
Introduction

Excessive emissions of greenhouse gases (GHGs) are 
the leading cause of climate change, and it has become 
one of the most severe and critical challenges of our 
time as the global economy has developed rapidly [1]. 
The International Energy Agency’s (IEA) “2022 Carbon 

Dioxide Emissions Report” shows that China’s carbon 
emissions have grown 7.09 times from 1.419 billion 
tons in 1978 to 11.48 billion tons in 2022. The world’s 
largest carbon dioxide emitter is China [2]. The world’s 
fastest-growing economy, China, faces greenhouse 
gas emissions issues. Economic growth in China 
now prioritizes carbon reduction and eco-sustainable 
development. General Secretary Xi Jinping proposed 
“peak carbon emissions” and “carbon neutrality.”  
To achieve “dual carbon” development goals, China 
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Abstract

The digital economy drives China’s high-quality economic growth and reduces carbon emissions. 
Urban carbon emissions reduction is crucial to China’s “dual carbon” development goal and climate 
change adaptation. Spatial econometric modeling, standard deviation ellipse analysis, kernel density 
estimation, the Moran index, and Moran’s index are used to study the effects of the digital economy 
on provincial carbon emissions in 30 Chinese provinces from 2012 to 2021. The study found that:  
(1) The digital economy has shown a rising trend over time, with the spatial distribution of “east-
center-west” decreasing in space. Carbon emissions, on the other hand, show a decreasing trend, with 
a spatial distribution characterized by a high north and a low south. (2) As measured by the standard 
deviation ellipse model, the digital economy and carbon emissions have decreasing ellipse areas, 
with the former’s centers of gravity moving northward and the latter’s southward, indicating that 
their spatial agglomeration characteristics are growing. (3) The spatial Durbin model examined how  
the digital economy affects carbon emissions. The digital economy is reducing carbon emissions  
in China significantly. A national spatial spillover effect was also detected, with surrounding provinces’ 
carbon emissions being negatively affected.
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has proposed many programs and proposals. According 
to the State Council’s November 2021 “Opinions 
on Intensively Advancing the Tough Battle Against 
Pollution,” China’s low-carbon and sustainable 
economy requires critical investments [3]. Therefore, 
understanding the role of carbon emission reduction is of 
tremendous practical significance for China’s economy 
to achieve high-quality growth.

As technology continues to evolve, green and 
low-carbon practices have emerged as the dominant 
direction and trend in global economic development. 
The digital economy, as a novel productive element, 
has established a new economic form centered around 
digitalization knowledge and information as its 
core productive elements by incorporating cutting-
edge digital technologies in production activities. 
This transformation is increasingly recognized as 
a critical driver of high-quality economic growth 
[4]. According to the “2022 China Digital Economy 
Development Report,” China’s digital economy was 
45.5 trillion yuan in 2021, or 39.8% of GDP. A 21st-
century economic infrastructure must include the digital 
economy due to its constant growth [5]. Additionally, 
the digital economy has become more interwoven 
with many industries as the industrial structure has 
grown, especially during the new crown epidemic; this 
integration has dramatically impacted social structure 
and industrial development. The digital economy 
has also done well, helping conventional industries 
modernize and stabilizing China’s economic growth 
and industrial structure [6]. To encourage green growth, 
the State Council of China issued the “Notice on the 
14th Five-Year Plan for the Development of the Digital 
Economy” in December 2021. China’s 20th National 
Congress of the Communist Party of China report 
underlined the necessity of leveraging digitalization to 
collectively support carbon reduction, pollution control, 
and green measures for low-carbon development and 
high-quality economic growth. Research reveals that 
integrated environmental management, ecological 
conservation, and governance require a digital economy 
[7]. Considering this, it is essential for policymakers to 
gain a deeper understanding of the factors influencing 
the relationship between the digital economy and carbon 
emissions in order to develop effective carbon reduction 
policies.

Although the research on digital economy and 
carbon emission reduction has achieved preliminary 
results, the research on the spatial correlation between 
the two is relatively insufficient, which is not conducive 
to the in-depth study of digital economy and carbon 
emission reduction. In view of this, this research uses 
panel data from 30 Chinese provinces from 2012 to 2021 
to examine the spatial and temporal evolution of China’s 
digital economy, carbon emissions, and carbon emission 
reduction path in five sections, with the aim of providing 
policy recommendations for future layouts of the digital 
economy. The first section describes China’s economic 
development and carbon emissions, emphasizing  

the importance of the digital economy in fostering 
low-carbon urban development. The second section  is  
a literature review of domestic and foreign scholars’ 
research on the digital economy and carbon emissions, 
briefly explaining the digital economy’s impact on 
carbon emissions in the literature and proposing this 
paper’s research content and marginal contribution. 
The third section, study design, briefly describes this 
paper’s methodology and data variable selection based 
on the research goal. The fourth section, the empirical 
part, uses kernel density estimation and the standard 
deviation ellipse model to analyze the spatial and 
temporal evolution of the digital economy and carbon 
emissions, combined with the spatial econometric model 
to explore the spatial influence effect of digital economy-
enabled carbon emission reduction, and robustly tests 
model construction and variable selection. The final 
section finishes the analysis with practical solutions 
from the digital economy-carbon emission synergy and 
impact effect.

