
Introduction

With regard to economic progress, social stability, 
and environmental protection, green is a common 
concern worldwide, as well as a way forward and a wise 

choice [1]. In the context of increasing global emissions 
of pollutants, particularly greenhouse gases, green 
innovation can help to promote economic development 
while maintaining environmental sustainability [2]. 
It is apparent that promoting green innovation has 
become a necessary route to achieving high-quality 
development [3]. Due to the high risks normally 
associated with technological innovation [4], green 
innovation cannot be achieved without the support of  
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Abstract

Green innovation efficiency (GIE), which reflects the relationship between inputs and outputs that 
consider environmental impacts, is critical to China’s realization of green and sustainable development. 
In view of the differences in economic development and resource endowment across provinces, it is 
necessary to measure and evaluate the GIE in a rational manner. In this paper, we study the evaluation, 
dynamic evolutionary characteristics, and influencing factors of GIE for 30 provinces in China over the 
period 2011-2022, using the super-SBM undesirable model, the spatial Markov chain model, and the 
geographically and temporally weighted regression model, respectively. Results show that the eastern 
region has a significantly higher GIE than the other regions, followed by the central region. Also, the 
state of provincial GIE in China is affected by the level of neighboring regions. GDP per capita, the 
marketization index, and industrial structure promoted GIE, while R&D expenditure, import and export 
trade, and the digital financial inclusion index showed negative results. There is also spatiotemporal 
heterogeneity in the effects of individual factors on GIE. Thus, a one-size-fits-all policy for GIE is 
highly unsuitable for the realities of individual provinces in China. We propose a number of targeted 
and differentiated policy recommendations that can be implemented.
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a large number of scientific and technical personnel and 
financial resources. According to the National Bureau of 
Statistics of China, the intramural expenditure on R&D 
and the full-time equivalent of R&D personnel in China 
reached 3.078 trillion yuan and 6.354 million man-years 
in 2022, respectively. As for industrial enterprises above 
the designated size, the percentage of enterprises with 
R&D activities in the total number of enterprises was 
as high as 37.3% in 2022, much higher than the 13.7% 
experienced in 2012. Evidently, both the government 
and enterprises have consistently invested heavily in 
the process of promoting green innovation. Against 
this backdrop, China has made many world-renowned 
achievements, such as supercomputing and manned 
spaceflight [5].

The high-risk attributes of green innovation 
signify that innovative activities are prone to failure 
and that technological transformation and upgrade of 
enterprises are costly. Therefore, high investments 
are not necessarily meant to imply high productivity. 
Accordingly, green innovation efficiency (GIE) has 
gradually become one of the crucial points of concern 
in both academia and practice. From the perspective 
of environmental concerns, GIE generally refers to 
an innovation efficiency that considers environmental 
benefits and economic outputs [6, 7]. Similarly, in terms 
of the input-output perspective, GIE refers to obtaining 
optimal innovation achievements with minimal resource 
and environmental costs [3, 8]. That is, a relatively 
low GIE may facilitate technological progress and 
upgrading within the short term, but it certainly hinders 
green technological innovation and environmental 
sustainability in the long term.

China’s GIE is largely constrained by an excessive 
focus on economic benefits and a huge waste of 
resources in innovation activities. Additionally, 
the rigidity of technology innovation management 
regimes may also hinder the exploration of emerging 
and advanced technologies. In view of many external 
factors, such as the technology blockade from developed 
countries, China’s GIE to date is still relatively low [9, 
10]. Based on this, accurately evaluating the GIE of each 
province in China has become an important prerequisite 
for grasping the current state of green innovation. 
Commonly, the influencing factors of GIE are multiple 
and complex, involving various aspects of social 
prosperity and economic development. Meanwhile, 
inter-provincial differences due to resource endowments 
are also an issue that the Chinese government needs to 
take fully into account. This implies that there may be 
spatiotemporal heterogeneity in the impacts of a specific 
variable on GIE. It is apparently inappropriate to adopt 
a one-size-fits-all policy for different provinces. Thus, 
this study is also beneficial to the formulation of China’s 
rational science and technology policies.

In summary, this paper addresses the following 
questions in light of the research gaps that exist in 
previous studies of China’s GIE: What is the current 
level of provincial GIE in China, with full consideration 

of economic, social, and environmental aspects? What 
kind of spatial and temporal evolution has China’s GIE 
experienced during the period of examination? Can the 
ranks of GIE in each province be transferred across 
ranks, and is this transfer related to the ranks of the 
surrounding provinces? For individual provinces, which 
factors have a positive and which have a negative impact 
on GIE, and does this vary from province to province?

