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Abstract

Exploring the spatial and temporal changes in vegetation net primary productivity (NPP)  
and analyzing its complex relationship with influencing factors is crucial for assessing the carbon 
absorption capability of vegetation. However, most of the existing studies have been conducted from 
a temporal or spatial perspective, resulting in an unclear characterization of the spatio-temporal 
divergence between NPP and the main influencing factors. This paper tries to break through the lack of 
research on the spatiotemporal heterogeneity of the relationship between NPP and influencing factors 
and proposes a joint spatiotemporal analysis method that integrates natural and anthropogenic factors, 
uses correlation analysis to determine their relationship with NPP, then combines GeoDetector (GD) 
and Geographically Weighted Regression (GWR), and carries out an empirical study based on the 
data of 2001-2017, taking Yunnan Province as an example, to reveal the characteristics of influencing 
factors’ divergence in different time and space. The results indicate that: (1) NPP in Yunnan Province 
experienced fluctuations and increases from 2001 to 2017. (2) NDVI, precipitation, and temperature 
exert a substantial influence on the spatial and temporal variation of NPP, although this impact  
is diminishing. (3) Solar radiation, topography, and land use are secondary factors that affect the spatial 
and temporal differentiation of NPP, but their influence is increasing. (4) From 2001 to 2010, land use 
transfer was the main cause of NPP loss, but from 2010 to 2017, land use transfer was the main cause 
of NPP gain. The collective effect of anthropogenic activities and natural factors is considerably more 
substantial than the influence of any individual factor. This study aims to improve our understanding 
of how the NPP responds to climate change and urbanization. Additionally, it seeks to clarify spatial 
and temporal variations in NPP and identify its primary drivers. Furthermore, it can serve as a useful 
scientific foundation and point of reference for improving the performance of ecosystem carbon sinks 
and achieving carbon neutrality.
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Introduction

Vegetation net primary productivity (NPP)is the 
amount of energy that green plants capture through 
photosynthesis per unit area over a specific period, 
subtracting the energy used for their respiration [1].
In comparison to other measurable elements of the 
carbon budget, NPP has a higher number of accurately 
estimated parameters. It is widely recognized  
as a significant part of the terrestrial carbon cycle [2]. 
Additionally, NPP plays a critical role in regulating 
ecological processes and serves as an important 
indicator for identifyingcarbon sources and sinks [3]. 
Due to the complexity of ecosystems, NPP is influenced 
by a variety of factors, including vegetation dynamics, 
geomorphologic distribution, climatic change, and 
anthropogenic activity [4-6]. The vegetation growth 
environment is complicated and varied due to the 
common changes and interactions of various elements 
over time and in space. Furthermore, the variety and 
complexity of ecological resource distribution across 
regions result in significant spatial and temporal 
heterogeneity in the impact of many factors affecting 
NPP [7, 8]. The spatial and temporal variations are 
likely to result in divergent outcomes. For instance, 
changes in plant species composition due to climate 
change may stabilize NPP in high-elevation ecosystems 
[9], while increasing droughts can diminish NPP [10]. 
Urbanization may directly impede vegetation production 
[11], but urban heat islands and urban ecological 
construction can partially counteract the negative effects 
of urbanization [12]. Therefore, an in-depth study of 
the complex relationship between NPP and natural 
and anthropogenic factors can help us understand its 
influencing factors more comprehensively. Therefore, 
gaining a deep understanding of the complex relationship 
between NPP and natural as well as anthropogenic 
factors in spatiotemporal variations and examining the 
various components that exert influence helps establish 
a scientific foundation for the development of efficient 
solutions aimed at achieving carbon neutrality.

Presently, numerous researchers have discussed 
the correlation between NPP and various factors from 
diverse viewpoints, including climate, vegetation 
phenology, and urbanization. However, the spatial and 
temporal heterogeneity in the relationship between 
NPP and these influencing factors exhibits significant 
variation across different regions [13]. In recent years, 
most studies on the effects of natural conditions on NPP 
have focused on factors such as climate, topography, 
and vegetation conditions, and the spatial and temporal 
differences in these factors have led to different findings. 
First, climate is the main factor that affects NPP changes. 
For example, Chen et al. [14] found that solar radiation, 
temperature, and precipitation are key variables affecting 
carbon fluxes in ecosystems. Variations in climatic 
conditions across different locations have distinct 
impacts on the growth and distribution of vegetation. 
Liu et al. [15], taking into account the lag effect of 

climate conditions on NPP, found that precipitation is 
the primary constraining element for the increase of 
NPP in the transition zone between semi-arid temperate 
forests and grasslands. However, in cold, high-altitude 
areas such as the Jogail Plateau, the effect of temperature 
on NPP may be more significant [16]. In addition, 
different subsurface characteristics (e.g., topography, 
slope) also have an indirect effect on climate conditions, 
which in turn affects the regional distribution of NPP. 
Zhao et al. [17] found that warmer temperatures in the 
Qinba mountainous region of China adversely affected  
the middle and lower Qinling Mountains, but favorably 
increased NPP in the higher elevations of the Daba 
Mountains. The vegetation type itself is also a key factor 
influencing the spatial differentiation of NPP. Different 
types of vegetation have different growth characteristics 
and adaptive capacities. For example, Xin et al. [18] 
found that over the years, the average NPP of broadleaf 
forests in the Haihe River Basin of China was higher 
than that of other vegetation.

