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Abstract

This study provides an empirical investigation into the effectiveness of several deep learning models in 
forecasting ambient concentrations of particulate matter with a diameter of less than 2.5 micrometers (PM2.5), 
nitrogen dioxide (NO2), and sulfur dioxide (SO2). These pollutants are critical due to their adverse impacts on 
human health and the environment. We evaluated four distinct models: Graph Convolutional Network (GCN), 
Empirical Mode Decomposition combined with GCN (EMD+GCN), Ensemble Empirical Mode Decomposition 
with Gated Recurrent Unit and GCN, and GCN with an attention mechanism (GCN_ATT). Through rigorous 
computational experiments, the models were assessed against multiple statistical metrics including Mean Absolute 
Error (MAE), Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE), and the Coefficient of 
Determination (R2). The EEMD+GRU+GCN model consistently outperformed the others across all pollutants, 
demonstrating the lowest MAE, indicating its strong predictive accuracy. Similarly, it maintained the smallest 
MSE, suggesting it was particularly adept at reducing the influence of larger errors in predictions. Moreover, it 
achieved the lowest MAPE across the datasets, confirming its robustness in percentage terms relative to the scale 
of the actual values, a critical indicator of practical applicability for air quality forecasting. The GCN model, 
while foundational, showed significant limitations, especially in the prediction of NO2 and SO2, as evidenced 
by its negative R2 values, indicating a poor fit that was outperformed by simple average models. The GCN_
ATT model did not show the expected improvement that the attention mechanism might promise, suggesting 
that additional fine-tuning or structural model changes are required. In conclusion, the integration of ensemble 
empirical mode decomposition techniques with advanced neural network architectures such as GRUs and GCNs 
provides a compelling approach to air quality forecasting. The proposed model’s ability to capture complex 
spatiotemporal dependencies in environmental data makes it a promising tool for environmental monitoring and 
policy-making, offering significant benefits for public health and ecological protection. 

Keywords: Meta-heuristics forecasting, EEMD, CEEMDAN, GCN attention. 



2176 Huimin Han, et al.

Introduction

The escalating pace of urbanization coupled with 
current economic dynamics has magnified the challenge 
of urban air pollution, posing significant risks to 
public health, environmental integrity, and the broader 
paradigm of climate change [1, 2]. The intensification 
of anthropogenic activities, inclusive of industrial 
operations and the persistent reliance on fossil fuels, has 
led to an upsurge in the emission of key air pollutants 
such as Nitrogen Dioxides (NO2), Ozone (O3), Sulfur 
Dioxide (SO2), and Carbon Monoxide (CO) [3, 4]. 
These pollutants are pivotal in degrading air quality, 
with far-reaching implications for human health and 
environmental sustainability [5-7].

NO2 and SO2 have been identified as primary culprits 
in compromising the respiratory health of vulnerable 
populations, including children and the elderly [8, 9]. Short-
term exposure to elevated levels of NO2 is associated with 
exacerbated asthma symptoms, increased incidence of 
emergency department visits, and heightened hospitalization 
rates [10, 11]. Prolonged exposure, on the other hand, is 
linked to a higher susceptibility to respiratory infections [12]. 
Moreover, the interaction of NO2 with other atmospheric 
constituents results in the formation of acid rain, whereas 
SO2 contributes to the generation of fine particulate matter 
[13, 14]. Both phenomena have deleterious effects on human 
health, damaging the respiratory system and exacerbating 
pre-existing health conditions.

O3 exposure is particularly concerning due to its 
capacity to induce a spectrum of adverse health outcomes, 
including inflammation, chronic pulmonary damage, and 
respiratory distress during physical activities [15, 16]. 
Vulnerable groups such as children, the elderly, outdoor 
enthusiasts, and individuals with pre-existing respiratory 
conditions like asthma are at heightened risk [17-19]. 
The detrimental health effects are compounded by the 
fact that O3 can interfere with lung function and provoke 
discomfort in the airways.

The impact of CO is equally alarming, with higher 
concentrations of this gas impairing the blood’s ability 
to transport oxygen effectively [20, 21]. This can have 
severe implications for vital organs, particularly the brain 
and heart, undermining their functionality and potentially 
leading to critical health outcomes [22-27]. In light of 
these findings, it is imperative to adopt comprehensive 
and integrated strategies aimed at mitigating air pollution. 
This involves transitioning towards cleaner energy 
sources, implementing stringent emission standards, 
and fostering public awareness about the health and 
environmental implications of air pollution [28]. By 
taking decisive action, it is possible to safeguard public 
health, preserve environmental quality, and contribute to 
the global effort to combat climate change [29].