Literature Review

In contrast to green innovation, which typically 
considers only the number of technological innovation 
outputs [11, 12], the evaluation of GIE is mainly 
concerned with the proportional relationship between 
green innovation inputs and outputs, i.e., efficiency [13, 
14]. Among the input variables, labor and capital are the 
ones that have been fully considered by the most existing 
literature. For instance, Li [3], Song, and Han [15] 
employed human resources and financial investment as 
inputs. Besides, energy inputs are also significant input 
indicators considered by many scholars when measuring 
GIE. Proxies for energy inputs vary depending on the 
industry sector and the spatial scale of existing studies. 
Total energy consumption [8], total power supply [16], 
total electricity consumption [7, 17], and total gas supply 
[18] are the most commonly used proxy variables for 
energy inputs. On the methodological side, the data 
envelopment analysis (DEA) model is most popular when 
it comes to calculating relative efficiency [3]. However, 
traditional DEA models, such as the CCR-DEA model 
and the BCC-DEA model, have some shortcomings [19]. 
Specifically, these models ignore input and output slack 
variables and are unable to distinguish and compare the 
efficiency of the effective DMUs [3]. In this regard, Tone 
[20] and Tone [21] introduced the slacks-based measure 
(SBM) method and super-efficiency into traditional 
DEA models, respectively. Hence, the super efficiency 
SBM model has been widely applied to calculate GIE 
[6]. Additionally, as public concern regarding global 
environmental issues increases, the undesirable outputs 
are becoming a non-negligible part of the efficiency 
calculations. The outputs are categorized into desirable 
and undesirable outputs. In the calculation of GIE, 
desirable outputs consist mainly of economic benefits, 
and undesirable outputs mainly refer to environmental 
impacts and burdens caused by innovative activities. 
Undesirable outputs are commonly added to the 
calculation formula for GIE as part of the output [22]. 
However, there are still a few existing studies that 
calculate GIE by treating undesirable outputs as part of 
the inputs [23].

GIE involves input and output indicators that are 
multifaceted, and similarly, it is affected by many factors, 
including social, economic, political, geographic, and 
environmental [24]. For instance, theoretically, the 
urbanization level, which reflects the degree of social 
development, significantly promotes green technology 
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innovation activities [25]. Economic development 
is closely linked to infrastructure, construction, 
and technological research and development [26], 
which is conducive to attracting a large number of 
innovative entities [27]. Additionally, the government’s 
governance, policy preferences, and decisions, such 
as policy support and fiscal decentralization, can also 
influence the effective improvement of GIE [7, 28]. 
Usually, local fiscal decentralization reflects the fiscal 
power of local governments, which in turn influences 
policy preferences. In economically developed regions, 
local fiscal decentralization may lead governments to 
pursue higher and faster short-term economic benefits 
at the expense of long-term environmental benefits, 
thereby suppressing GIE [28]. In addition, geographic 
factors are closely associated with a region’s resource 
endowments, such as land and energy, as well as 
industrial structure and agglomeration, which clearly 
affect GIE. Geographic spatial linkages between regions 
have also been one of the hotspots for scholars in recent 
years [24]. Besides, environmental regulations, such 
as environmental pollution, control investment, and 
pollution removal rate, also significantly affect GIE [8, 
16]. In terms of methodology for impact effects, the 
spatial econometric model [3], panel threshold model 
[16], quadratic assignment procedures [24], fuzzy set 
qualitative comparative analysis [29], geographical 
weighted regression model [30], generalized method of 
moment, and moderating effect model [31] have been 
applied to empirically examine the impact of influencing 
factors on GIE. However, many of the results obtained 
from the above methodologies fail to distinguish among 
the heterogeneity of impacts in both temporal and 
spatial terms, yielding one-size-fits-all policies. This 
shortcoming affects regional policy preferences, which 
in turn affects GIE.

There are three potential contributions to this 
study in comparison to existing studies. First, this 
study fully considers both the quantity and quality of 
green innovation as output variables for measuring 
GIE. Specifically, the number of patent applications is 
employed to indicate the quantity of green innovation, 
while the number of green invention patent grants is 
adopted to indicate the quality of green innovation. 
Second, the spatial Markov chain model is applied 
to dynamically analyze the spatial evolution of GIE, 

whereas most of the existing studies mainly selected 
a few specific years for static analysis. Third, the 
traditional methods employed in the majority of existing 
studies yield the same regression coefficients for each 
spatial location and time point. The geographically and 
temporally weighted regression (GTWR) model applied 
in this study can capture the parameter variability 
of different spatial units in both temporal and spatial 
dimensions.

Materials and Methods

Data Sources

Considering the availability of data, we selected 
30 provinces in China (excluding Xizang, Hong Kong, 
Macao, and Taiwan) as the research objects in this paper. 
The time frame of this study is 2011-2022. Eventually,  
a total of 360 samples will be included in this study. 
The raw data for input and output variables employed to 
calculate GIE were obtained from the China Statistical 
Yearbook, the Chinese Research Data Services 
Platform, the China Statistical Yearbook on Science 
and Technology, and the China Statistical Yearbook on 
Environment. In addition, GDP per capita, industrial 
structure, and import and export trade could be obtained 
by calculating the raw data from the China Statistical 
Yearbook. The digital financial inclusion index was 
released by the Institute of Digital Finance at Peking 
University and the Research Institute at Ant Group. 
R&D expenditure was obtained from the Communiqué 
on National Expenditures on S&T released by the 
National Bureau of Statistics of China. Besides, the 
marketization index was produced by the China Market 
Index Database. The descriptive statistics of the selected 
influencing factors are shown in Table 1.

Definition and Measurement of Variables

Explained Variable

The super-SBM undesirable model is employed to 
evaluate China’s GIE in this paper. The model involves 
3 types of variables simultaneously: input variables, 
and desirable and undesirable output variables. Input 

Table 1. The descriptive statistics of influencing factors.