Meanwhile, due to the influence and damage of 
anthropogenic activities on the ecological environment, 
anthropogenic factors have increasingly become more 
significant in affecting NPP, even surpassing natural 
factors in certain regions [19]. Among them, land 
use change is the most direct signal of the impact of 
anthropogenic activities on terrestrial ecosystems [20]. 
Remote sensing technology provides support for land 
use in the monitoring of environmental change [21-
23]. Changes in land patterns can directly impact NPP 
by altering surface structures and indirectly affect NPP 
alterations by modifying the structure and function 
of ecosystems [20, 24]. These changes can have both 
positive and negative impacts, thus enhancing the spatial 
heterogeneity of NPP change drivers. For instance, the 
execution of the fallow return of farmland to forest and 
grassland project has improved ecosystem stability and 
consequently increased NPP in the Yellow River Basin 
[25]. National ecological protection policies, such as 
ecological compensation measures and restoration of 
land cover vegetation, have yielded positive ecological 
effects in both North China and the Tibetan Plateau [26]. 
Conversely, the expansion of construction land has led 
to a decrease in global vegetation cover and ecological 
function degradation, resulting in reduced NPP [27]. 
Overgrazing has further disrupted soil structure, 
impacting the productivity of grasslands in the Ili 
River Basin of northwestern China [28]. Additionally, 
anthropogenic activities and climate change have 
interrelated effects on NPP. Anthropogenic greenhouse 
gas (GHG) emissions exacerbate climate warming [29], 
while climate change can amplify the ecological damage 
caused by anthropogenic activities. These effects vary 
across time and space. For example, Hu et al. [30] 
studied future climate and LUCC changes’ impacts on 
global NPP under different scenarios and highlighted 
that in 2090-2100, climate change has a significantly 
positive impact on the northern high latitudes  
and a notably negative impact on the tropics. Similarly, 
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in 2010-2020, LUCC has shown a negative impact on the 
northern high latitudes and the northern mid-latitudes, 
while it has had a positive impact on the tropics and the 
mid-latitude regions.

In summary, exploring the influencing factors 
of vegetation NPP from either a temporal or spatial 
perspective often leads to different conclusions [31].  
The main reasons are: (1) Driving factors often have 
different feedback effects on NPP with changes in 
spatiotemporal scales. (2) Changes in ecosystem 
processes have spatial differences and time-lag effects. 
(3) Due to the complexity of ecosystems, different 
factors interact with each other, leading to significant 
spatial and temporal differences in response to 
environmental changes. Therefore, when discussing 
the relationship between NPP and driving factors, the 
association characteristics of NPP and influencing 
factors in time and space should not be overlooked. 
How to quantitatively reveal the driving mechanisms 
of natural and anthropogenic factors on NPP from 
both temporal and spatial perspectives, and to explore 
the spatial continuity of the impacts of key factors on 
NPP is of great significance for ecosystem sustainable 
development planning. Taking a comprehensive 
consideration of the mechanisms and interactions of 
natural and anthropogenic factors on NPP will be more 
helpful for us to fully and accurately understand the 
changing trends and reasons for NPP.

According to the current research methods,  
the relationship between NPP and influencing factors 
is usually determined using correlation analysis 
and regression analysis. While these methods offer  
a straightforward approach to evaluating the connection 
between NPP and influencing elements, they can only 
offer a general depiction of this link, disregarding the 
spatial and temporal non-stationary nature of NPP and 
driving factors. To address these issues, GeoDetector 
can be used to reveal the spatiotemporal differentiation 
patterns of influencing factors and single and interaction 
forces [32]. Meanwhile, the GWR model can further 
analyze the specific effects of these driving factors in 
different geographical spaces, considering the spatial 
non-stationarity of the data [33]. By combining both, 
a more comprehensive demonstration of the complex 
relationship between NPP and driving factors at 
temporal and spatial scales can be achieved. Therefore, 
this study integrates GeoDetector and GWR to better 
explore the complex impact mechanisms of natural and 
anthropogenic factors on NPP in time and space.

This study attempts to address the following two 
questions: (1) What are the primary driving forces of 
NPP changes: natural factors or human-induced factors? 
(2) What characterizes the divergence of the effects  
of the main drivers on NPP across time and space? 
To address these questions, this study, based on the 
spatiotemporal coupling perspective of vegetation 
NPP, takes Yunnan Province, which has the richest 
biodiversity in China and the most significant biodiversity 
globally, as a case study area. After an analysis 

of the spatiotemporal fluctuations of NPP, this study 
attempts to determine the correlation between NPP, 
anthropogenic factors, and natural factors. Following 
that, it employs GeoDetector to quantitatively assess 
the effects of natural and anthropogenic variables on 
NPP at various time intervals  and find the primary 
influencing elements that affect NPP. Finally, key 
influencing factors at each time period are selected 
to fit a multi-temporal GWR model, exploring  
the heterogeneity patterns of their spatiotemporal 
impacts.

Materials and Methods

Study Area

Yunnan Province (21°8′N~29°15′N, 
97°31′E~106°11′E) is located in the southwest region 
of China (Fig. 1), with a total area of 394,100km2. 
The region is situated in a low-latitude inland area, 
characterized by higher topography in the northwest  
and comparatively mild terrain in the southeast. 
The altitude of the area ranges from 76 m to 6750 m, 
encompassing the basins of the Yangtze River, Pearl 
River, Yuan River, Lancang River, Nu River, and 
Daying River. The climate of Yunnan Province is 
typically described as a subtropical plateau monsoon 
climate, including a moderate annual temperature 
fluctuation, significant daily temperature fluctuations, 
and a combination of wet and dry conditions. The 
average annual maximum temperature ranges from 
20ºCºC to 23ºC, while the minimum temperature ranges 
from 7ºC to 11ºC. The distribution of precipitation is 
quite disparate among seasons and areas, with 85% of 
the total precipitation taking place between May and 
October. The precipitation in southern, western, and 
eastern Yunnan is higher, with certain regions over 
2300 mm. In contrast, central and northern Yunnan 
see comparatively lower precipitation, as little as  
547 mm, although most areas receive more than 900mm 
of annual precipitation. The diverse and complex terrain 
and climate have endowed the province with abundant 
mineral resources and a wide variety of biological 
species, including rainforests, tropical forests, evergreen 
broad-leaved forests, coniferous forests, shrub meadows, 
and alpine moss, earning it the reputation of “the 
Kingdom of Plants”. The complex natural conditions 
make the research area more representative, and 
studying the spatiotemporal changes and influencing 
factors of NPP under different natural conditions is 
more valuable.