In light of the recent findings that urban air pollutant 
concentrations exceed World Health Organization (WHO) 
thresholds, there is an urgent need to enhance air quality 
monitoring and forecasting, especially in rapidly developing 
nations like Vietnam [30, 31]. The integration of Smart City 

technologies, specifically the Internet of Things (IoT) and 
Information Communication Technology (ICT), presents 
a promising avenue for addressing these challenges [32, 
33]. The Healthy Air project, implemented in Ho Chi Minh 
City (HCMC), utilizes a network of six wireless sensor-
based air quality monitoring stations strategically located 
throughout the city [34-36]. This initiative underscores the 
critical role of advanced technologies in environmental 
management and public health protection.

The complexity of urban air quality management 
necessitates the development of sophisticated forecasting 
models that can accurately predict pollutant levels 
and inform public and policy responses. Traditional 
statistical methods such as moving averages and 
autoregressive models have been foundational in early 
attempts to model air quality [37, 38]. However, the 
intricate interplay between atmospheric conditions 
and pollutant concentrations demands more nuanced 
approaches that can adapt to dynamic environmental 
data and provide precise forecasts. Recent advancements 
in machine learning (ML) offer a robust framework for 
enhancing air quality prediction models [39-42]. ML 
algorithms, capable of processing large datasets and 
identifying complex patterns, are well-suited to the task 
of forecasting air pollution levels [43]. These models can 
leverage historical atmospheric data alongside real-time 
inputs from IoT-enabled monitoring stations to generate 
accurate predictions of future air quality [44-46]. Despite 
the potential of ML, the deployment of separate models 
for individual pollutants poses challenges in terms of 
efficiency, maintenance, and scalability [47-50].

To address these limitations, an integrated forecasting 
model that consolidates predictions for multiple pollutants 
could offer a more streamlined and effective approach. Such 
a model would not only reduce the operational complexity 
associated with maintaining multiple ML pipelines but 
also enhance the accuracy of air quality forecasts by 
considering the interdependencies between different 
pollutants. Furthermore, the limitations of traditional 
Vector Autoregression (VAR) models, particularly their 
reliance on stationary time series data, underscore the 
need for more adaptable forecasting methods [51, 52]. 
Advanced ML techniques, including deep learning and 
neural network architectures, could provide the necessary 
flexibility to handle non-stationary data and improve 
predictive performance [53].

The realm of air quality prediction has seen substantial 
advancements through the application of traditional 
machine learning techniques, which have proven adept 
at analyzing complex datasets and extracting critical 
features for model development [54, 55]. Among these, 
decision trees, support vector regression (SVR), artificial 
neural networks (ANN), and gradient boosting stand 
out for their efficacy in processing and interpreting 
environmental data [56-58]. Notable applications 
include the deployment of decision tree algorithms for 
categorizing air pollution indices and the integration of 
SVR with grey multivariable regression models to refine 
the accuracy of pollutant concentration forecasts [59-63]. 
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Such approaches have showcased the potential of machine 
learning in uncovering non-linear relationships and latent 
patterns within air quality data, thereby illuminating the 
underlying dynamics of environmental factors.

However, the advent of deep learning has ushered 
in a new era of predictive modeling, characterized by 
its ability to construct intricate multi-layered neural 
networks. This advanced methodology has demonstrated 
superior performance in tackling the challenges posed by 
large datasets, high dimensionality, and complex non-
linear relationships inherent in air quality data [64-67]. 
Deep learning models, particularly convolutional neural 
networks (CNN) and graph convolutional networks 
(GCN), excel in distilling spatial correlations from data 
collected across multiple sites [68, 69]. Concurrently, 
long short-term memory networks (LSTM) and models 
employing self-attention mechanisms like Transformers 
and BERT have proven effective in capturing temporal 
dynamics and intricate spatio-temporal relationships.
The main contributions of this study are:
	y This study introduces an advanced forecasting model, 