Variables Mean St. D. Min Median Max

GDPPC 5.872 3.066 1.602 5.064 19.031

DFI 243.928 107.640 18.330 255.931 460.691

RDE 1.743 1.164 0.410 1.455 6.830

MI 8.150 1.946 3.359 8.266 12.864

INS 1.266 0.722 0.518 1.112 5.310

IET 0.256 0.260 0.007 0.152 1.398
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variables mainly include labor, capital, and energy. 
Hence, in this paper, input variables include R&D 
expenditure, R&D personnel, and energy consumption. 
We select intramural expenditure on R&D (10000 yuan) 
to represent R&D expenditure and choose the full-time 
equivalent of R&D personnel (man-year) to denote R&D 
personnel. Also, electricity consumption (100 million 
kWh) is selected as a proxy for energy consumption. 
In addition, desirable output variables consist of 3 
parts: patent applications, green patent grants, and sales 
revenue of new products, considering both quantity and 
quality. We choose domestic patent applications (piece), 
green invention patent grants (piece), and sales revenue 
of new products of industrial enterprises above the 
designated size (10000 yuan) as proxies for desirable 
outputs, respectively. Furthermore, undesirable output 
variables are composed of 3 parts: wastewater discharge, 
waste gas emissions, and solid waste generated.  
In this paper, the chemical oxygen demand discharge 
in wastewater (10000 tons), sulfur dioxide emissions 
in waste gas (10000 tons), and common industrial solid 
wastes generated (10000 tons) are chosen to represent 
the undesirable output variables.

Explanatory Variables

As mentioned previously, GIE is influenced by 
many factors from various aspects. Hence, considering 
the availability and applicability of data, referring to 
[15, 19, 22, 23, 32], we choose economic development, 
marketization level, industrial structure, digital economy, 
government financial support, and trade openness as the 
influencing factors and explore the heterogeneity of their 
effects on GIE from temporal and spatial perspectives. 
Specifically, GDP per capita (GDPPC, 10000 yuan) is 
selected as the proxy of economic development; the 
digital financial inclusion index (DFI) is applied to 
represent the digital economy. Besides, the proportion 
of R&D expenditure to GDP (RDE) is used to denote 
government financial support, and the marketization 
index (MI) is chosen to represent the marketization level. 
Moreover, the ratio of the output value of the tertiary 
industry to the output value of the secondary industry 
(INS) is used to measure industrial structure, and the 
proportion of total import and export trade in goods to 
GDP (IET) is applied to measure trade openness.

Research Methods

The Super-SBM Undesirable Model

The super-SBM undesirable model has been 
demonstrated to be superior to the traditional DEA 
models in many research areas. It takes into account 
both undesirable outputs and allows for more in-depth 
comparisons of effective DMUs. Hence, it was adopted 
to evaluate China’s GIE in this paper. Referring to [33], 
the super-SBM undesirable model can be constructed as 
follows:

	 	 (1)

where ρ represents China’s GIE. The parameter λ 
represents the constant vector. Besides, xj

t, yj
t, and bj

t 
denotes inputs and desirable and undesirable outputs, 
respectively. In addition, m, l, and h represent the 
number of inputs, desirable outputs, and undesirable 
outputs, while sm

x, sl
y, and sh

b are the corresponding 
slack vectors, respectively.

Spatial Markov Chain Model

When exploring the distributional evolution of 
variables, as an extension of the traditional Markov chain 
model, the spatial Markov chain model can demonstrate 
the dynamic evolutionary characteristics of variables 
and explore spatial spillover effects [34]. Currently, the 
spatial Markov chain model has been widely employed 
in various academic fields, such as air pollution [35], 
urban health development efficiency [36], and urban 
resilience [37]. Hence, a spatial Markov chain model is 
used in this paper to explore the dynamic evolutionary 
characteristics of GIE. Besides, before executing the 
spatial Markov chain model, we first divided GIE into 
5 levels based on the natural breaks (Jenks) method, i.e., 
the levels were employed to represent GIE of different 
provinces in different years. In the traditional Markov 
chain model, pij is usually used to denote the probability 
that this stage is in rank i, and the next stage transitions 
to rank j. Therefore, referring to Du et al. [34], pij(k) 
is used to represent the probability that this stage is in 
rank i, and the next stage transitions to rank j while the 
adjacent regions are in rank k at this stage. Moreover, 
the spatial weight matrix involved in the spatial Markov 
chain model is generated on the basis of the queen 
adjacency principle in this paper.

Geographically and Temporally Weighted Regression

Traditional econometric methods, such as 
geographically weighted regression and spatial 
econometric models, ignore the role of temporal or 
spatial factors in the analysis. In order to account 
for both temporal and spatial nonstationarity and 
to compensate for the shortcomings of traditional 
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3 phases successively shows a steady, sharp rise and 
fluctuating upward trend, respectively. In the long 
run, such a trend reflects the continued improvement 
of green innovation in China. This is consistent with 
the conclusions of Zhang et al. [25], which concluded 
that China’s GIE has generally shown an increasing 
trend through time. The temporal evolution of GIE in 
the western region is strongly characterized by similar 
characteristics as the nationwide GIE, but the former 
always remains at a relatively low level after 2019 and 
does not exceed 0.5 until 2022.