Data Sources

This study collected NPP data, NDVI data, 
meteorological data, and geographic data. The NPP data 
(https://lpdaac.usgs.gov/product_search/) was obtained 
by filling in missing values from the Terra sensor  
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on NASA’s MODIS satellite, with a temporal resolution  
of 1 year and a spatial resolution of 500 m x 500 m.  
The NDVI data is from the Qinghai-Tibet Plateau 
Science Data Center (https://data.tpdc.ac.cn/home), with 
a temporal resolution of 1 month and a spatial resolution 
of 250 m. The meteorological data is also from the 
Qinghai-Tibet Plateau Science Data Center (https://
data.tpdc.ac.cn/home), including monthly data for solar 
radiation, precipitation, and temperature from 2001 to 
2017. The geographic data primarily includes the Digital 
Elevation Model (DEM) and land use data. The DEM 
data was acquired from the Geospatial Data Cloud 
(https://www.gscloud.cn/) at a spatial resolution of 90 m. 
Subsequently, slope and aspect data were derived from 
the DEM data using ArcGIS 10.8. The land use data for 
2001, 2010, and 2017 was provided by the Chinese Land 
Cover Data (CLCD, https://zenodo.org/record/5816591), 
with a spatial resolution of 30m, and the data was 
reclassified into six land cover types: farmland, forest 
land, grassland, water, bare land, and construction land. 
To reduce errors caused by inconsistent coordinate 
systems and to improve the efficiency of subsequent 
spatial analysis, all data was uniformly defined with 
the WGS_84_UTM_zone_47N projection coordinate 
system and resampled to a resolution of 5 km.

Methods

Correlation Analysis

Correlation analysis is the examination of two or 
more variables that are correlated in order to quantify 
the extent of the correlation between the two factors. 
In this study, Matlab software was used to calculate 
the correlation coefficient between NPP and vegetation 
factors and climate factors, and the results were tested 
by t-test.

The calculation formula for the correlation coefficient 
is as follows:

	 (1)

Among them, NPPi is the NPP value of the ith year,  
 is the annual average value of NPP from 2001 to 

2017, yi is the value of meteorological factors and NDVI 
of the ith year, y̅ is the multi-year average value of y, and 
in this study, n is taken as 17. The calculation formula 
for the t-test is as follows:

	 	 (2)

In this equation, t is the test statistic; typically when, 
0<t<0.05, it is considered to be a significant positive 
(negative) correlation between NPP and variable y.

Trend Analysis

Theil-Sen trend analysis, also known as Sen’s trend 
analysis, is a robust non-parametric statistical method 
for trend analysis proposed by Sen (1968), which is 
suitable for trend analysis of long time series and 
multivariate datasets. Compared to the requirement 
of normal distributions for time series data in linear 
regression, Sen’s trend analysis has better robustness 
and stability and can handle outlier and noisy data, 
making it more suitable for estimating long-term trend 
values of vegetation changes. The calculation formula is 
as follows:

	 	(3)

In the equation: β represents the interannual change 
rate of NPP, β>0 indicates an increasing trend in NPP, 
β<0 indicates a decreasing trend in NPP; NPPj, and 
NPPi represent the NPP values in the a-th and b-th years, 

Fig. 1. Schematic overview of the study area
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In the equation, yi represents the value of NPP, xij 
is the independent variable, and βi and εi respectively 
represent the intercept and error.

Results

The Temporal and Spatial Evolution of NPP

Spatial Distribution Characteristics of NPP

The spatial distribution of NPP in Yunnan Province 
from 2001 to 2017 (Fig. 2) shows significant regional 
variations. Overall, it exhibits a low level in the 
northeast and a high level in the southwest. Specifically, 
the following aspects are observed: 1) The northern part 
of Yunnan Province has the lowest NPP, ranging from 
500 g C·m-2·a-1 to 900 g C·m-2·a-1 on average, with 
the lowest values mainly distributed in the northwestern 
areas such as Diqing and Nujiang. The high-altitude and 
low-temperature conditions in the northwestern part 
of the Qinghai-Tibet Plateau have affected vegetation 
growth, resulting in low NPP levels. 2) The central part 
of Yunnan Province has relatively low NPP, forming 
a low-value belt from west to east, with average NPP 
ranging from 900 g C·m-2·a-1 to 1300 g C·m-2·a-1. 
Generally, there is a rising pattern of NPP from the 
eastern to the western regions. The areas with the 
lowest NPP values are found in the longitudinal valley 
regions formed by the Jinsha River, Nujiang River, 
Lancang River, and Dulong River from north to south. 
Conversely, the areas with the highest NPP values are 
located in Dehong, where the average value exceeds 
1500 g C·m-2·a-1. Dehong belongs to the South Asian 
monsoon climate, providing favorable water and heat 
conditions for vegetation growth. 3) The southern part of 

respectively; n represents the length of the time series. 
The results of the trend analysis are subjected to the MK 
significance test, where Z is the standard test statistic. 
When β>0 and |Z|>1.96, it indicates a “significant 
increase” in trend; when β>0 and |Z|<1.96, it indicates 
“not a significant increase” in trend; when β<0 and 
|Z|>1.96, it indicates a “significant decrease” in trend; 
when β<0 and |Z|<1.96, it indicates “not a significant 
decrease” in trend.

GeoDetector

The GeoDetector is a collection of statistical 
techniques used to identify and analyze the spatial 
variability of geographic phenomena and uncover 
the underlying factors that contribute to them. Factor 
detection can analyze the variation in dependent 
factors across different locations and determine how 
independent factors contribute to this geographical 
variation. Interaction detection involves comparing 
the q-values of single-factor and two-factor overlaid 
q-values to assess the presence of an interaction 
between the two components. It also determines  
the strength, direction, linearity, or non-linearity  
of the interaction. The q statistic is estimated as  
follows:

	 	 (4)

In the equation, q (0≤q≤1) represents the explanatory 
power of different factors on the dependent variable, 
where a larger value indicates a stronger explanatory 
power of the independent variable on the dependent 
variable; h = 1,..., L represents the partition of variable Y 
or factor X; Nh, and N are the number of units in stratum 
h and the whole area, respectively; and σh

2 and σ2 are the 
variances of Y values in stratum h and the entire area, 
respectively.

Geographically Weighted Regression

In comparison to the traditional Ordinary Least 
Squares (OLS), which assumes the relationship 
between the independent and dependent variables to 
be “homoscedastic”, the Geographically Weighted 
Regression model adequately considers the non-
stationarity of spatial data. It embeds the spatial location 
of the data into the regression parameters and uses 
local weighted least squares to estimate parameters 
point by point, revealing the relationship between the 
independent and dependent variables. The computation 
method is as follows:

	 	 (5)
Fig. 2. Spatial distribution of mean NPP values in Yunnan 
Province from 2001 to 2017



Xiaojie Guo, et al.2146

Yunnan Province has the highest NPP, with an average 
value exceeding 1300 g C·m-2·a-1, and the highest 
values are mainly located in the southwestern part of 
Lincang, Xishuangbanna, and most of Pu’er at altitudes 
below 1500 m.