Literature Review

In the context of the development of the digital 
economy, the advancement of information technology 
has provided a new engine for intelligent environmental 
management. Consequently, the digital economy has 
integrated various environmental protection and energy 
consumption aspects. This integration holds significant 
practical significance for alleviating environmental 
carrying capacity and energy scarcity issues [8]. In 
this context, the impact effect of the digital economy 
empowering carbon emission reduction has attracted 
extensive attention from scholars [9]. Li et al. [10] and 
Xu et al. [11] concluded that the development of digital 
economies effectively reduces the emission of urban 
pollutants, which is mainly manifested in the significant 
reduction of the PM2.5 value, and considered that the 
development of digital economies is of great practical 
significance for the improvement of environmental 
quality. Qiu et al. [12] pointed out that the digital 
economy can effectively promote the development of 
urban green innovation and provide an effective way 
to achieve the goal of “dual-carbon” development. 
Li et al. [10] found that the development of the digital 
economy has significantly contributed to improving 
environmental efficiency and sustainability levels. Thus, 
the digital economy is of great practical significance for 
improving the environment.

Since 2020, when China formally proposed the goal 
of “dual-carbon” development, scholars have begun to 
gradually explore the mechanisms of the digital economy 
to curb carbon emissions [13]. By summarizing existing 
literature, current research on the relationship between 
the digital economy and carbon emissions mainly 
focuses on three aspects. Firstly, most scholars believe 
that the digital economy can significantly mitigate  
the increase in carbon emissions. They have found that 
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the continuous development of the digital economy will 
accelerate the flow of various production factors among 
different industries, leading to the accelerated flow of 
data resources between different sectors. Consequently, 
this can enhance energy efficiency and reduce carbon 
emissions [14-16]. One of them, Mulaydinov [17], argues 
that the digital economy can reduce energy demand and 
carbon emission levels by driving the dematerialization 
of social development. Liu et al. [18] explored the effect 
of the digital economy on carbon emissions based on 
the SPIRPAT model. They concluded that the digital 
economy could significantly inhibit the increase in 
carbon emissions by improving the energy structure. 
Secondly, some scholars believe there is a non-linear 
relationship between the impact of the digital economy 
on carbon emissions. Yi et al. [19] showed that the 
development of the digital economy has a significant 
spatial spillover effect on carbon emissions and presents 
the characteristics of spatial decay. Some other scholars 
have found that the digital economy promotes and 
inhibits carbon emissions [20]. Wang et al. [21] show 
that there is an “inverted U-shaped” relationship between 
the digital economy and carbon emissions. Zhang et 
al. [22] believe that the impact of the digital economy  
on carbon emissions has a double-threshold effect and 
that the relationship between the digital economy and 
carbon emissions is “N-shaped.” Thirdly, according to 
the laws of geography, it can be found that geographic 
things or attributes are interdependent in spatial 
distribution. At the same time, there are differences 
in distance, so some scholars believe that the impact 
of the digital economy on carbon emissions is in the 
inter-regional variability [23]. This will show a more 
significant inhibition of carbon emissions in cities 
with highly developed digital economies, especially in 
eastern China [24]. Li et al. [25] studied the difference 
in energy structure. They found that with the digital 
economy’s development, energy structures’ effect on 
carbon emissions is gradually weakening for resource 
cities.

In summary, although research on the digital 
economy and carbon reduction has achieved preliminary 
results, the study of their spatial correlation needs to be 
revised, which hampers further investigation into the 
relationship between the digital economy and carbon 
reduction. Therefore, it is necessary to understand the 
digital economy’s spatial expansion and its impact 
on other regions. Based on data from 30 provinces 
in China (excluding Tibet, Hong Kong, Macao, and 
Taiwan) from 2012 to 2021, this article explores 
explicitly the spatiotemporal evolution characteristics 
and spatial spillover effects of the digital economy 
and carbon emissions. The marginal contributions and 
innovations of this article mainly lie in three aspects: 
Firstly, building upon existing research on the digital 
economy, this article comprehensively reconstructs 
the comprehensive evaluation index system of the 
digital economy from five aspects: the level of digital 
infrastructure, the level of digital industrialization, 

the level of industrial digitization, the level of digital 
technology innovation, and the development level of 
digital finance. This enriches the theoretical research on 
measuring the digital economy. Secondly, innovatively 
starting from the spatial distribution pattern, this 
article explores the spatial aggregation characteristics 
and evolutionary status of the digital economy and 
carbon emissions based on kernel density estimation 
and standard deviation ellipses, which helps relevant 
departments comprehensively grasp the development 
status of the digital economy and carbon emissions. 
Thirdly, based on the spatial Durbin model, this article 
extends the impact of the digital economy on carbon 
emissions to spatial spillover effects, which helps 
relevant departments provide theoretical references 
for formulating development policies in the carbon 
reduction process.