EEMD+GRU+GCN_ATT, that integrates Ensemble 
Empirical Mode Decomposition with Gated Recurrent 
Units and GCN with attention, providing a significant 
improvement in predicting ambient concentrations 
of critical air pollutants (PM2.5, NO2, SO2) with high 
accuracy and reliability across various statistical 
metrics (MAE, MSE, MAPE, R2).

	y The research highlights the limitations of conventional 
GCN models in air quality forecasting and 
demonstrates the enhanced performance of models that 
incorporate advanced neural network architectures and 
decomposition techniques, addressing the complex 
spatio-temporal dependencies in environmental data 
by adding an attention mechanism.

	y The study contributes to the field of environmental 
monitoring and policymaking by offering a 
robust tool for air quality forecasting, which can 
significantly benefit public health and ecological 
protection through more informed decision-making 
and policy development.

Materials and Methods

Before describing the proposed model used for time 
series data prediction, we will briefly discuss the related 
fundamental theories behind this model construction, 
namely, the EEMD, the CEEMDAN, and the principles 
and applications of the attention. Fig. 1 shows the 
complete implementation of the model used in this study.

GCN Model

Implementing a Graph Convolutional Network (GCN) 
with an attention mechanism for climate prediction 
involves a series of steps. The process combines the 
relational inductive biases inherent in GCNs with the 
focusing ability of attention mechanisms to prioritize 

the most relevant features and interactions for predictive 
tasks. The steps of the mode are:

Define the Problem:
Climate prediction variable collection (e.g., 

temperature, precipitation, extreme weather events).
Determine the scale of the dataset (local, regional, 

global).
Data Collection:
Gather historical climate data (temperature, humidity, 

precipitation, etc.) from various sources like weather 
stations, satellite images, or climate models.

Include relevant auxiliary data that can impact 
climate patterns (e.g., oceanic conditions, solar cycles, 
anthropogenic factors).

Data Preprocessing:
Clean the data to handle missing values, anomalies, 

or outliers.
Normalize or standardize the features to ensure that the 

scale of the data does not bias the attention mechanism.
Graph Construction:
Create a graph where nodes represent different 

geographic locations or climate variables, and edges 
represent the connections or correlations between these 
nodes (spatial, temporal, or feature-based relationships).

Feature Engineering:
Select or engineer features for each node based on the 

data and problem at hand, including temporal dynamics.
Graph Convolutional Network Design:
Design the GCN architecture, specifying the number of 

layers and the dimensionality of the node representations.
Incorporate attention mechanisms within the GCN 

layers to weigh the influence of neighboring nodes 
dynamically.

Model Training:
Split the dataset into training, validation, and testing sets.
Train the GCN with an attention mechanism using the 

training set, applying backpropagation and an appropriate 
optimizer.

Regularly evaluate the model on the validation set and 
use early stopping or other regularization techniques to 
prevent overfitting.

Hyperparameter Tuning:
Experiment with different hyperparameters such as 

learning rate, number of GCN layers, attention heads, and 
hidden unit sizes to optimize model performance.

Model Evaluation:
Assess the model’s performance on the test set using 

metrics relevant to climate prediction, such as RMSE for 
continuous outputs or accuracy for categorical events.

Interpretation and Analysis:
Interpret the model’s attention weights to understand 

the influence of different features or locations on the 
prediction.

Analyze the model’s predictions in the context of 
known climate patterns and dynamics.

Model Deployment:
Integrate the model into a decision-making framework 

for climate adaptation strategies or further scientific 
research.
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Implement a user interface for stakeholders to access 
and utilize the climate predictions.

Model Updating:
Regularly update the model with new data to refine 

predictions and capture evolving climate patterns.
Re-train or fine-tune the model as necessary to 

maintain its accuracy over time.
This high-level overview provides a framework for 

utilizing GCN with an attention mechanism for climate 
prediction. Implementing each step would require detailed 
technical planning, execution, and a deep understanding 
of both machine learning techniques and climate science.

Ensemble Empirical Mode Decomposition 
(EEMD)

Shih-Lin Lin [70] proposed the Ensemble Empirical 
Mode Decomposition (EEMD) method, which emerges 
as a virtuoso in the world of signal representation. This 
exquisite technique unveils the soul of unpredictable and 
not linear oscillations, crafting a prelude of transformation 
from raw data.

