboratory experiments with Sunflower seedlings confirmed the efficacy of Coalition D in enhancing soil phytoremediation, improving plant survival, and removing mixed heavy metals. The study explored various Coalition D alternatives based on biocompatibility test results. Coalition D, comprising *Achromobacter denitrificans*, *Klebsiella oxytoca*, and *Rhizobium radiobacter* in a 1:1:2 ratio, showed impressive results in removing Ni (98.22 mg/L) and Pb (91.13 mg/L). On the other hand, mercury adversely affected biomass accumulation. In composite heavy-metal contamination scenarios, Coalition D exhibited significant effectiveness, highlighting its promise for soil cleanup in agricultural areas. The production of indole-3-acetic and indole-3-butyric acids by the consortia can potentially enhance phytoremediation. The temperature and pH conditions crucial for bacterial growth were identified, with 25–30°C considered ideal for Coalition D cultivation and pH 7 optimal for growth. The application of Coalition D was limited in highly acidic and alkaline soils. Combining Coalition D with phytoremediation techniques showed promise for enhancing plant survival and removing heavy metals from contaminated soil. Seed treatment with Coalition D improved soil phytoremediation efficiency significantly, resulting in the removal of Pb (32%), As (15%), Hg (13%), Ni (31%), and Cd (25%). Despite the lower removal rates compared to the nutritional medium, the seed treatment showed higher phytoremediation effectiveness than the control techniques, offering potential benefits for plant survival under heavy metal-induced stress. Further research will be needed for comprehensive validation and practical applications in contaminated soil remediation [45]. The efficiency of Coalition D in removing heavy metals, such as Pb, As, Hg, Ni, and Cd, in mixed contamination scenarios is emphasized [17, 27]. This Coalition D, with specific ratios of *Achromobacter denitrificans*, *Klebsiella oxytoca*, and *Rhizobium radiobacter*, has significant promise in reducing heavy metal levels in the soil.

Synergy with Phytoremediation Techniques

During cultivation in media contaminated with the composite, none of the Coalition D showed a discernible decrease in biomass accumulation. Many studies have highlighted the use of phyto- and bioremediation techniques in tandem. Some microbes can increase plant survival rates while eliminating heavy metals from the environment. The potential of Coalition D for phytoremediation has been studied because it can synthesize phytohormones. All the isolated microorganisms exhibited characteristics of Gram-negative bacilli, except for sample 8, which showed cocci in chains similar to streptococci. Colonies displayed various hues, such as yellow, orange, light brown, or light beige, with samples 1, 2, and 5 standing out as yellow. The highest colony diameters were observed in samples 4 and 6. Table 4 lists the ability of the microbes to accumulate biomass and remove specific heavy metals, with samples 1, 3, and 7 showing the highest Pb removal. Selected isolates (1, 3, 6, 7, and 10) exhibited 25% higher biomass accumulation than the control.
extracting at least 40 mg/L of each metal. Bacterial identification using a Vitek 2 Compact analyzer revealed *Pantoea sp., Achromobacter denitrificans, Klebsiella oxytoca, Rhizobium radiobacter,* and *Pseudomonas fluorescens.* Biocompatibility testing led to the formation of consortia for soil remediation. Coalition D, with a 1:1:2 ratio of *Achromobacter denitrificans, Klebsiella oxytoca,* and *Rhizobium radiobacter,* effectively removed Ni and Pb. Various consortia performed differently in removing the composite contaminants, with Coalition D showing promise. The ability of Coalition D to synthesise phytohormones indicated the potential for phytoremediation. The study assessed various Coalition Ds for heavy metal removal, with Coalition D being effective. Coalition D B exhibited efficient mercury removal, while Coalition D and C excelled in Cd extraction. The composite heavy-metal contamination removal rates were generally less successful than single-contaminant scenarios. The phytoremediation potential was highlighted, especially with Coalition D, which synthesized phytohormones. The optimal cultivation conditions were identified, with Coalition D excelling at specific metal removal and biomass accumulation. The temperature, pH, and soil conditions were crucial for the efficiency of Coalition D, and their combination with phytoremediation techniques showed promise. Laboratory experiments with Sunflower seedlings confirmed the efficacy of Coalition D in enhancing soil phytoremediation, improving plant survival, and removing mixed heavy metals. A seed treatment with Coalition D improved the soil phytoremediation efficiency, resulting in the removal of Pb (32%), As (15%), Hg (13%), Ni (31%), and Cd (25%). Despite lower removal rates than the nutritional medium, the seed treatment demonstrated higher phytoremediation effectiveness than the control techniques, offering potential benefits for plant survival under heavy metal-induced stress. Combining phyto- and bioremediation techniques is suggested as a practical and sustainable approach. The Coalition D of microbes, when used with Sunflower (Helianthus annuus), decreased the levels of Pb, As, Hg, Ni, and Cd significantly in the soil [11]. Phytoremediation involving the injection of *Pseudomonas koreensis* AGB-1 into Miscanthus sinensis A. was reported to enhance the solubilization and availability of heavy metals in the plant rhizosphere, leading to a decrease in heavy metal-induced oxidative stress and an increase in biomass [13, 24, 31].