The Temporal Variation Characteristics of NPP

As shown in Fig. 3b), the total amount of NPP in 
Yunnan province from 2001 to 2017 shows a fluctuating 
upward trend, with an annual average of 6.06 Gg C.  
The minimum and maximum values of NPP occurred in 
2010 and 2015, at 5.6 Gg C and 6.27 Gg C, respectively. 
The interannual variation of NPP showed significant 
lows in 2004 (5.682 Gg C) and 2010 (5.68 Gg C).  
The fluctuation of NPP in Yunnan province was 
large from 2001 to 2010, but decreased after 2010 
and exhibited an overall increasing trend. To better 
understand the change in NPP in Yunnan province over 
the past 17 years, this study also calculated the annual 
average NPP values for the study area based on pixels 
(Fig. 2). The range of annual average NPP change 
was 951.85 g C·m-2·a-1 to 1050.87 g C·m-2·a-1, with 
the minimum and maximum values occurring in 2010 
and 2015. The average maximum value of NPP was 
2005.96 g C·m-2·a-1, and the average minimum value 
was 19.4 g C·m-2·a-1. Additionally, the study found that 
the maximum, minimum, and average values of NPP 
showed similar changing trends between adjacent years 
over the past 17 years.

This study used Sen’s trend analysis and the MK 
significance test to obtain the spatial distribution map 
of NPP change in Yunnan province from 2001 to 2017 
(Fig. 3a). The results indicate that the area where NPP 

increased accounts for roughly 62.75% of the total 
area and is mainly characterized by non-significant 
increases. The areas with increased NPP are mainly 
distributed in the northeastern and western parts of 
Yunnan province, such as Zhaotong, Qujing, Baoshan, 
and Lincang. The area with a non-significant decrease 
accounts for approximately 30.26% of the total area 
and is mainly distributed in the northwest regions of 
Diqing, Nujiang, Lijiang, and Dehong, as well as in 
the southern regions dominated by Xishuangbanna and 
Pu’er. Overall, the increase in NPP in Yunnan province 
outweighs the decrease, indicating an increasing trend 
in NPP from 2001 to 2017, consistent with the temporal 
characteristics of NPP change in the study area.

Influencing Factors of NPP Change

The Correlation Between NPP, NDVI, 
and Climatic Factors

NDVI is an important indicator of vegetation 
coverage, which has a good indicative role in the yield of 
NPP [4]. NPP will rise in proportion to the augmentation 
of vegetation coverage. The results (Fig. 4(a-b)) of the 
correlation analysis show that the correlation coefficient 
between NPP and NDVI is between -0.88 and 0.99. 
Among them, the regions with a correlation coefficient 
greater than 0 accounts for 83.54% of the total area 
of Yunnan Province, and those less than 0 accounts 
for 16.46% of the total area of Yunnan Province, 
indicating that most of the NPP in Yunnan Province are 
positively correlated with NDVI. The regions exhibiting  
a significant correlation (t<0.05) between NPP and 
NDVI encompass 31.79% of the entire land area of 

Fig. 3. Changes in NPP over time in Yunnan Province, 2001-2017; (a) change in trend; (b) inter-annual change in total NPP; (c) inter-
annual change in the mean, maximum, and minimum values of NPP
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Yunnan Province. These regions are widely dispersed 
over most parts of Yunnan Province. Out of all the areas 
analyzed, 31.33% show a significant positive correlation 
(R>0, t<0.05) between NPP and NDVI, with the highest 
concentration observed in Zhaotong. On the other hand, 
only 0.46% of the areas exhibit a significant negative 
correlation (R<0, t<0.05) between NPP and NDVI, with 
sporadic distribution across different prefectures and 
cities.

Similarly, the correlation analysis of NPP in 
Yunnan Province and various meteorological factors 
(precipitation, temperature, solar radiation, Fig. 4(c-h)) 
shows that the coefficient of correlation between 
NPP and precipitation is between -0.91 and 0.89, with 
an average value of 0.045. The regions exhibiting  
a correlation coefficient exceeding 0 encompass 57.38% 
of the entire study area. Among these, the areas 
displaying a significantly positive correlation constitute 
6.81% and are primarily concentrated in the eastern 
section of Yunnan Province. Conversely, the regions 
with a correlation coefficient below 0 cover 42.62% of 
the total study area. Within this subset, the significantly 
negatively correlated areas account for 3.43% and are 
predominantly found in the western part of Yunnan 
Province. The correlation coefficient between NPP 
and temperature in Yunnan Province is between -0.84 
and 0.92, with an average value of 0.017. The areas 
with positively correlated and significantly positively 
correlated relations account for 53.40% and 2.08% of 
the total study area, respectively, while the significantly 
negatively correlated areas account for 1.09%, mainly 
distributed at the junction of Lijiang, Dali, and Chuxiong, 
in the central part of Pu’er, and in the southern region 
of Baoshan. The net primary productivity (NPP) in the 
research area has a predominantly negative association 

with sun radiation. The correlation coefficient between 
solar radiation and NPP ranges from -0.86 to 0.91, with 
an average value of -0.032. The locations that exhibit a 
strong negative correlation make up 3.17% of the entire 
study area, primarily located in the southwestern and 
northeastern regions of Yunnan Province.

In general, the variation in NPP in Yunnan Province 
is intricately linked to climate change. Precipitation 
exerts the most substantial influence on the variation in 
NPP in Yunnan Province, compared to temperature and 
solar radiation.

NPP Changes Under Different Terrain Conditions

The research area’s multi-year NPP mean values 
were evaluated geographically with each terrain factor 
(altitude, slope, and aspect) to determine the spatial 
distribution characteristics of vegetation NPP on 
each terrain factor. The results are depicted in Fig. 5.  
The investigation revealed that the distribution pattern 
of vegetation NPP in Yunnan Province demonstrated an 
initial rise followed by a decline in relation to altitude. 
Specifically, when the altitude was below 1500 m, the 
vegetation NPP increased as the altitude increased. 
However, when the altitude exceeded 1500 m, the 
vegetation NPP decreased as the altitude increased.  
NPP reached its peak at an altitude of 1000-1500 m,  
with a value of 1131.09 g C·m-2·a-1. Conversely, at 
altitudes beyond 300 0m, the vegetation’s NPP was at its 
lowest, measuring 715.625 g C·m-2·a-1.