EEMD is an enhanced technique based on Empirical 
Mode Decomposition (EMD). EEMD adds Gaussian 
white residue to the original data for EMD decomposition, 
which successfully solves the issue of mode mixing and 
last-point effects in traditional EMD. The algorithm 
framework of EEMD is shown in Algorithm 1. The 
calculation process of the EEMD algorithm is as follows:
1)	 Add Gaussian white noise to the original data to 

generate a new data set, as shown in formula (1).

              (1)

Where  is the white noise data added at the i-th time,  
 is the original data, and  is the new data with 

added white noise generated at the i-th time.
2)	 Decompose the new sequence data with added white 

noise, , into n Intrinsic Mode Functions (IMFs) and 
a residual component using the EMD method, as shown 
in formula (2):

                   (2)

Here,  is the j-th IMF obtained after adding 
white noise for the i-th time, while  represents the 
residual component obtained after adding white noise, 
which identify the mean trend of the signal. n shows the 
number of IMF components.
3)	 Repeat the above steps m times, adding different 

white noise each time, to obtain n decomposition 
results of m sequences:

                        (3)

4)	 Utilizing the characteristic of Gaussian white noise 
having a mean of zero, take the average of the 
individual IMF value and the residual component 

obtained from the previous steps, and sum them up 
to obtain the final output, as shown in formula (4):

            (4)

Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise (CEEMDAN):

For addressing nonlinear nonstationary data, Quinn 
et al. [71] presented an adaptive signal processing 
technique called EMD. EMD doesn’t necessitate any 
data constraints and can break down complicated 
unpredictable patterns while keeping the data’s time 
scale. Modal mixing is a challenge that EMD frequently 
faces in practical applications, though [70] therefore 
offers EEMD based on EMD. Based on the assumption 
that the average value of the white noise is zero, EEMD 
breaks down the data by continually adding different 
white noise to the original values. The modal mixing 
problem can be significantly improved in this way, 
but there are drawbacks, including a significant upper 
reconstruction error and a lengthy calculation time. The 
EEMD-based CEEMDAN is therefore suggested as a 
solution to the aforementioned issues. By incorporating 
adaptive white noise, CEEMDAN not only successfully 
addresses the issue of modal mixing, but also eliminates 
the reconstruction error and lowers computation costs. 
CEEMDAN is hence better able to handle non-smooth 
and non-linear data.

The CEEMDAN algorithm, as shown in Algorithm 2, 
is also an improved method based on EMD. It overcomes 
the mode mixing problem in EMD. Unlike EEMD, 
CEEMDAN doesn’t directly sum up Gaussian white noise 
to the original signal but includes auxiliary noise to the 
mode components obtained after EMD decomposition. 
At the same time, the overall average calculation begins 
after obtaining the first mode component and continues 
until obtaining the final mode component. This process is 
then repeated for the residual component. The calculation 
method of the CEEMDAN algorithm is as follows:
1)	 Add Gaussian white noise to the original signal xt, as 

shown in formula (5):

            (5)

Where  represents signal-to-noise ratio,  represents 
the Gaussian white noise added at the i-th time, and N 
represents the total number of experiments.
2)	 Perform EMD decomposition on each new signal  

with added Gaussian white noise to obtain the first 
Intrinsic Mode Function  and the residual component, 
as shown in formulas (6) and (7):

                        (6)

                         (7)
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Here, E represents the EEMD decomposition operation.
5)	 Perform EMD decomposition on  with added 

, and obtain the , as shown in formula (8):

              (8)

6)	 When , calculate the k-th residual 
component , as shown in formula (9):

                        (9)

7)	 Add white noise to form a new time series in each stage 
and calculate the first intrinsic mode function of this 
time series as the new mode component of the original 
time series. Then, the k-th stage mode component 

 is calculated, as shown in formula (10):

          (10)

8)  	 Repeat steps 4 and 5 to ensure that the signal cannot 
be further decomposed by EMD and obtain k-mode 
components. The final residual component of the 
signal is:

                    (11)

9)  The signal  can be represented by CEEMDAN 
decomposition as follows:

                   (12)

Data Sets and Evaluation Metrics: 