Research Design

Research Methodology

Kernel Density Estimate

The estimation of the kernel density profile of  
a random variable is a non-parametric technique used 
for studying data distributions and describing their 
dynamic evolution [26, 27]. Kernel density estimation, 
on the other hand, avoids potential mistakes brought 
on by arbitrarily selecting the shape of the function 
by fitting the distribution of the function from the 
properties of the data itself [28]. Since the subject’s prior 
knowledge can skew model-fitting results, this technique 
is frequently used in studying regional economic and 
ecological differences and dynamic evolution [29]. It is 
expressed in the form of:
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Where: xi denotes the sample observations selected 
for this paper; x denotes the mean of the observations;  
K (∙) denotes the functional form, and the Gaussian 
kernel function is selected in this paper; n denotes the 
number of sample observations; and the parameter h 
denotes the bandwidth and has a value greater than 0. 
The larger the value of h, the smoother the estimated 
kernel density function, the need to pay attention 
to whether the bandwidth is too small or too large 
because the bandwidth is too small or too large will 
the phenomenon of fitting bias, which has an impact on 
the experimental results, in this paper, according to the 
principle of the minimum mean-square error to select 
the optimal bandwidth.

Standard Deviation Ellipse (SDE)
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Lefever [30] standard deviation ellipse is an 
analytical method for characterizing the spatial 
distribution of geographic elements. Its four basic 
parameters  – the center of gravity coordinates, rotation 
angle, and standard deviation of the long- and short-axis, 
respectively – represent the primary spatial location, the 
direction of growth, and the degree of discretization 
of the geographic elements along the major and minor 
axes, respectively [31], and the calculation formula is as 
follows:

Average center of gravity (X̅ , Y̅ ):
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Coordinate deviation (x͂ i, y͂ i):
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Standard deviation of the long and short axes σx, σy: 
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Ellipse area S:

	 	 (7)

Where (X̅ , Y̅ ) denotes the latitude and longitude 
coordinates of each province and city; (xi, yi) denotes the 
spatial location of the study area; qi denotes the value 
of the index for each province and city corresponding 
to the object of study; (x͂ i, y͂ i) denotes the coordinate 
deviation from the mean center for each study object 
zone, respectively; σx, σy denote the standard deviation 
along the X-axis and Y-axis, respectively.

Moran Index

There is a significant gap in the digital economy’s 
productivity between regions due to constraints 
imposed by location and other spatial variables. To 
determine if spatial econometric analyses are justified, 
the Moran index is used as a criterion for making such  
a determination; when the result is statistically 
significant, the analyses are shown to be such. As stated 
in Equation (8), the global Moran index is utilized to 
determine if there is agglomeration or outliers in the 
region under investigation.
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where Yi, Yj refers to the sample values of the digital 
economy and carbon emissions of region i and region j, 
Wij denotes the spatial weight matrix by normalization.  
Y̅  and S2 denote mean and variance, respectively. 

A typical range for Moran’s I is -1 to 1. Positive 
spatial correlation is indicated when Moran’s I value is 
greater than 0, with more significant values indicating  
a stronger positive correlation. The opposite is true when 
the value of Moran’s I is less than zero; this implies 
geographical heterogeneity and a negative correlation 
between locations. If Moran’s I is zero, then the space 
is entirely random. After computing the global Moran’s 
index, the investigation of local spatial correlation is 
accomplished by the calculation of the local Moran’s 
index, as illustrated in formula (9).
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The Spatial Durbin Model

The traditional panel model in the construction 
process can only explore the linear or non-linear 
influence effect of the digital economy on the impact of 
carbon emissions, and according to the first and second 
laws of geography, it can be found that the impact of the 
digital economy on carbon emissions in the process of 
development will be affected by the geospatial influence 
effect, so the traditional model did not include the spatial 
factors into the regression model, while this study is 
based on the traditional regression model. Considering 
the potential spatial spillover effects of digital economic 
development and carbon emissions, this work selects 
spatial econometric models for investigation as the 
empirical models of choice. In the field of spatial 
economics, the spatial lag model (SAR), the spatial error 
model (SEM), and the spatial Durbin model (SDM) are 
the three most frequent types of models. However, while 
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SAR primarily investigates the spatial dependency of 
the dependent variable, spatial error modeling (SEM) 
concentrates on the spatial dependence of the error term. 
The SDM is superior to the other two models because it 
accounts for not only the impact of the lagged factor of 
the dependent variable on the explanatory variables but 
also the role of the spatial spillover effects of different 
factors on the explanatory variables [32]. It is thus more 
suitable for exploring the spatial role of digital economic 
development on carbon emissions [33]. Therefore, this 
paper empirically analyzes the Spatial Durbin Model 
(SDM), whose formula is shown below:

0 1 1 1it it it it it it itBan W Ban Fin W Fin X W Xβ ρ β ρ η η ε= + × + + × + + × + 

	0 1 1 1it it it it it it itBan W Ban Fin W Fin X W Xβ ρ β ρ η η ε= + × + + × + + × + 	 (10)

where: Banit represents the level of carbon emissions of 
the corresponding region in this study. Finit represents 
the digital economic development level corresponding 
to the carbon study area. Xit denotes the control variable 
of the paper (see variable selection in 3.2 for details), 
W denotes the spatial weight matrix, W×Finit, W×Banit, 
W×Xit refer to the spatial lagged variables of the 
explanatory, interpreted, and control variables of this 
paper, respectively, εit is the spatial lag error term. 

Variable Selection and Measurement

Dependent Variable: Carbon Emissions

Given its development, carbon reduction is  
a significant challenge for China and the world. Thus, 
this article calculates the carbon dioxide emissions for 
the 30 provinces and municipalities in China (excluding 
Tibet and the Hong Kong-Macao-Taiwan regions) from 
2012 to 2021 using the nine principal energy reference 
coefficients from the “2006 IPCC National Greenhouse 
Gas Inventory Guidelines” (see Table 1) and fossil fuel 
consumption data from the “China Energy Statistical 
Yearbook.” Specific calculation formula:
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In the above equation, Car denotes the carbon 
emissions of each province, GDP is the gross domestic 

product of the provinces, i denotes 9 energy categories, 
and Ki denotes the carbon emission factor for the i 
energy source. Ei is i energy use.

Independent Variable: Digital Economy

There are discrepancies between how various 
academics and institutions measure and evaluate  
the digital economy. This article synthesizes 
fundamental ideas of the digital economy based on the 
“Digital Economic Development Index” released by 
the National Bureau of Statistics of China. According 
to [34] and [35], the digital infrastructure level, digital 
industrialization level, industrial digitization level, 
digital technology innovation level, and digital finance 
development level are selected as secondary indicators, 
and the specific indicators and descriptions are shown  
in Table 2.

Control Variables

In the regression equation model, according to the 
role of the digital economy on carbon emissions, it 
can be found that the influence of the digital economy 
on carbon emissions affects other variables’ co-
influence. Referring to [17] and [36], this study selects 
five indicators, namely, industrial structure upgrading, 
human capital level, economic development level, 
industrialization level, and foreign direct investment, 
as the control variables of this research. The method for 
controlling variables is as follows: The measurement 
of industrial structure upgrading involves assessing  
the ratio of value added from the tertiary to the secondary 
industry. The human capital level is calculated by  
the ratio of students in higher education institutions to 
the total population. The economic development level  
is computed using the logarithm of per capita GDP.  
The level of industrialization is measured by the 
proportion of industrial value added to the regional gross 
domestic product. The ratio of the actual use of foreign 
capital to GDP assesses foreign direct investment.  
All relevant indicator data are sourced from the “China 
Statistical Yearbook” and the EPS database.

Data Sources and Processing

Table 1. Carbon emission factors for various energy sources.

Energy Raw 
coal Coke Crude Gasoline Kerosene Diesel 

fuel
Fuel 
oil

Natural 
gas Electricity

Convert to standard coal  
(t standard coal/t) 0.714 0.971 1.429 1.471 1.471 1.457 1.429 1.330 0.345

Carbon emission factor Ki 
(million tonnes/million tons of 

standard coal)
0.756 0.855 0.586 0.534 0.571 0.592 0.619 0.448 0.272
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The 30 provinces of China (excluding Tibet, Hong 
Kong, Macau, and Taiwan) serve as the primary data 
for this research. Using the “China Energy Statistical 
Yearbook,” the “China Science and Technology 
Statistical Yearbook,” the “China Education Statistical 
Yearbook,” the “China National Economic and Social 
Development Statistical Bulletin,” and the statistical 
yearbooks and EPS data platforms of each province, it 
compiles panel data for these regions from 2012 to 2021. 
Our data is up to 2021 because current CO2 emissions 
statistics are up to 2021. Table 3 displays descriptive 
statistics for the empirical variables.

Carbon emission, an explanatory variable, ranges 
from a high of 13.788 to a low of 0.168, with a mean of 
2.468 and a standard deviation of 2.507. The difference 
between the high and low values is 11.320, or nearly 

4.59 times, indicating substantial variations in carbon 
emissions across regions and years. These data are 
presented in Table 3. There is still some inequity in 
the growth of the digital economy since its primary 
explanatory variable has a maximum value of 0.659 and 
a minimum value of 0.223, with the difference between 
these two values being almost 1.96 times. Subsequent 
empirical studies can be conducted because the values 
for the control variables – upgrading the industrial 
structure, the quantity and quality of human capital, 
the rate of economic development, the degree to which 
industries are industrialized, and the level of foreign 
direct investment – fall within a normal, non-outlying 
range.