The influence of aspect on NPP is such that 
the NPP of the shady slope>the NPP of the sunny  
slope >the NPP of the flat ground. The primary reason 
for this distribution may be that under the same 
amount of precipitation, the solar radiation intensity 

Fig. 4. Correlation of NPP with NDVI and climatic factors
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on the shady slope is weaker, resulting in less water 
evaporation, moist soil, and higher fertility, making the 
natural conditions better than those on the sunny slope 
and flat terrain, hence leading to higher NPP.

There are also significant differences in NPP 
corresponding to different slopes, with the average NPP 
showing a decreasing trend with an increasing slope. 
The 6-15°slope region in Yunnan Province has the 

largest proportion, accounting for 41.46%, and belongs 
to a hillside. The average NPP in this slope range is also 
the highest at 1059.29 g C·m-2·a-1. For slopes below 15°, 
NPP shows a progressive increase as the slope increases. 
Conversely, for slopes over 15°, the NPP declines as the 
slope grows.

Fig. 5. Distribution of mean NPP values for vegetation with different topographic factors

Table 1.  Land use transfer matrix from 2001 to 2010, from 2010 to 2017, and from 2001 to 2017(unit:km2).

2001
2010

Farmland Forest Grassland Water Bare land Construction land

Farmland - 8492.56 3098.69 132.19 0.31 289.69

Forest 8291.69 - 604.75 6.56 0 4.81

Grassland 2997.00 3138.63 - 57.50 65.06 126.06

Water 80.00 21.44 59.69 - 19.75 10.25

Bare land 0.38 0.13 59.38 19.19 - 2.69

Construction land 0.19 0 0 9.25 0.06 -

2010
2017

Farmland Forest Grassland Water Bare land Construction land

Farmland - 17150.19 4482.88 345.81 3.50 419.44

Forest 19076.81 - 5174.94 200.88 1.31 20.69

Grassland 4802.00 7041.25 - 190.56 158.44 225.75

Water 169.00 151.88 98.56 - 30.81 18.69

Bare land 1.00 3.06 73.94 55.50 - 1.00

Construction land 245.75 21.25 134.50 27.88 1.00 -

2001
2017

Farmland Forest Grassland Water Bare land Construction land

Farmland - 19370.44 4839.56 418.00 6.31 648.69

Forest 20691.56 - 4942.31 201.63 1.38 28.38

Grassland 5498.06 8980.38 - 0 166.88 216.56

Water 207.75 134.50 99.44 - 30.88 22.75

Bare land 1.00 1.31 83.56 53.00 - 3.38

Construction land 133.63 16.94 63.88 25.69 0.56 -
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NPP Gain and Loss Caused by Land Use Transfer

The land use transfer matrix can reflect the 
transfer of different land types. The land use transfer 
matrix between different years in Yunnan Province 
is shown in Table 1. Forest, farmland, and grassland 
are the three main types of land use in the study 
area. Forest conversion is predominantly driven by  
the transformation of farmland, while farmland 
conversion primarily arises from the conversion of forest. 
Additionally, grassland conversion is largely attributed 
to the previous conversion of both farmland and forest. 
From 2001 to 2010, the area of farmland converted to 
forest was the largest, at 8492.56 km2, accounting 
for 3.05% of the cumulative extent of the study area.  
The total area of bare land transferred was the smallest, 
mainly converted to grassland. From 2010 to 2017, the 
area of forest converted to farmland was the largest, at 
19076.81 km2, followed by farmland converted to forest 
land, at 17150.19 km2. The area converted to forest 
accounted for 6.37% of the cumulative extent of the 
study area, and compared to the previous decade, the 
area of land converted to construction land changed the 
most, increasing by 26.63%. From 2001 to 2010, the area 
of forest land converted to farmland was the highest, 
at 20691.56 km2, and construction land was mainly 
converted from farmland, with an area of 648.69 km2.

NPP gains and losses caused by changes in land use 
types are shown in Fig. 6. From 2001 to 2010, the largest 
total NPP loss caused by the conversion of land use 
types to water was 121.26kg C·m-2·a-1, followed by the 
loss due to conversion to construction land. From 2010 
to 2017, the highest NPP gain caused by the conversion 
of land use types to forest was 118 kg C·m-2·a-1, and 

the gain from farmland was 113.08 kg C·m-2·a-1. It is 
worth noting that from 2001 to 2010, the conversion 
of other land types to forest caused a slight decrease 
in NPP, while from 2010 to 2017, the forest conversion 
caused a significant increase in NPP. From 2001 to 2010, 
the conversion of other land types to construction land 
caused a decrease in NPP, while from 2010 to 2017, the 
conversion to construction land caused an increase in 
NPP. Overall, from 2001 to 2017, the highest NPP gain 
caused by the conversion of all land types to forest was 
104.68kg C·m-2·a-1, the highest NPP loss was caused 
by the conversion to water, and the lowest NPP loss was 
caused by the conversion to construction land.

Factors Influencing the Spatial 
Heterogeneity of NPP

GeoDetector Results

The factors affecting NPP were identified through 
the use of GeoDetector, and the dominant factors were 
determined. The interaction effects between various 
factors on the spatial heterogeneity of NPP were also 
determined. The analysis of factor detection in Fig. 7a) 
reveals that all factors successfully met the significance 
test (p<0.01). The primary factor observed in each 
year was NDVI, with an average explanatory power of 
roughly 0.46 across the three-year period. The average 
q values of the factors over the three years were: NDVI 
(0.46) > Pre (0.32) > Tmp (0.21) > LUCC(0.18) > DEM 
(0.13) > SR (0.09) > Slope (0.05) > Aspect (0.002). This 
indicates that NDVI, precipitation, temperature, land use, 
and elevation were important influencing forces for the 
variation in NPP from 2001 to 2017 (q>0.1), while solar 

Fig. 6. NPP gains and losses due to the land use transfer matrix
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radiation, slope, and aspect had relatively minor spatial 
heterogeneity effects on NPP in Yunnan province (q<0.1). 
It is noteworthy that overall, the q-value change rates 
for precipitation, aspect, and NDVI were negative, with 
precipitation showing the largest absolute value of change 
rate and NDVI the smallest, indicating a decrease in the 
explanatory power of these three influencing factors for 
NPP, with precipitation showing a greater fluctuation in 
q-value compared to NDVI. The q-value change rates 
for land use, solar radiation, temperature, elevation, and 
slope were all positive, indicating an enhancement in 
the explanatory power of these five influencing factors 
for NPP, with temperature, elevation, and slope showing 
relatively significant changes, while solar radiation and 
land use exhibited more stable changes. 