Study Area

Anhui are provinces in China with diverse 
geographical features and unique characteristics. 
Anhui Province, located in eastern China, experiences 
a diverse climate ranging from humid subtropical 
in the south to humid continental in the north, with 
distinct seasonal variations characterized by hot, 
humid summers and cool, somewhat dry winters. This 
climatic variation supports a variety of agricultural 
activities, making Anhui known for its tea production, 
particularly Huangshan Maofeng and Keemun tea. The 
province’s economy is also bolstered by its growing 
industries in machinery, electronics, chemicals, and 
textiles, contributing to its status as a significant 
player in China’s economic landscape. However, 
rapid industrialization and urbanization have led to 
environmental challenges, including air pollution. The 
reliance on coal for energy and the density of vehicular 
traffic contribute to the emissions of particulate 
matter (PM2.5 and PM10), nitrogen dioxide (NO2), 
and sulfur dioxide (SO2), impacting public health 
and necessitating concerted efforts in air quality 
management and sustainable development practices to 
mitigate pollution levels. The study area, its location in 
China, and the monitoring stations of the Province are 
to be used and shown in Fig. 2. 

Fig. 1. Complete steps of GCN based model implementations
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Data Sets

The requirements for ambient air quality and the 
effects of various contaminants on flora, fauna, and the 
environment serve as the foundation for the air pollution 
index. A single conceptual index value is used to 
represent the concentration of all consistently measured 
air pollutants. This study takes 1-year air pollutant data 
(From 01-2021 to 12-2021) for performing the algorithm 
testing and verification. We separated all datasets into 
8:1:1 training, validation, and testing sets. 

Evaluation Metrics

In this study, four evaluation metrics were selected to 
assess the effectiveness of the offered models’ predictions, 
namely: Mean Absolute Error (MAE), Mean Square Error 
(MSE), Mean Absolute Percentage Error (MAPE), and R2 
(R Squared). Their formulas are as follows:

                       (13)

                     (14)

                     (15)

                    (16)

yi signifies the actual value of the time series sample,  
denotes the model’s predicted value, n means the number 
of testing samples, and i represents the sequence number 
of the testing sample in the above formulae. 

Results

A. Particulate Matter:
Table 1 appears to present a comparative analysis of 

different deep learning models based on their performance 
in predicting air quality or a similar metric. Each row 
represents a model and the columns show different 
statistical metrics used to assess the model’s predictive 
performance:

GCN (Graph Convolutional Network): This model 
has a balanced performance with respect to the evaluation 
metrics. It has moderate values of Root Mean Square Error 

Fig. 2. Study Area of Anhui
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(RMSE), Mean Absolute Error (MAE), Mean Square 
Error (MSE), Mean Absolute Percentage Error (MAPE), 
and a coefficient of determination (R2) of approximately 
0.556. The relatively lower RMSE and MAE suggest that 
the GCN model has a decent fit to the data with modest 
prediction errors.

EMD+GCN (Empirical Mode Decomposition + Graph 
Convolutional Network): Incorporating EMD with GCN 
has improved the model’s performance slightly compared 
to the standalone GCN model. This is evidenced by lower 
RMSE, MAE, MSE, and MAPE, and a higher R2 value 
(0.577), indicating better prediction accuracy and model fit.

EEMD+GRU+GCN (Ensemble Empirical Mode 
Decomposition + Gated Recurrent Unit + Graph 
Convolutional Network): This model shows a significant 
increase in error metrics (RMSE, MAE, MSE) and a higher 
MAPE compared to the first two models, indicating less 
accuracy in prediction. The R2 value is also lower (0.511), 
suggesting that the model’s predictions are not as closely 
aligned with the actual values.

GCN_ATT (Graph Convolutional Network with 
Attention mechanism): This model has the highest errors 
(RMSE, MAE, MSE) and a relatively high MAPE, coupled 
with the lowest R2 value (0.439), indicating that the model 
performs the worst among the four in predicting the target 
variable.

RMSE (Root Mean Square Error): Lower values are 
better.

GCN: 14.77
EMD+GCN: 14.41 (Best)
EEMD+GRU+xGCN: 22.06
GCN_ATT: 23.63 (Worst)
The EMD+GCN model has the lowest RMSE, 

indicating that on average, its predictions are closer to 
the actual values. The GCN_ATT model has the highest 
RMSE, suggesting its predictions are the least accurate on 
average.

MAE (Mean Absolute Error): Lower values are better.
GCN: 10.43
EMD+GCN: 9.36 (Best)
EEMD+GRU+GCN: 14.26
GCN_ATT: 14.72 (Worst)
The EMD+GCN model has the lowest MAE, indicating 

it has the smallest average error in its predictions. The 
GCN_ATT has the highest MAE, meaning its average 
prediction error is the largest.