In the eastern region, GIE is consistently and 
significantly higher than GIE in other regions, except 
in 2011. This finding confirms the conclusions of Zhao 
et al.’s [14] study that the eastern region has the highest 
average GIE. This is due to the fact that the eastern 
region has the best economic base and the highest 
level of technology, as well as being a magnet for high-
level talents from various regions. After 2016, GIE in 
the eastern region has been slowly and intermittently 
rising on the whole, and its dominance has become 
more pronounced, i.e. the phenomenon of the Matthew  
Effect has emerged. Additionally, the temporal evolution 
of GIE in the central region can be divided into 3 
stages: 2011-2016, 2016-2019, and 2019-2022, with an 
accompanying rising-falling-rising characteristic. The 
economic base of the central region is second only to 
that of the eastern region, and it is also attractive to high-
level technical talents. Simultaneously, the central region 
is endowed with abundant resources, such as minerals, 
and GIE may be further substantially enhanced in the 
process of industrial green transformation. Fig. 1 also 
shows the significant potential for the central region to 
increase its GIE beyond 2019, which is different from 
the slow rise in the western region. This finding is in 
contrast to that of Zhao et al. [14] who concluded that 
the difference in GIE between the central and western 
regions is decreasing. One possible explanation is 
that the latter only calculates GIE up to 2020, and the 
regional division criteria for China are not consistent 
with this paper. The temporal evolution characteristics 
of GIE in the northeastern region are more complex 
compared to other regions. GIE underwent a downward-
upward trend with a clear U-shaped pattern before 2016. 
By contrast, after 2016, GIE in the northeastern region 
has trended downward with significant fluctuations. 
The mass outflow of advanced technicians from the 
northeastern region and the large number of highly 
polluting heavy industries have inhibited local green 
innovation.

From a spatial perspective, Hainan has the highest 
average GIE of 1.056, the only province in the country 
with a GIE that exceeds 1. Recently, Hainan has been 
capitalizing on its natural tropical monsoon oceanic 
climate and island advantages to develop tourism 
resources, reduce heavily polluting heavy industries, 
and enhance the advantages of technological innovation 
in terms of greenness and sustainability. As indicated 
in Table 2, the average GIE is followed by Tianjin, 

econometric methods, Huang et al. [38] proposed the 
GTWR model to analyze house prices. Currently, the 
GTWR model has been widely applied in the fields of 
environmental science [39, 40] and economic analysis 
[41, 42], etc., and has been demonstrated to be superior 
to other traditional econometric models. Thus, referring 
to Chen et al. [43], the GTWR model can be constructed 
as follows:

	 	
(2)

where ui, vi, and ti represent the longitude coordinate, 
latitude coordinate, and specific year, respectively; βi 
denotes the constant and regression coefficients, while εit 
is the error term.

Results and Discussion

Evaluation of China’s GIE

Evaluation Results of GIE

The super-SBM undesirable model is employed to 
evaluate each province’s GIE in China during 2011-2022 
in this paper. The evaluation results of GIE in China  
by province are shown in Table 2. The lowest GIE was 
0.137 in Inner Mongolia in 2011, while the highest GIE 
was 1.269 in Hainan in 2016. The latter is 9.263 times 
higher than the former, showing a very significant 
difference in GIE among provinces. In addition,  
GIE in most of the provinces does not show a consistent 
and clear trend, which fully illustrates the complexity 
of the evolution of GIE. This finding is consistent 
with Huang et al.’s [10] study that GIE in Hainan is 
almost always above 1.000, while the vast majority of 
China’s provinces have GIEs below 1.000, i.e., a state 
of inefficiency, and GIEs in less developed regions are 
relatively low.

Spatiotemporal Evolution of GIE

The temporal evolution of GIE in China by region 
is shown in Fig. 1. Ordinarily, China’s economic zones, 
which contain 31 provinces (excluding Hongkong, 
Macao, and Taiwan), can be divided into 4 regions: 
the eastern, central, western, and northeastern regions. 
The trends in the temporal evolution of the nationwide 
GIE and GIE in the individual regions remain highly 
consistent. For each region, the year 2016 is a critical 
juncture for significant changes in GIE. The nationwide 
GIE exhibits 3 distinct phases in the time dimension: 
2011-2014, 2014-2016, and 2016-2022. GIE at these 
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Zhejiang, Shanghai, and Beijing, with the former two 
exceeding 0.9 and the latter two exceeding 0.8. Of 
the 10 provinces in the eastern region, all 7 except 
Shandong, Fujian, and Hebei are ranked in the top 10 
of GIE, which further confirms that GIE in the eastern 
region is much higher than in other regions as depicted  
in Fig. 1. Among the 10 provinces at the bottom of the 
rankings, Hebei belongs to the eastern region, Henan 
and Shanxi belong to the central region, Heilongjiang 
and Liaoning are from the northeastern region, while  

the other provinces are from the western region. 
The GIEs of these 10 provinces are below 0.45. The 
average GIE of Inner Mongolia is the lowest nationally, 
reaching only 0.261, accounting for only 24.716% of 
Hainan’s GIE. While Inner Mongolia’s average GIE is 
consistently the lowest nationwide until 2019, it is rising 
significantly, even surpassing 13 provinces to reach 
0.518 in 2022.