Table 2. Indicators for measuring the digital economy.

Level 1 
indicators

Secondary 
indicators Level 3 indicators Unit

Digital 
economy

Digital 
infrastructure level

Number of mobile phone base stations 10,000

Fiber optic cable line length kilometres

Number of domain names 10,000

Postal outlets place

Number of Internet broadband access ports 10,000

Mobile phone penetration Department/100 people

Digital 
industrialization 

level

Number of ICT companies piece

Average number of people employed in the ICT industry person

Operating income of the ICT industry 100 million yuan

Total volume of postal services 100 million yuan

Total telecommunications services 100 million yuan

Software business revenue 100 million yuan

Industrial 
digitization level

Proportion of enterprises with e-commerce transaction activity %

Enterprise e-commerce sales 100 million yuan

Number of websites per 100 businesses person

Number of computers used per 100 people stand

Number of terminals in the electronic reading room person

Technology Market Turnover 100 million yuan

Digital technology 
innovation level

Full-time equivalent of R&D personnel person-years

R&D funding 10,000 yuan

Number of valid invention patents matter

Employees of the unit person

Information transmission, software, and information technology 
services person

Digital finance 
development level

Breadth of digital financial inclusion -

The depth of use of digital inclusive finance -

Digital Inclusive Finance: Degree of Digitalization -
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Empirical Analyses

Characteristics of the Spatial 
and Temporal Evolution

Time-Varying Characteristics of the Digital 
Economy and Carbon Emissions

This research uses a kernel density estimation method 
to create maps of China’s digital economy and carbon 
emission composite index from 2012 to 2021 (Fig. 1  
and Fig. 2, respectively). Kernel density curve shifts 
reveal the state of the digital economy and the trend 
of carbon emissions over the study period, revealing 
the following characteristics from a geographic, 
distributional, and temporal perspective:

(1) The digital economy and carbon emissions are 
two areas whose relative positions change in opposite 
directions. The digital economy has been actively 
developing as the center of the kernel density curve 
shifts to the right from year to year. Meanwhile, there 
is a general leftward shift in the kernel density curve for 
carbon emissions, suggesting that emissions are falling 
and the rate at which they are falling is accelerating. 
This indicates an inverse relationship between the 
digital economy and greenhouse gas production.

(2) According to the distribution, the digital economy 
change curve peaked relatively high in 2012, and its peak 
height change has been fluctuating ever since, appearing 
to first decrease, then increase, and then decrease in a 
cycle of three years for cyclic change, with the peak 
height change tending towards stability in 2018-2021.  
As the height of the prominent peak of the curve of 
carbon emission change has increased, its width has 
decreased, and the absolute difference within the region 
still exists, but it is on a downward trend; the gap 
between the two regions has shrunk.

(3) Both the digital economy and carbon emissions 
exhibit a right-trailing trend, and from the perspective of 
distribution extensibility, the width of both is increasing; 
this suggests that the absolute spatial difference between 
China’s digital economic development level and carbon 
emission level is widening, that is, the gap between the 
digital economic development level and carbon emission 
level of some regions and the rest of the country is 
growing. It is easy to see why, given the wide range 
of differences between regions and even provinces 
and municipalities regarding government spending, 
economic development, foreign country status, 
geographical environment, population distribution 
characteristics, resource endowment, and other factors. 
This is especially true now when the provincial  

Table 3. Descriptive statistical analysis of variables.

Variable Obs Mean Std. dev. Min Max

Carbon emissions 300 2.468 2.507 0.168 13.788

Digital economy 300 0.311 0.085 0.223 0.659

Industrial structure upgrading 300 2.386 0.127 2.176 2.836

Human capital level 300 0.208 0.055 0.085 0.425

Economic development level 300 9.325 0.464 8.598 10.70

Industrialisation level 300 0.316 0.079 0.101 0.523

Foreign direct investment (FDI) 300 0.182 0.045 0.001 0.796

Fig. 1. Kernel density estimation of the digital economy index.
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and municipal levels are so low. Within a specific time 
frame, the chasm will almost certainly deepen further.

Characteristics of the Spatial Distribution 
and Correlation Between the Digital 

Economy and Carbon Emissions

This research delves into the historical evolution 
of the connection between the growth of China’s 
digital economy and regional carbon emissions.  
The investigation includes carbon emissions data from 
30 Chinese provinces and cities and vector data for 

these areas in 2012, 2015, 2018, and 2021. Red, orange, 
and yellow represent provinces and cities with relatively 
high levels of the variable. At the same time, light green 
and green reflect relatively low levels, as determined by 
the natural breakpoint approach. With this method, it is 
shown that, in Fig. 3 and 4, the digital economy index 
and greenhouse gas emissions are distributed over time 
and space.

China’s digital economy is not well established 
but is growing, as indicated by the index’s spatial and 
temporal distribution patterns. In 2018, Beijing (red) had 
the highest digital economic development level among 

Fig. 2. Carbon emission kernel density estimates.