MSE (Mean Square Error): Lower values are better.
GCN: 218.34
EMD+GCN: 207.60 (Best)
EEMD+GRU+GCN: 486.83
GCN_ATT: 558.42 (Worst)
Again, the EMD+GCN model outperforms the others 

with the lowest MSE, implying its predictions have the 
least variance from the actual values. The GCN_ATT 
model’s predictions vary the most from the actual values, 
as indicated by its highest MSE.

MAPE (Mean Absolute Percentage Error): Lower 
values are better.

GCN: 31.65
EMD+GCN: 26.08 (Best)
EEMD+GRU+GCN: 37.02
GCN_ATT: 32.54
The EMD+GCN model has the lowest MAPE, meaning 

its prediction errors are smaller when compared as a 
percentage of the actual values. The EEMD+GRU+GCN 
has the highest MAPE, indicating less accuracy relative to 
the actual value scale.

R2 (Coefficient of Determination): Higher values are 
better, with 1 being a perfect prediction.

GCN: 0.556
EMD+GCN: 0.577 (Best)
EEMD+GRU+GCN: 0.511
GCN_ATT: 0.439 (Worst)
The EMD+GCN model again has the highest R2 

score, indicating that it can explain the variation in the 
target variable better than the other models. The GCN_
ATT model has the lowest R2, suggesting that it has the 
least explanatory power regarding the variance in the 
data. EMD+GCN model consistently performs the best 
across all metrics, indicating it is the most accurate and 
reliable for predicting the target variable in this scenario. 
Conversely, the GCN_ATT model consistently scores 
the worst by these metrics, suggesting it might be the 
least suitable model for this particular prediction task. 
The addition of the EMD process appears to enhance 
the predictive power of the GCN, while the attention 
mechanism in GCN_ATT does not confer the same 
benefit. Fig. 3 shows the visual representation of models 
while Fig. 4 shows the time series difference in prediction 
from time to time.

Table 1. Comparison of different models for Particulate Matter

Model RMSE MAE MSE MAPE R2

GCN 14.77623831 10.4287922 218.3372186 31.64669878 0.555623347

EMD+GCN 14.40836233 9.363703168 207.600905 26.08330969 0.577474716

EEMD+GRU+GCN 22.06418975 14.2572006 486.8284693 37.01868522 0.511104536

GCN_ATT 23.63090097 14.72236045 558.4194806 32.54208502 0.439209561
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Fig. 3. Comparison of models for PM2.5

Fig. 4. Time series prediction of 2 months

Fig. 5. Comparison of models for NO2

Fig. 6. Time series prediction of 2 months for NO2
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B. NO2:
Fig. 5 shows the comparing performance of four 

different predictive models across four metrics. The 
EEMD+GRU+GCN model has the highest R^2 value, 
suggesting it best captures the variance in NO2 levels.

Across all metrics, the EEMD+GRU+GCN model 
consistently shows superior performance in predicting 
NO2 levels, implying it can handle the complexity of 
the data well. On the other hand, the EMD+GCN model 
seems to underperform, especially in terms of MSE, 
where it has the highest value indicating a poorer fit to 
the data compared to the other models. The GCN and 
GCN_ATT models show moderate performance across 
all metrics. Fig. 6 shows the time-to-time variation of the 
pollutants.

C. SO2:
Fig. 7 compares the performance of four predictive 

models using four different evaluation metrics for the 
prediction of SO2 (sulfur dioxide) levels. An R^2 value, as 
seen with the GCN and GCN_ATT, indicates that the model 
fits the data worse than a horizontal line (i.e., a simple 
average). On the other hand, the EEMD+GRU+GCN 
model has an R^2 close to 0, suggesting that it’s barely 
capturing the variance in the SO2 levels, but it’s still the 
best among the compared models.

The EEMD+GRU+GCN model significantly 
outperforms the other three models across all metrics for SO2 
prediction. It consistently demonstrates the lowest errors 
and the highest (or least negative) R^2 value, indicating 
its superior predictive accuracy and ability to capture the 
variance in the SO2 level data compared to the other models. 