Province 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Average

Hainan 1.245 1.007 1.089 0.815 0.784 1.269 1.063 1.080 1.096 1.093 1.088 1.046 1.056

Tianjin 0.627 0.671 1.011 0.861 1.002 1.080 0.816 1.005 1.039 1.033 0.767 1.008 0.910

Zhejiang 0.524 0.642 1.005 0.658 1.001 1.038 0.827 1.055 1.039 1.019 1.023 1.035 0.906

Shanghai 0.642 0.621 0.607 0.636 0.615 1.007 1.009 1.022 1.048 1.029 1.031 0.883 0.846

Beijing 0.494 0.508 0.554 0.597 0.643 1.047 1.021 1.028 1.001 1.013 1.086 1.121 0.843

Jiangsu 0.579 1.012 0.825 0.598 0.616 0.727 0.683 1.010 0.666 1.000 0.792 1.037 0.796

Qinghai 0.261 0.271 0.277 0.204 1.082 1.124 0.662 1.222 1.036 1.075 1.003 1.053 0.772

Guangdong 0.425 0.426 0.457 0.462 0.547 0.754 1.014 1.030 1.028 1.023 1.028 1.042 0.770

Chongqing 1.024 0.633 0.634 0.700 1.059 1.051 0.797 0.718 0.630 0.616 0.645 0.615 0.760

Anhui 0.434 0.465 0.491 0.494 0.595 1.015 0.847 1.054 0.617 0.706 0.701 1.002 0.702

Jilin 1.024 0.467 0.285 0.385 0.434 1.013 1.023 0.610 1.003 0.590 0.688 0.682 0.684

Hunan 0.434 0.477 0.533 0.542 0.627 1.003 0.721 0.580 0.523 0.523 0.592 0.597 0.596

Guangxi 0.311 0.335 0.432 0.457 0.632 1.105 1.043 0.683 0.446 0.552 0.553 0.511 0.588

Jiangxi 0.278 0.346 0.372 0.381 0.407 0.590 0.572 0.557 0.489 0.560 0.780 1.026 0.530

Shandong 0.387 0.412 0.431 0.417 0.409 0.489 0.486 0.471 0.475 0.504 0.556 1.018 0.505

Hubei 0.334 0.360 0.382 0.404 0.447 0.530 0.558 0.583 0.545 0.553 0.605 0.636 0.495

Guizhou 0.398 0.359 0.384 0.438 0.398 0.545 0.506 1.002 0.445 0.415 0.376 0.393 0.472

Ningxia 0.288 0.347 0.440 0.398 0.455 0.522 0.553 0.592 0.383 0.426 0.465 0.590 0.455

Fujian 0.372 0.366 0.357 0.332 0.415 0.579 0.549 0.624 0.465 0.500 0.442 0.438 0.453

Sichuan 0.312 0.342 0.376 0.379 0.452 0.574 0.592 0.504 0.407 0.416 0.417 0.415 0.432

Heilongjiang 0.341 0.367 0.388 0.340 0.366 0.421 0.474 0.558 0.457 0.461 0.517 0.494 0.432

Shaanxi 0.305 0.329 0.362 0.352 0.393 0.416 0.498 0.460 0.431 0.433 0.457 0.442 0.407

Liaoning 0.314 0.333 0.363 0.337 0.378 0.455 0.444 0.490 0.410 0.388 0.432 0.429 0.398

Gansu 0.315 0.322 0.336 0.339 0.329 0.397 0.441 0.475 0.449 0.417 0.379 0.408 0.384

Henan 0.241 0.237 0.329 0.334 0.375 0.409 0.461 0.523 0.360 0.432 0.424 0.421 0.379

Xinjiang 0.299 0.303 0.309 0.350 0.354 0.393 0.401 0.401 0.444 0.458 0.370 0.401 0.374

Hebei 0.222 0.255 0.270 0.268 0.294 0.347 0.361 0.421 0.437 0.450 0.571 0.468 0.364

Shanxi 0.224 0.228 0.236 0.226 0.260 0.372 0.374 0.421 0.378 0.384 0.421 0.457 0.332

Yunnan 0.267 0.292 0.304 0.309 0.281 0.370 0.355 0.423 0.312 0.315 0.357 0.364 0.329

Inner Mongolia 0.137 0.154 0.148 0.147 0.164 0.218 0.287 0.354 0.332 0.285 0.386 0.518 0.261

Average 0.435 0.430 0.466 0.439 0.527 0.695 0.648 0.699 0.613 0.622 0.632 0.685 0.574

Table 2. The evaluation results of GIE in China by province.
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Dynamic Evolutionary Characteristics of GIE

Traditional Markov Chain Model

The transition probability matrix of GIE based  
on the traditional Markov chain model is shown  
in Table 3. With the exception of those located at level 
4, the GIEs of the provinces located at other levels in 
this stage remain stable, i.e., the probability of not 
experiencing a transition in the next stage exceeds 0.5. 
Provinces located at level 4 in this stage would jump 
to level 5 in the next stage with a probability of 0.591. 
Besides, there is a clear trend of upward transfer of level 
in the majority of provinces, but also a risk of level 
decline in some individual provinces, especially those 
whose GIE is at a high level at this stage. Overall, there 
is much more upward level transition than a downward 
level. Also, some of the transition probabilities away 
from the diagonal are not equal to zero, implying 
that there is a transition of GIE across levels in some 
provinces. This clearly provides a factual basis for those 
provinces that have taken appropriate measures with 
the expectation that GIE will be upward transfer across 
levels in the short term. Similar to this finding, the 
conclusions of the study by Xin et al. [44] confirm that 
green innovations across provinces stabilize to maintain 
the initial state. The difference, however, is that the latter 
confirms that there is no overstepping transfer in the 
level of green innovation in the provinces. This may be 
due to the fact that only four levels of provincial green 
innovation were categorized in Xin et al.’s [44] study.