Based on the findings of the interaction detection 
analysis (Fig. 7(b-d)), it was noted that the q-values for 
the interactions among all components were higher than 
those for any individual factor. The interaction types 
between factors were either two-factor enhancement 
or nonlinear enhancement, indicating that the changes 
in NPP in Yunnan province from 2001 to 2017 were 
influenced by the synergistic effects of multiple factors 
rather than being controlled by a single factor. In 
2001, 2010, and 2017, the interactions of NDVI∩Pre 
had the strongest explanatory power for NPP changes, 

with values of 0.650, 0.593, and 0.539, respectively. 
In the same years, the interactions of NDVI∩Pre, 
NDVI∩Tmp, and NDVI∩DEM had the highest average 
explanatory power for NPP changes, with values of 
0.622, 0.582, and 0.557, respectively. In 2017, the 
dominant factors became NDVI∩Tmp, NDVI∩Pre, and 
NDVI∩SR, with explanatory powers of 0.543, 0.539, 
and 0.508, respectively. Overall, although NDVI has 
always been the dominant factor in NPP changes and 
has strong explanatory power for NPP when interacting 
with meteorological factors, its explanatory power 
after interacting with other factors has been weakening 
year by year. Conversely, the explanatory power of 
the interactions of LUCC∩DEM and LUCC∩Tmp 
was lower than that of NDVI when interacting with 
other factors, but their explanatory power has been 
strengthening year by year, indicating that the impact 
of land use and topographic changes on NPP changes in 
the study area should not be overlooked.

GWR Results

Based on the results of GeoDetector, four main 
factors, including NDVI, precipitation, temperature, and 
altitude, were selected. Since the VIF of temperature 
and altitude are both greater than 7.5 and the correlation 

Fig. 7. GeoDetector results: (a) Factor detector in 2001, 2010, and 2017; (b), (c), (d) Interaction detector between factors in 2001, 2010, 
and 2017; LUCC- land use; Pre-precipitation; DEM- altitudes; Tmp-temperature; SR-solar radiation; NDVI- vegetation index.
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coefficient between temperature and NPP is greater than 
that of altitude, the altitude factor is excluded. Hence, 
NDVI, precipitation, and temperature are determined as 
explanatory variables of the GWR model for the analysis 
of influencing factors.

On one hand, this approach achieves factor 
reduction, and on the other hand, it maximally reflects 
the impact of influencing factors, avoiding redundancy 
and ineffectiveness.

To reduce errors in the GWR results, it is necessary 
to first use ordinary least squares (OLS) to test the 
collinearity of the independent variables. Compared 
with the results of the OLS model (Table 2), the GWR 
model’s adjusted goodness of fit (Adjusted R2) increases, 
and the AICc value significantly decreases. This 
indicates that the GWR model can better explain the 
spatial distribution of how the three factors affect NPP.

The distribution results of the Geographically 
Weighted Regression coefficients between the three 
factors and NPP (Fig. 8) indicate that the spatial 
distribution of different influencing factors has 
significant spatial heterogeneity, specifically in the 
following three aspects:

(1) NDVI has a significant positive impact on 
NPP. The high positive value region of the regression 
coefficient is mainly located in the southern part of 
Yunnan Province (Xishuangbanna, the southern part 
of Pu’er, and the southern part of Honghe). These 
areas belong to the tropical region of Yunnan, with 
good water and heat conditions, high forest coverage, 

year Model Adjusted R2 AICC

2001
OLS 0.679 24994.064

GWR 0.758 21448.092

2010
OLS 0.638 26895.822

GWR 0.712 23852.807

2017
OLS 0.668 25482.383

GWR 0.747 22110.509

Fig. 8. Geographically Weighted Regression results: spatial distribution of regression coefficients for NDVI, precipitation, and 
temperature.

Table 2. Comparison of OLS and GWR models.
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complex community structure, and rich species, thus 
leading to higher NPP. The region with a low positive 
value of the regression coefficient is mainly distributed 
in the northwest and northeast of Yunnan Province 
(Diqing, Nujiang, and the northern part of Zhaotong). 
The northwestern part of Yunnan belongs to the high-
cold region on the southeast periphery of the Qinghai-
Tibet Plateau, with high altitude and unfavorable 
conditions for plant growth, resulting in relatively low 
vegetation coverage and thus lower NPP. The region 
with a low positive value of the regression coefficient 
in the central part of Yunnan gradually transitions to 
the region with a high positive value, indicating the 
gradual improvement of Yunnan’s ecosystem.

(2) From 2001 to 2017, the spatial distribution map 
of the regression coefficient of temperature shows that 
temperature has both positive and negative effects on 
NPP. The northern part of the province (Diqing, Nujiang, 
Lijiang, and Zhaotong) and some areas in the central part 
(Qujing, Chuxiong, and the southern part of Dali and 
Dehong) are positively influenced by temperature. The 
vegetation in these locations mostly comprises warm-
temperate coniferous and broadleaved mixed forests, 
cold-temperate coniferous forests, temperate and cool 
coniferous forests, alpine shrubs, and meadows. These 
plant types possess specific adaptations suited for cold 
settings. High-value areas of the regression coefficient 
are mainly concentrated in the northern part of Yunnan 
Province, including Diqing, Lijiang, and Zhaotong, as 
well as in the central areas such as Chuxiong, Qujing, 
Dehong, and Wensha. In the southern areas such 
as Xishuangbanna and Pu’er, there is a significant 
negative effect of temperature, and over time, the area 
of negative impact surrounds the entire southern region. 
This is mainly due to the high temperatures in the 
southwest region, which can increase vegetation water 
consumption and suppress photosynthesis.