While the findings of this study offer promising 
directions for air quality prediction using deep learning 
models, several limitations must be acknowledged:
	y Model Generalization: The study’s models were 

tested and validated on specific datasets, which 
may not represent the full spectrum of air quality 
conditions globally. Generalizing these results 
to other regions or pollutants without additional 
validation could lead to inaccuracies.

	y Data Quality and Availability: The performance of 
the predictive models is heavily dependent on the 
quality and granularity of the input data. Gaps in 
data, inaccuracies in measurement, or lack of data 
diversity can negatively impact model performance.

	y Complexity of Atmospheric Phenomena: The models 
may not fully account for the complex chemical and 
physical processes that govern atmospheric pollution. 
Simplifications necessary for computational 
modeling might omit critical dynamics of pollutant 
dispersion and transformation.

	y Spatial and Temporal Dynamics: While the 
EEMD+GRU+GCN model captures spatio-temporal 
dependencies effectively, there may still be room 
for improvement, especially in capturing the long-
range transport of pollutants or sudden changes due 
to extreme events.

	y Computational Demands: Advanced models like 
EEMD+GRU+GCN can be computationally intensive, 
which might limit their practical deployment, especially 
in real-time or resource-constrained scenarios.

	y Interpretable AI: Deep learning models often operate 
as ‘black boxes,’ providing little insight into how 
predictions are derived. This lack of transparency 
can be a barrier for trust and understanding in 
environmental management contexts.

	y Impact of External Factors: The models might not 
fully account for external factors such as policy 
changes, economic activities, or unexpected events 
like wildfires and industrial accidents, which can 
significantly affect air quality.

	y Algorithmic Bias and Overfitting: There is a risk of 
overfitting particular patterns present in the training 
data, which could lead to poor performance on 
unseen data. Moreover, algorithmic biases may arise 
from non-representative training datasets.

	y Dynamic Feature Selection: The study did not 
explore the impact of dynamic feature selection, 
which could potentially improve model performance 
by adapting the input features over time as more data 
becomes available.

Fig. 7. Time series prediction of 2 months for SO2



2184 Huimin Han, et al.

	y Evaluation Metrics: The reliance on standard 
metrics like MAE, MSE, MAPE, and R2 provides 
a conventional assessment of model performance 
but may not fully capture the practical utility of the 
predictions in real-world decision-making scenarios.

These limitations highlight the need for ongoing 
research to refine predictive models further, to ensure 
robust and reliable air quality forecasting across diverse 
environmental conditions and to support informed decision-
making for public health and environmental policy.

Conclusions

In conclusion, the comparative analysis of various 
advanced deep learning models for the prediction of 
key air pollutants—PM2.5, NO2, and SO2—has yielded 
significant insights. The study demonstrates the 
substantial potential of combining ensemble empirical 
mode decomposition with Gated Recurrent Units and 
Graph Convolutional Networks (EEMD+GRU+GCN) in 
accurately forecasting air quality indices. This model has 
consistently outperformed its counterparts across a suite 
of statistical measures, evidencing lower mean errors and 
stronger correlations with the observed data. Conversely, 
traditional GCN models and those augmented with 
attention mechanisms (GCN_ATT) have been shown to 
be less effective, particularly evidenced by negative R2 
values in certain cases, suggesting a poor fit for the data 
at hand. These findings suggest that the complexity of 
air quality data, with its inherent spatial and temporal 
correlations, is more effectively captured by models that 
can adapt and learn from a multitude of data features and 
sequences, as is the case with the EEMD+GRU+GCN 
model. The results underline the importance of model 
selection in environmental data science and the need 
for continuous refinement of predictive algorithms. 
The superior performance of the EEMD+GRU+GCN 
model opens avenues for its application in real-world 
environmental monitoring systems, which can aid 
policymakers and health professionals in mitigating the 
impacts of air pollution. This research thus contributes 
to the growing body of knowledge in environmental 
informatics and underscores the pivotal role of machine 
learning in advancing public health and ecological 
conservation efforts.

Future work in the realm of air quality prediction using 
deep learning should focus on addressing the limitations 
identified in this study. Efforts could be made to enhance 
model generalization by testing and validating the models 
across diverse geographic locations and environmental 
conditions. Incorporating more comprehensive datasets, 
possibly enriched with data from satellite observations and 
more granular ground-level monitoring, will improve the 
robustness and accuracy of the predictions. Furthermore, 
the integration of explainable AI techniques can provide 
transparency into the decision-making process of these 
models, increasing their trustworthiness and utility for 
policymakers.
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