Spatial Markov Chain Model

In comparison to the traditional Markov chain 
model, the spatial Markov chain model fully takes into 
account the spatial spillover effect due to geographic 

proximity and spatial lag conditions. In Table 4, the 
transition probability matrix of GIE is generated based 
on a spatial Markov chain model. Under different spatial 
lag conditions, the spatial Markov transition probability 
of GIE is different from the transition probability in 
Table 3, indicating that the transition probability of 
the level of GIE in the local region to the next stage is 
affected by the level of neighboring regions. Similarly, 
there are differences in the spatial Markov transition 
probabilities for GIEs at the same level under different 
spatial lag conditions. For instance, the probability 
that the local region has a GIE rating of level 2 and 
moves to level 3 in the next stage is 0.083, 0.146, 0.239, 
0.077, and 0.000 for different spatial lag conditions, 
respectively. Additionally, in contrast to Table 3, there 
is still a high probability that a region’s GIE will remain 
at its original level or jump upwards after accounting 
for spatial factors. For instance, when GIE of the local 
region and neighboring regions are at the same level in 
the current stage, the probability that GIE of the local 
region would remain at the same level in the next stage 
is 0.742, 0.854, 0.621, 0.100, and 0.778, respectively. 
Also, the level of GIE in the local region is influenced 
by neighboring regions, and there are relatively few 
circumstances in which there is a jump across levels and 
a transition downward. In some regions, the probability 
of a downward shift in the level of the local region’s GIE 
is relatively high when adjacent to a province with a low 
level; conversely, the probability of an upward shift in 
the local region is also relatively high when adjacent to a 
province with a high level. The fact that the probability 
p23 (0.167) is less than p21(1) (0.250) and that p23(3) 
(0.239) is greater than p23 (0.167) proves this conclusion. 
To summarize, these findings confirm Xin et al.’s [44] 
conclusions that the state of China’s provincial green 
innovation is significantly influenced by geospatial 
patterns.

Fig. 1. The temporal evolution of GIE in China by region.



Minjie Li, et al.1614

Influences of Factors on China’s GIE

Overall Characteristics of Influences

The GTWR model is adopted to explore the 
spatiotemporal heterogeneity of influences from factors 
on China’s GIE in this paper. The GTWR model has 

the values of adjusted R2, AICc, and residual sum of 
squares of 0.817, -312.122, and 4.643, respectively, both 
of which are significantly superior to the global OLS 
regression, geographically weighted regression model, 
and temporally weighted regression model. In regression 
results on the basis of the GTWR model, there is  
a separate regression coefficient for each variable for 

Table 3. Traditional Markov transition probability matrix of GIE.

pij n 1 2 3 4 5

1 62 0.645 0.339 0.000 0.000 0.016

2 120 0.050 0.775 0.167 0.000 0.008

3 65 0.000 0.123 0.569 0.108 0.200

4 22 0.000 0.046 0.136 0.227 0.591

5 61 0.000 0.033 0.115 0.197 0.655

Table 4. Spatial Markov transition probability matrix of GIE.