Fig. 3. Spatial and temporal distribution pattern of digital economy indices.
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China’s 30 provinces and municipalities; a few eastern 
regions (orange), including Guangdong, Zhejiang, 
Shanghai, and Jiangsu, also have a high level of digital 
economic development. Guangdong Province (red) will 
have a high digital economic development level in 2021. 
Slowly but surely, the yellow area is catching up to the 
orange province of Sichuan in terms of digital economic 
growth. In 2018, Sichuan joined the ranks of provinces 
with a more advanced degree of digital development. 
The number of regions in China with highly developed 
digital economies is expected to skyrocket by 2021 
compared to 2012, with the orange zone in the middle 
of the country seeing the fastest growth. The digital 
economy in China is highly spatially heterogeneous, 
with a decreasing law reflecting the link between the 
country’s three main regions (East, Central, and West).

Carbon emissions have decreased in intensity 
across the board during the study period, as shown 
by the spatial and temporal distribution map. There 
is a clear trend for the grade of carbon emissions to 
evolve from high carbon emission intensity to low 
carbon emission intensity. Western regions, including 
Inner Mongolia, Ningxia, and Shaanxi (shown in red), 
had a disproportionately large number of cities with 
high carbon emission intensities in 2018 because of 
their abundant coal resources and the prevalence of 
high-carbon businesses. Although high-value carbon 
emission intensity has resurfaced in the Inner Mongolia 
region (orange) in 2018, the number of cities with 
medium or lower carbon emission levels (green and li) 
has increased. The west and northwest regions have 

seen a decrease in carbon emission intensity since 2015, 
while Ningxia and Shanxi have seen an increase. It is 
important to remember, though, that China’s northern 
and southern regions continue to diverge in terms of 
carbon emission intensity, with the latter showing a clear 
spatial hierarchy. During the study, China’s urban areas 
have been reducing their carbon emission intensity year 
over year, with the most significant reductions occurring 
in several eastern and central cities.

Center of Gravity Shift and Discrete Trends in 
the Digital Economy and Carbon Emissions

While the above analysis of spatial distribution 
characteristics provides some insight into the 
relationship between China’s level of digital economic 
development and the intensity of its carbon emissions, 
a more complete understanding will require consulting 
Fig. 5 and 6, which use ArcGIS software to depict 
the spatial evolution characteristics of China’s digital 
economy and carbon emissions over time. The following 
diagrams examine the spatial development of the digital 
economy and carbon emissions from four different 
angles: the shift in the ellipse’s mean center of gravity, 
the ellipse’s shape, the ellipse’s long and short axes, and 
the ellipse’s azimuthal angle.

Upon careful examination of the map depicting 
the spatial evolution characteristics of the digital 
economy (Fig. 5 and Table 4), it becomes evident 
that: (1) The average center of gravity shifted 
during the study period from Hubei Province to 

Fig. 4. Spatial and temporal distribution pattern of carbon emissions.
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Henan Province, indicating that the development  
of the digital economy was centered in the central  
and northwestern regions of the country. Fig. 3 displays 
the dynamic spatial-temporal distribution pattern 
of the digital economic index, revealing a north-
westward shift in China’s digital economic development  
level during the study period, emphasizing  
central-region development. (2) The area of the 
ellipse experienced a decrease from 4,098,223.45 
km² in 2012 to 3,695,880.15 km² in 2021, resulting 
in a total reduction of 402,343.30 km². Furthermore, 
the growth of digital economic development outside 
the ellipse was comparatively lower than that within 
the ellipse. This observation supports the idea that 
China’s digital economy has exhibited a trend of 
economic concentration in the overall spatial context. 
(3) The analysis reveals that both the long and short 
semi-axes of the ellipse exhibit a declining pattern over 
time. Notably, the long semi-axis experiences a more 
pronounced decrease. This observation suggests that 

China’s digital economic agglomeration is expected to 
further intensify during the period spanning from 2012 
to 2021. (4) The standard deviation ellipse azimuth of 
digital economic development exhibits a drop from 
69.80° in 2012 to 64.83° in 2021, suggesting a south-east-
north-west orientation in the high-quality development 
level of China’s digital economy.

Fig. 6 depicts our ongoing use of ArcGIS to chart 
the spatial evolution of carbon emissions, and Table 5 
details the paper’s use of the standard deviation ellipse’s 
parameters. Similarly, the spatial evolution characteristic 
map of carbon emission can be observed and reasonably 
interpreted from four viewpoints: the shift in the ellipse’s 
mean center of gravity, the ellipse’s area, the ellipse’s 
long half-axis, its short half-axis, and its azimuthal 
angle (1). The study area’s mean center of gravity shifts 
southward over time, with the same general pattern seen 
in both carbon emissions and the digital economy. This 
shift occurs as the former begins to dominate in Hubei 
Province and the latter begins to dominate in Henan 

Fig. 5. Characteristics of the spatial evolution of the digital economy.