(3) Precipitation mainly has a positive effect on NPP. 
Over time, positive high-value areas gradually emerge 
around Pu’e, Hongh, and Wensha, indicating a strong 
promoting effect of precipitation on NPP in these areas. 
Over time, there has been a local expansion of areas 
with negative values, which has impacted the central 
regions (Kunming, Chuxiong, and certain parts of 
Dehong) as well as the eastern regions (such as Qujing 
City). In these areas, the negative high-value areas are 
most prominent in specific parts of Xishuangbanna, 
Diqing Prefecture, and Zhaotong City. 

Discussion

Spatial and Temporal Heterogeneity 
Patterns Influenced by Natural Factors

Natural factors are important drivers of NPP, and 
their impact exhibits significant temporal and spatial 
variations. The results of our study indicate a decline 

in the explanatory capacity of precipitation and NDVI 
on NPP over an interval of time, whereas temperature, 
solar radiation, DEM, slope, and land use have shown 
an increase in their explanatory capacity. Among these 
factors, NDVI, precipitation, and temperature exhibit 
significant variations in the regions of North, Central, 
and South Yunnan, and they are the main drivers of 
spatial heterogeneity in NPP. This aligns with the 
research findings of Chen et al. [34] and Sun et al. 
[35] on Yunnan Province, who also found that natural 
factors have a stronger explanatory power for the spatial 
distribution of NPP than anthropogenic factors, and 
the interaction effects of any two factors can enhance 
this explanatory power. The primary reasons for this 
phenomenon are: (1) Yunnan Province is situated in 
a complex environment with diverse biota at a low 
latitude and high altitude, where land use is dominated 
by forests and grasslands, playing important roles in 
water conservation and soil retention [36, 37]. Therefore, 
natural conditions such as vegetation cover and climate 
have a significant impact on NPP. However, in recent 
years, frequent extreme weather events globally have led 
to flooding from extreme precipitation and insufficient 
soil moisture supply from extreme drought, disrupting 
the growth environment for vegetation and reducing 
the explanatory power of precipitation in the spatial 
differentiation of NPP [38]. (2) Against the backdrop of 
global warming, higher temperatures may extend the 
growing season for vegetation [39], leading to increased 
efficiency in photosynthesis, with solar radiation as the 
main energy source for vegetation, hence enhancing its 
explanatory power for NPP. (3) Anthropogenic activities 
such as urbanization and agricultural expansion have led 
to significant changes in land use, affecting landscape 
structure, altering ecosystem functions, and thereby 
influencing the spatial distribution of NPP [40, 41]. 

However, it is noteworthy that the influences of 
NDVI, precipitation, and temperature on NPP in South 
and North Yunnan show opposite spatial differences, 
with NDVI and precipitation decreasing in influence 
with increasing elevation, while temperature’s influence 
increasing with elevation. Importantly, over time, the 
positive correlation between vegetation NPP and NDVI 
in Central Yunnan has been gradually strengthening. 
In the northern regions of Yunnan, such as Nujiang 
and Diqing, despite possibly high vegetation cover, the 
high altitude, low temperature, short growing season, 
and poor soil quality limit the growth rate and strength 
of vegetation, hence their relatively lower contribution 
to the NPP. In contrast, in the southern region, such 
as Xishuangbanna, lower altitudes, favorable thermal 
conditions, and longer growing seasons facilitate rapid 
vegetation growth and recovery [42], resulting in a 
higher impact on NPP. Additionally, the increase in the 
influence of NDVI on NPP in Central Yunnan represents 
improvements in ecological and environmental quality 
and advancements in agricultural production techniques 
[43]. Among meteorological factors, precipitation is the 
predominant factor influencing variations in vegetation 
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NPP, promoting NPP in most regions. For instance, the 
tropical and subtropical climates of regions like Honghe, 
Wenshan, and Pu’er benefit from increased precipitation, 
promoting vegetation growth [42]. Conversely, 
precipitation shows the strongest negative correlation in 
some regions in the north and south of Yunnan. The high 
altitude in the north makes excessive precipitation likely 
to trigger natural disasters (landslides, debris flows, 
etc.), hindering vegetation growth, whereas excessive 
precipitation in the south, like in Xishuangbanna, a 
humid region, affects thermal conditions and suppresses 
vegetation growth [43]. Temperature is also a crucial 
factor influencing vegetation NPP. The main vegetation 
types in Northwest Yunnan are warm-temperate 
mixed broadleaf-conifer forests, cold-temperate 
coniferous forests, temperate coniferous forests, alpine 
shrubs, and meadows, which are more sensitive to 
temperature. Higher temperatures significantly promote 
photosynthesis, favoring vegetation growth. Conversely, 
the increase in vegetation NPP in Northeast Yunnan 
(e.g., Zhaotong) is due to higher temperatures and 
increased precipitation, which facilitate photosynthesis 
and transpiration, leading to a significant increase in 
vegetation cover. In southwestern Yunnan and most 
of the northern region, while higher temperatures are 
conducive to photosynthesis, they may also hinder 
the increase in vegetation NPP due to increased water 
consumption, suppressing photosynthesis [42]. For 
example, in 2010, higher temperatures in southwestern 
Yunnan led to a larger area of negative influence on 
vegetation NPP, mainly related to that year’s extreme 
drought [44]. Drought affects plant photosynthesis, 
nutrient absorption, and leaf health and subsequently 
influences NPP [45]. 