k pij(k) n 1 2 3 4 5

1 1 31 0.742 0.258 0.000 0.000 0.000

2 12 0.250 0.584 0.083 0.000 0.083

3 1 0.000 0.000 1.000 0.000 0.000

4 0 0.000 0.000 0.000 0.000 0.000

5 1 0.000 1.000 0.000 0.000 0.000

2 1 27 0.630 0.333 0.000 0.000 0.037

2 48 0.000 0.854 0.146 0.000 0.000

3 19 0.000 0.105 0.474 0.158 0.263

4 5 0.000 0.000 0.000 0.400 0.600

5 16 0.000 0.000 0.250 0.125 0.625

3 1 4 0.000 1.000 0.000 0.000 0.000

2 46 0.044 0.717 0.239 0.000 0.000

3 29 0.000 0.103 0.621 0.103 0.173

4 5 0.000 0.000 0.400 0.200 0.400

5 13 0.000 0.077 0.077 0.308 0.538

4 1 0 0.000 0.000 0.000 0.000 0.000

2 13 0.077 0.846 0.077 0.000 0.000

3 15 0.000 0.200 0.533 0.067 0.200

4 10 0.000 0.100 0.100 0.100 0.700

5 22 0.000 0.000 0.046 0.227 0.727

5 1 0 0.000 0.000 0.000 0.000 0.000

2 1 0.000 1.000 0.000 0.000 0.000

3 1 0.000 0.000 1.000 0.000 0.000

4 2 0.000 0.000 0.000 0.500 0.500

5 9 0.000 0.000 0.111 0.111 0.778
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each province at each time point. Table 5 depicts the 
descriptive statistics of regression coefficients based 
on the GTWR model. As shown in Table 5, in general, 
GDPPC, MI, and INS promoted GIE, while DFI, RDE, 
and IET inhibited GIE. In Table 5, the average of the 
regression coefficients of RDE on China’s GIE is 
-0.032, indicating a negative effect of the former on the 
latter. One possible explanation is the relatively great 
differences in economic development, infrastructure, 
and resource endowment among provinces, leading 
to differences in the impact of R&D expenditure on 
GIE. There are 8 provinces where RDE consistently 
shows a positive effect on GIE, which are Henan, 
Anhui, Jiangsu, Hebei, Shanxi, Shanghai, Zhejiang, 
and Shandong. In comparison, in other provinces, the 
impact of RDE on GIE is sometimes negative, and in 8 
of them, it is consistently negative. Geographically, the 
8 provinces in which RDE exhibits a positive effect are 
spatially closely connected, showing obvious clustering 
characteristics. The 8 provinces that are consistently 
negative are mainly located in the less economically 
developed regions, i.e., the northeastern and western 
regions of China. These findings are different from Li 
et al. [22], possibly because we embed both temporal 
and spatial factors in the regression model, which is 
clearly a more scientific and rational treatment. Indeed, 
there are also conclusions from many studies, such as 
Song et al. [19], that support the findings of this paper 
that there are significant regional differences in the 
impact of influencing factors on China’s provincial GIE. 
Therefore, an in-depth spatiotemporal heterogeneity 
analysis of impacts is necessary.

Temporal Heterogeneity of Influences

Fig. 2 displays the temporal heterogeneity of factors’ 
influences on China’s GIE. With the exception of 2021, 
the positive influence of GDPPC on GIE diminishes 
over time, from 0.087 in 2011 to 0.017 in 2022. 
Similarly, INS has consistently demonstrated a positive 
influence in any given year and has shown a V-shaped 
trend, with 2020 being the turning point. Moreover, 
with the exception of 2019, the impact of MI on GIE has 
also been consistently positive and shown a V-shaped 
trend. These results indicate that, on the one hand,  
the enhancement of the GIE is influenced by more and 

more factors, so that the influence of some traditional 
factors is gradually weakening. On the other hand, 
due to the impact of COVID-19 epidemiology, the 
marketization level and the tertiary sector are becoming 
increasingly critical to GIE.

Besides, the direction of DFI’s effect on GIE appears 
to alternate negatively and positively. However, the 
negative effect of DFI on GIE tends to be close to zero, 
implying a very weak causal relationship between 
DFI and GIE. This is different from the findings of Li 
et al. [22] for the reason that Li et al. [22] focused on 
analyzing the influence of the digital economy on the 
industrial GIE, whereas this study does not differentiate 
between industries. According to Liang et al. [24], the 
digital economy contributes to sustainable innovation, 
but the adequacy of the digital economy infrastructure 

Variables Mean Min Q1 Median Q3 Max

GDPPC 0.055 -0.106 -0.021 0.021 0.089 0.863

DFI -0.000 -0.021 -0.001 -0.000 0.000 0.003

RDE -0.032 -0.965 -0.147 -0.001 0.095 1.095

MI 0.051 -0.176 0.006 0.058 0.104 0.282

INS 0.094 -0.278 -0.086 0.048 0.267 0.859

IET -0.034 -4.622 -0.224 -0.003 0.325 0.846

Table 5. The descriptive statistics of regression coefficients based on GTWR model.

Fig. 2. The temporal heterogeneity of influences.
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significantly affects the full development of digital green 
innovation. Obviously, in China, the digital economy 
serves more as a crucial infrastructure to improve the 
efficiency of social operations and production, while 
its impact on advanced green technologies is minimal. 
This implies that China’s provinces need to continue 
to promote the digital economy in order to effectively 
realize its contribution to GIE in the future. In addition, 

in Table 5, while both RDE and IET show an overall 
negative impact on GIE, Fig. 2 displays that the impacts 
of both RDE and IET on GIE shift from negative to 
positive, with 2019 as the turning point for the former 
and 2018 for the latter. China’s continued investment in 
R&D in line with the current situation and the expansion 
of international exchanges and cooperation are effective 
ways to enhance GIE.

Fig. 3. The spatial heterogeneity of influences.
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Spatial Heterogeneity of Influences

The spatial heterogeneity of factors’ influences 
on China’s GIE is illustrated in Fig. 3. The province 
with the largest positive effect of GDPPC on GIE is 
Heilongjiang, followed by Jilin and Liaoning, all located 
in the northeastern region. Other provinces with positive 
effects are mainly found in the west. In the eastern 
and central regions, where the economic development 
level is relatively high, GDPPC has a mainly negative 
effect on GIE. Indeed, the excessive pursuit of short-
term economic benefits by local governments leads to 
development at the expense of environmental pollution 
and ecological damage, which ultimately inhibits GIE. 
Economically underdeveloped regions need to continue 
to develop economies, while other regions need to curb 
the excessive pursuit of economic benefits. In terms of 
spatial distribution, the direction of DFI’s impact on 
GIE is almost exactly opposite to that of GDPPC. The 
positive impact of DFI on GIE is mainly in the eastern 
and central regions, while the negative impact is mainly 
in the western and northeastern regions. Therefore, the 
western and northeastern regions need to strengthen 
and improve the infrastructure of the digital economy, 
so as to realize the role of the digital economy in the 
enhancement of GIE.