Optimization of Cultivation Conditions

Temperature and pH are also important for the growth of bacteria. A good choice of these factors lowers industrial production costs while enhancing bioremediation. In particular, Coalition D, which was the best at eliminating specific Pb, Ni, As, and Cu pollutants, had excellent performance against mixed heavy-metal pollution under optimal cultivation conditions and is the leader in the production of indole-3-acetic and indole-3-butyrinic acids. The microbial ability to acquire biomass and eliminate specific heavy metals, detailed in Table 3, varied among isolates, with samples 1, 3, and 7 showing the highest Pb removal. Selected isolates (1, 3, 6, 7, and 10) exhibited 25% higher biomass accumulation than the control, extracting at least 40 mg/L of each metal.

The identities of these isolates determined using a Vitek 2 Compact analyzer were *Pantoea sp., Achromobacter denitrificans, Klebsiella oxytoca,* and *Pseudomonas fluorescens.* Biocompatibility testing formed consortia for soil remediation, with Coalition D showing the effective removal of Ni and Pb. The effectiveness of the Coalition D in removing a range of heavy metals, both individually and in mixed contamination scenarios, was notable. Using Coalition D in phytoremediation with Sunflower is a sustainable solution for agricultural areas. The Coalition D showed the ability to significantly lower the levels of Pb, As, Hg, Ni, and Cd in the soil, indicating potential benefits for soil restoration and food security [17, 21, 23]. Further research is needed for comprehensive validation and practical applications. Additional research will be needed to enhance the cultivation conditions, select suitable carriers, and understand the processes integral to heavy-metal bioremediation. This is crucial for efficiently utilizing the developed Coalition D in treating industrial water and wastewater contaminated with heavy metals [30]. Several consortia have exhibited promising characteristics, warranting thorough exploration and consideration, particularly in addressing heavy metal pollution in soil.

Enhancement of Phytoremediation Efficiency

In the laboratory, Sunflower seedlings were used to examine the efficacy of Coalition D in improving soil phytoremediation efficiency (Table 5). A pre-sowing seed treatment (soaking), particularly at a concentration of 2.5 in accordance with the McFarland standard, was the

<table>
<thead>
<tr>
<th>Metal</th>
<th>Residual Content in Soil, %</th>
<th>Average Survival Rate of Seeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>77.35±3.01</td>
<td>8±1</td>
</tr>
<tr>
<td>As</td>
<td>87.47±2.31</td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>89.66±2.27</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>76.95±2.21</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>79.36±2.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9±2</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Efficiency of soil phytoremediation when treated with Coalition D.
most successful application of Coalition D. With 70% to
90% of seedlings surviving under heavy metal-induced
stress, the use of Coalition D has promise for enhancing
plant survival. The ability of microbes to acquire biomass
and eliminate specific heavy metals was detailed, with
samples 1, 3, and 7 demonstrating notable Pb removal
[33]. Selected isolates (1, 3, 6, 7, 10) exhibited 25%higher biomass accumulation than the control, extracting
at least 40 mg/L of each metal. Bacterial identification
revealed Pantoea sp., Achromobacter denitrificans [17],
Klebsiella oxytoca [29], Rhizobium radiobacter [13], and
Pseudomonas fluorescens [15]. Biocompatibility testing
led to the formation of consortia for soil remediation,
with Coalition D (Achromobacter denitrificans,
Klebsiella oxytoca, and Rhizobium radiobacter in a
1:1:2 ratio) demonstrating effective Ni and Pb removal.
Various consortia alternatives were explored based on
biocompatibility test results [35]. The effectiveness
of Coalition D, especially in mixed heavy-metal
contamination scenarios, was highlighted. Four different
consortia were formed with Achromobacter denitrificans,
Klebsiella oxytoca, and Rhizobium radiobacter ratios
of 1:1:1, 2:1:1, 1:2:1, and 1:1:2. Coalition D exhibited
impressive results in removing Ni (98.22 mg/L) and Pb
(91.13 mg/L).