Table 4. Table of standard deviation ellipse parameters for the digital economy.

Year Centre of gravity 
longitude

Latitude of the 
centre of gravity

Semi-major axis 
(km)

Short half shaft 
(km) Area (km2) Azimuth 

(degrees)

2012 113.32 33.55 1281.05 1018.31 4098223.45 69.80

2021 113.72 32.98 1204.08 977.04 3695880.15 64.83
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Province. As can be observed from Fig. 4’s spatial-
temporal distribution pattern map, carbon emission 
intensity in China decreases as one travels southward 
within the research area. (2) Overall, the ellipse’s 
area will decrease from 4513310.66 km2 in 2012 to 
4153224.58 km2 in 2021, a reduction of 360086.08 km2; 
the rate of change of carbon emission intensity outside 
the ellipse area will be less than that inside the ellipse 
area, proving that China’s level of carbon emission 
intensity is decreasing in the overall spatial performance 
of agglomerations. (3) By comparing the long and 
short semi-axes, it is evident that the long semi-axis is 
growing more prominent over time while the short semi-
axes are shrinking; this suggests that China’s carbon 
emission intensity will continue to rise between 2012 
and 2021. (4) The standard deviation ellipse azimuthal 
angle of carbon emission intensity rises from 83.00° in 
2012 to 86.41° in 2021, showing a northeastern-southern 

bias in China’s carbon emission intensity level. In 2021, 
this angle will have risen to 86.41°, demonstrating  
a northeast-to-southwest trend in the intensity of China’s 
carbon emissions.

Spatial Econometric Analysis 

Spatial Correlation Test

(1) Global autocorrelation
Verifying whether the digital economy and the 

carbon emissions used for this study have any spatial 
connection is essential before utilizing the spatial 
econometric model to analyze the spatial effects 
between the independent and dependent variables.  
The spatial autocorrelation between the two is first tested 
in this work using the global Moran index; the results 
are presented in Table 6. The analysis shows that the 

Fig. 6. Characteristics of spatial evolution of carbon emissions.

Table 5. Standard deviation ellipse parameterisation of carbon emissions.

Year Centre of gravity 
longitude

Latitude of the 
centerre of gravity

Semi-major axis 
(km)

Short half shaft 
(km) Area (km2) Azimuth 

(degrees)

2012 110.65 35.46 1419.09 1012.36 4513310.66 83.00

2021 110.89 37.11 1433.98 921.92 4153224.58 86.41
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digital economy and carbon emissions have always been 
positively spatially correlated, and both exhibit high 
or low (surrounding similarity) spatial agglomeration 
during 2012-2021, as measured by the Moran index. 
The worldwide Moran index of carbon emissions is 
much larger than the digital economy’s, suggesting that 
carbon emissions are more susceptible to geographical 
agglomeration. In terms of the change of the global 
Moran index over time, although the digital economy 

and carbon emissions show up and down fluctuations, 
the overall trend is gradually decreasing, indicating that 
the spatial correlation between the level of the digital 
economy and the intensity of carbon emissions in 
Chinese cities is gradually weakening in the fluctuation.

(2) Local autocorrelation
China’s digital economy and carbon emissions 

show robust spatial agglomeration features when tested 
with the global Moran index. This allows for a deeper 

Table 6. Global Moran’s I index table.

Year
Digital economy Carbon emissions

Moran’s I Z_values P_values Moran’s I Z_values P_values

2012 0.108 2.551 0.005 0.197 4.358 0.000

2013 0.091 2.360 0.009 0.157 4.005 0.000

2014 0.085 2.262 0.012 0.146 3.892 0.000

2015 0.089 2.309 0.010 0.143 3.786 0.000

2016 0.081 2.145 0.016 0.151 3.919 0.000

2017 0.070 1.967 0.025 0.173 4.141 0.000

2018 0.064 1.875 0.030 0.170 4.033 0.000

2019 0.070 1.962 0.025 0.188 4.388 0.000

2020 0.067 1.954 0.025 0.181 4.304 0.000

2021 0.067 1.991 0.023 0.187 4.355 0.000

Fig. 7. Localised Moran’s I scatterplot for the digital economy.
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investigation into the regional concentration of the 
digital economy and carbon emissions. To resolve the 
local autocorrelation characteristics of the level of the 
digital economy and the intensity of carbon emissions 
in cities, this paper first draws the local Moran 
scatterplot of the digital economy for four-time nodes, 
namely 2012, 2015, 2018, and 2021, as shown in Fig. 7 
and 8, respectively. By looking at the scatter plots, it 
is shown that both the digital economy index and the 
carbon emission index tend to cluster in the first and 
third quadrants and that there is a positive correlation 
between the high and low distributions; this suggests 
that both the digital economy and carbon emissions 
are more likely to occur in cities with a high (or low) 
level of development. Results further reveal a significant 
association between the digital economy and carbon 
emissions in the 30 provinces of China, confirming 
findings from both the local and global Moran Indices.