Similarly, the effect of RDE on GIE shows significant 
spatial heterogeneity. In the western and northeastern 
regions, RDE plays a predominantly negative role, while 
in other regions it plays a positive role. This suggests that 
the western and northeastern regions should improve 
the system of science and technology development 
and establish a good incentive mechanism to attract a 
large number of technical talents, high-tech enterprises, 
institutions of higher education, and other technological 
innovation subjects. As for other regions, it is imperative 
to continue to invest in R&D expenditure in order to 
sustain the important role of R&D in green technology 
innovation. As depicted in Fig. 3, MI positively 
contributes to GIE in all provinces except Ningxia, 
Gansu, and Sichuan. This provides a practical basis 
for local governments to enhance the development of 
product and factor markets and strengthen their linkages 
with markets.

The provinces with large positive contributions 
of INS to GIE are Guangdong, Hainan, and Guangxi, 
while the provinces with large negative contributions 
are Shanghai, Jiangsu, and Shandong. Most of the 
provinces where INS shows a negative impact on GIE 
are located in the eastern, central, and northeastern 
regions, while the western region mainly shows positive 
impacts. Hence, the northeastern region should take 
into account its natural environment and resource 
endowment and actively develop tourism resources, 
such as winter tourism programs, to reduce the long-
term overdependence on the secondary industry.  
The eastern and central regions should also appropriately 
reduce highly polluting industries and improve the 
greenness and sustainability of technological innovation. 

In addition, the negative impact of IET on GIE is 
mainly found in Qinghai, the northeastern region, and 
Xinjiang, all of which are relatively remote regions that 
are weak in terms of import and export trade. Therefore, 
these provinces can take advantage of national-level 
development strategies, such as the Belt and Road 
Initiative, to strengthen international trade exchanges 
and cooperation.

Conclusions and Policy Recommendations

In this paper, we employed the super-SBM 
undesirable model to evaluate the GIE of 30 provinces 
in China from 2011 to 2022 and explored the 
dynamic evolutionary characteristics of GIE and the 
spatiotemporal heterogeneity of the influencing factors 
using the spatial Markov chain model and the GTWR 
model, respectively. The conclusions we draw are as 
follows: First, the eastern region has a critically higher 
GIE than the other regions, followed by the central 
region, while the western and northeastern regions 
are not noticeably different in GIE with alternating 
phenomena. There are also significant differences in 
the average GIE between provinces due to differences 
in infrastructure and resource endowments. In the 
long run, the GIE of each region has been rising in 
fluctuation. Second, the Markov transition probability of 
GIE considering spatial spillover effects and spatial lag 
conditions differs from traditional transition probability, 
indicating that the transition probability of GIE is 
affected by the level of neighboring regions. Particularly 
in some regions, the probability of GIE’s level decreasing 
is relatively high when adjacent to a province with a low 
level, and the probability of GIE’s level moving upward 
is also relatively high when adjacent to a province with 
a high level. Third, as a whole, GDPPC, MI, and INS 
promoted GIE, while DFI, RDE, and IET inhibited 
GIE. Simultaneously, there is significant spatiotemporal 
heterogeneity in the effects of individual factors on GIE. 
GDPPC’s positive impact on GIE diminishes over time, 
and the influences of both INS and MI on GIE show  
a V-shape trend in the time dimension. Besides, there is 
a very weak causal relationship between DFI and GIE, 
while the impacts of both RDE and IET on GIE shift 
from negative to positive.

In view of this, it is clear that a one-size-fits-all 
policy for GIE is highly unsuitable for the realities of 
individual provinces in China. Hence, based on the 
evolutionary dynamics of GIE in each province and the 
factors affecting it, we propose a number of targeted 
and differentiated policy recommendations that can 
be implemented. First, the governments have to take 
various measures to enhance the GIE of each province, 
which reflects the efficiency relationship between inputs 
and outputs. On the basis of ensuring the greenness and 
sustainability of technological innovation, it is necessary 
and feasible to appropriately reduce inputs or expand 
outputs. Thus, the governments can enhance GIE by 
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attracting various types of innovative entities, sounding 
and improving the technological innovation system, 
concerning themselves with geospatial linkages with 
other provinces, and maintaining a good relationship with 
the market. Second, individual provinces, particularly 
those in the eastern and central regions, should not 
pursue short-term economic benefits in promoting 
economic development, but balance the relationship 
between economic development and environmental 
protection. These provinces can rely on their good 
economic foundation to realize the transformation and 
upgrading of their industrial structure and vigorously 
develop tertiary and high-tech industries. Third, the 
provinces in the western and northeastern regions need 
to facilitate the infrastructure construction of the digital 
economy and increase funding for R&D. The digital 
economy is the main economic form of the current 
society, while R&D funding is the financial support and 
an important source of green technology innovation. 
So, these provinces should fully utilize the advantages 
of the Internet to provide wider and more convenient 
financing services for technological innovation subjects 
than ever before. Fourth, remote provinces, such as 
those belonging to the northeastern region, should 
take full advantage of the Belt and Road Initiative to 
strengthen exchanges of talents and international trade 
cooperation, introduce advanced green technologies and 
advanced equipment from abroad, and ultimately realize 
imitation, digestion, and absorption.
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