Spatial and Temporal Heterogeneous 
Patterns of Anthropogenic Influences

The spatial and temporal distribution pattern of 
NPP is mostly influenced by anthropogenic causes, 
particularly in relation to anthropogenic land use. The 
influence of land use on the spatial divergence of NPP 
is comparatively small in relation to natural causes; 
however, it has a tendency to grow as time progresses. 
Our study shows that the explanatory power of Slope 
∩ LUCC and DEM ∩ LUCC on NPP has a tendency 
to increase over time, which fits with the results of Xu 
et al. [43], Chen et al. [34], and Sun et al. [35]. The 
interaction of topography and land use may directly 
impact soil, water, and light conditions, thereby altering 
plant growth and affecting the spatial and temporal 
distribution patterns of NPP. In recent years, significant 
changes in land use have occurred in Yunnan Province 
due to socioeconomic development and population 
growth, leading to adjustments in land use structure. 
For example, the conversion of agricultural land to 
impermeable surfaces has taken place on a large scale 
[46]. Furthermore, our study found that although 
overall, the conversion of land cover types to forests, 

grasslands, and croplands between 2001-2017 resulted 
in NPP gains, conversions to water bodies, bare land, 
and urban land led to NPP losses. Specifically, land 
use transitions caused vegetation NPP losses from  
2001-2007, particularly the conversion to forests, 
resulting in a decrease of 1.75 Kg C·m-2·a-1, while 
transitions from 2010-2017 led to vegetation NPP gains, 
especially the conversion to urban land, which resulted 
in an increase of 69.23 Kg C·m-2·a-1. This contrasts 
with some studies where land conversion to forests 
increases vegetation productivity while conversion 
to urban land reduces it [7, 47]. The main reasons for 
this may be related to the differences in the direction of 
land use change and the level of urban development in 
different regions [48]. From 2001-2010, much of Yunnan 
Province’s forests were converted into croplands. 
Croplands, with long-term cultivation and fertilization, 
have higher soil quality than forests. After conversion, 
forests need to undergo long-term natural succession and 
vegetation recovery to increase NPP, as also evidenced 
in studies of the Shenyang economic zone [49]. A recent 
study found that the promotion effect of the urban 
environment on vegetation production is constrained by 
the level of urban development, with higher urbanization 
leading to higher overall vegetation levels, a phenomenon 
inseparable from natural and climatic conditions [50]. 
Meanwhile, from 2001-2010, slow urban development 
in Yunnan Province resulted in the conversion of 
land use types to urban land, disrupting the original 
vegetation cover and causing an overall decrease in NPP. 
However, from 2010-2017, accelerated urbanization 
intensified the urban heat island effect, promoting 
vegetation growth [46, 51]. Moreover, impermeable 
surfaces, compared to vegetated cover, reduce water 
retention, infiltration, and evapotranspiration, thereby 
favoring vegetation growth and increasing NPP [52]. 
Additionally, from 2010-2017, urban development placed 
a greater emphasis on ecological construction, and 
urban irrigation, construction, and greening provided 
favorable conditions for urban vegetation growth, such 
that the indirect effects of anthropogenic intervention 
in the urbanization process on improving the vegetation 
growth environment outweigh the direct losses caused 
by vegetation destruction [12], leading to an increase in 
vegetation NPP.

Advantages and Limitations

This study addresses the lack of research on 
the spatial and temporal variability of NPP and the 
factors that influence it. It combines a GeoDetector 
and a GWR model to examine the distinct spatial and 
temporal characteristics of the effects of natural and 
anthropogenic factors on NPP. The findings confirm that 
natural factors have a dominant influence on the changes 
in NPP in Yunnan Province, and there are significant 
differences in the spatial and temporal impacts of 
natural and anthropogenic factors on NPP. The 
combined use of GeoDetector and GWR models not only 
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comprehensively demonstrates the complex relationship 
between NPP and the drivers on the temporal and spatial 
scales, but also enhances the explanatory power of the 
models. This is different from the traditional analysis. 
However, our study also has some limitations. Firstly, 
when using GeoDetector to identify the dominant factors  
of NPP at different time scales, the independent variables 
of GeoDetector must be categorical, requiring the 
discretization of factors. Different classification methods 
may lead to different results [32]. The classification 
of each factor in this study mainly refers to existing 
research and uses the natural breakpoint method to 
partition factors combined with the characteristics of 
Yunnan Province, which lacks a quantitative evaluation 
and inevitably affects the accuracy of the research 
results. Further investigation is needed to examine the 
influence patterns of different factors affecting NPP. 
Secondly, the influence of environmental complexity at 
different scales on ecosystems is of great significance, 
but the GWR model only assigns a uniform search 
bandwidth for all independent variables, ignoring the 
different scale effects of different variables, and the 
response relationship between NPP and different factors 
at different scales may vary. Based on these limitations, 
we recommend that future research should further 
reveal the partitioning effects of NPP and its influencing 
factors by improving existing methods and conducting 
a more detailed exploration of their relationships at 
different spatial scales.

Conclusions

The exploration of the driving factors of NPP changes 
and their spatial-temporal correlation features is the 
basis and prerequisite for the sustainable development 
of ecosystems. This study uses GeoDetector to reveal 
the mechanisms of natural and anthropogenic factors at 
different times and spaces, identify key factors affecting 
NPP, and then use these key factors to construct the 
GWR model. Based on the regression coefficient, the 
spatial-temporal heterogeneity of the key influencing 
factors for NPP is visualized. The principal results of 
this investigation are as follows:

(1) From 2001 to 2017, the overall NPP in Yunnan 
Province showed an increasing trend, with a change 
rate of 0.013/year. The non-significant increase in NPP 
is the main spatial distribution in the region. This 
indicates that vegetation productivity is developing in 
a positive direction under the influence of natural and 
anthropogenic factors.

(2) The impact of natural factors on NPP shows 
significant spatiotemporal differences. NDVI, 
temperature, and precipitation dominate the 
spatiotemporal distribution pattern of NPP. From the 
spatial distribution, with the increase in altitude, the 
influence of NDVI and precipitation decreases while 
the influence of temperature increases. The NDVI 
has had a favorable, increasing effect on NPP in the 

central Yunnan region over time. In terms of temporal 
variations, temperature, solar radiation, and topography 
all exhibit increasing trends in explanatory power, while 
precipitation and vegetation on the NPP show declining 
trends. This implies that the important role of natural 
factors in impacting vegetation cannot be ignored.

(3) Anthropogenic variables have a relatively low 
explanatory power on the spatial distribution pattern 
of NPP as compared to natural sources; however,  this 
is growing over time. Although urbanization had a 
negative effect on vegetation productivity from 2001 
to 2017, we found that after 2010, urbanization had 
a positive effect on vegetation productivity. This 
indicates that, against the backdrop of accelerated urban 
development, anthropogenic activities have improved 
NPP more than they have harmed it. 

The study examines the spatial and temporal 
connections between NPP and driving variables, offering 
a fresh outlook for research on sustainable development 
in regional and global NPP.
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