On the other hand, its biomass accumulation was
retarded significantly in the presence of mercury. The
efficiency of various consortia in eliminating specific
heavy metals and building up biomass was evaluated [32,
36]. Coalition D showed promising results for composite
pollution removal, making it a potential choice for
addressing composite heavy-metal contamination. The
ability of Coalition D to synthesize phytohormones,
particularly indole-3-acetic and indole-3-butyric acids,
was explored (Table 3). Combining Coalition D with
phytoremediation techniques has great promise for
removing heavy metals and enhancing plant survival
(Table 5). The ideal cultivation conditions for Coalition D
were identified, with temperature, pH, and soil conditions
playing crucial roles. Coalition D demonstrated minimal
biomass accumulation under highly acidic and highly
alkaline conditions. The laboratory experiments with
Sunflower seedlings confirmed that pre-sowing seed
treatment (soaking) with Coalition D significantly
improved the soil phytoremediation efficiency. This
approach removed approximately 32% Pb, 15%
As, 13% Hg, 31% Ni, and 25% Cd from the soil.
Although removal rates were lower than the nutritional
medium, seed treatment with Coalition D showed
higher phytoremediation effectiveness than the control
techniques. The survival rate of seedlings under
heavy metal-induced stress ranged from 70% to 90%,
indicating the potential of Coalition D for enhancing
plant survival. Further research will be needed to validate
these findings and explore practical applications in
contaminated soil remediation. Efforts to explore and
depth the understanding of pollutant removal processes
in heavy-metal bioremediation research are emphasized.
This study suggests that a deeper comprehension of

the procedures involved will increase the efficiency of
cleaning contaminated environments [31]. The text
provides a comprehensive overview of the negative
impacts of heavy metal toxicity in soil and plants
on human health. Elevated levels of lead, cadmium,
mercury, and arsenic can lead to chronic exposure and
cause various health problems, including neurological
disorders, kidney damage, cardiovascular issues, and
cancer. Children, pregnant women, and the elderly are
particularly vulnerable populations. Specific negative
impacts of common heavy metals are outlined. Elevated
lead levels can impair plant growth and render soil
unsuitable for agriculture. Cadmium readily accumulates
in edible plant parts, posing health risks. High levels of
mercury can have phytotoxic effects, and arsenic can
interfere with nutrient uptake in plants. Excessive copper,
zinc, nickel, and chromium levels can be toxic to plants
and affect soil health.

Conclusions

The experiential findings revealed that Achromobacter
denitrificans demonstrated efficient removal of heavy
metals, utilizing 41.02 mg/L As and effectively removing
Hg (72.07 mg/L), Pb (70.1 mg/L), and Cd (62.39 mg/L).
Klebsiella oxytoca exhibited substantial Cd (78.03
mg/L), Hg (52.32 mg/L), and Pb (52.13 mg/L) removal,
while Rhizobium radiobacter showed the highest Ni
(56.94 mg/L), Hg (61.57 mg/L), and Pb (74.26 mg/L)
removal. The microbial strains were biocompatible,
forming consortia, particularly Coalition D and C,
which exhibited significant phytohormone synthesis.
Coalition D, characterized by a 1:1:2 ratio of Rhizobium
radiobacter, Klebsiella oxytoca, and Achromobacter
denitrificans, extracted heavy metals from individual
and composite pollutants, demonstrating removal capacities
at concentrations between 47.33 and 83.26 mg/L. In
particular, Coalition D maintained biomass accumulation
under diverse heavy-metal conditions, with an ideal range
of pH 7 and 25–30°C. This underscores the potential of
Coalition D in enhancing phytoremediation for mixed
pollution scenarios, suggesting its applicability for
promoting plant growth in disturbed regions.

Acknowledgments

We extend our appreciation to the Researchers
Supporting Project (no. RSP2024R218), King Saud
University, Riyadh, Saudi Arabia.

Conflict of Interest

The authors declare no conflict of interest.
References

20. RAHMANN Z., SINGH V.P. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environmental Science and Pollution Research, 27 (22), 27563, 2020.

Utilisation and Characterisation of Microbes...

53. SINGH K, TRIPATHI S, CHANDRA R. Bacterial assisted phytoremediation of heavy metals and organic pollutants...