Benchmark Regression Results

Table 7 provides a statistical overview of the 
baseline regression results from the spatial Durbin 
model of the digital economy’s impact on carbon 
emissions, where column (1) represents the main effect 
of the digital economy’s impact on carbon emissions 
and column (2) represents the spatial spillover effect. 
At the 1% level of significance, the results show 
that the regression coefficient of the main effect test 

result of the impact of the digital economy on carbon 
emissions is -13.643, indicating that the digital economy 
has an apparent inhibitory effect on carbon emissions; 
that is, the level of carbon emissions will decrease by 
13.643% for every unit increase in the digital economy.  
The regression coefficient of the test result is -7.517, 
which is statistically significant at the 5% level, 
demonstrating that expanding the digital economy 
will reduce not only local carbon emissions but also 
those in neighboring provinces; more specifically, the 
rate of decrease in carbon emissions will be one unit 
for every unit increase in the level of digital economic 
development. For every unit of progress in the digital 
economy, the regional emission level will decrease by 
7.517 percent. One possible explanation for this trend 
is that as the region’s digital economy grows, more and 
more data is pouring into it from adjacent areas. This, 
in turn, will cut the neighboring areas’ carbon emission 
levels.

The regression coefficient of human capital level 
is significant at 1% level; the coefficient of upgrading 
industrial structure is positive and significant at 1% 
level, indicating that upgrading industrial structure 
will lead to the growth of carbon emissions through the 
investment in new equipment and technology, which in 
turn affects the enterprise’s fixed assets that are not easy 
to discard and the change in market demand. This can 
result in less reliance on carbon-intensive sectors and 
power, leading to greener industrial practices.

Fig. 8. Localised Moran’s I scatterplot of carbon emissions.
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The analysis shows that the coefficient associated 
with the economic development level exhibits a positive 
relationship, albeit only meeting the 10% significance 
threshold. Economic development will likely depend 
on energy consumption, leading to increased carbon 
emissions. Furthermore, the regression coefficient 
linked to the industrialization level demonstrates  
a positive association and passes the significance test at 
the 1% level. This indicates a substantial influence of the 
industrialization level on carbon emissions.

The human capital regression coefficient is 
statistically significant and negative at the 1% 
significance level – a positive link between development 
and carbon emissions. Industrialization increases 
carbon emissions significantly. Industrialization usually 
involves large industrial output, mining, construction, 
and a heavy reliance on fossil fuels due to increased 
demand. Because these activities employ carbon-
intensive energy sources like coal, oil, and gas, they 
emit a lot of carbon. Industrialization has led to 

urbanization and transport infrastructure expansion, 
increasing carbon emissions. At 5% significance,  
the regression coefficient for foreign direct investment 
(FDI) is negatively correlated. This shows that foreign 
direct investment (FDI) can significantly reduce carbon 
emissions. Foreign Direct Investment (FDI) may have 
introduced new technologies and management expertise. 
This boosts production and resource efficiency in 
receiving countries, reducing carbon emissions.

Spatial Spillover Effects

This section uses the partial differential 
decomposition method proposed by [37] to further 
investigate the spatial spillover effect of the impact of 
the digital economy on carbon emissions, building on 
the results of the preceding test and regression analysis. 
This method breaks down the spillover effect into the 
direct effect of the digital economy of the study area on 
the average impact of carbon emissions and the indirect 
effect of the digital economy of the neighboring area in 
Table 8. The results of decomposing the spatial spillover 
effect into three components are: the direct effect of the 
digital economy in the study area on the average carbon 
emissions the indirect effect of the digital economy in 
neighboring areas on the average carbon emissions and 
the total effect of the digital economy in the study area 

Table 8. Table of results on spatial spillover effects.

VARIABLES
(1) (2) (3)

Direct 
effect

Indirect 
effect Total effect

Digital Economy
-13.829*** -9.312** -23.141**

(-7.11) (-1.98) (-2.21)

Industrial 
structure 

upgrading

1.678*** 0.829 2.507*

(4.67) (0.63) (1.72)

Human capital 
level

-2.026*** 0.115 -1.912**

(-3.03) (0.06) (-1.92)

Economic 
development 

level

0.942** 0.283 1.225**

(2.06) (0.29) (2.07)

Industrialisation 
level 

2.007*** -1.660** 0.347

(6.55) (-2.07) (0.47)

Foreign direct 
investment (FDI)

-2.839** 11.328** 8.489

(-2.11) (2.15) (1.43)

Observations 270

R-squared 0.383

Number of id 30

Note: ***, **, * denote significance tests passed at 1%, 5% 
and 10% significance levels, respectively; parameters in 
parentheses are t-test values.

Table 7. Benchmark regression results table.

VARIABLES
(1) (2)

Main Wx

L.W Carbon Emissions
1.395***

(5.11)

Digital economy
-13.643*** -7.517**

(-6.91) (-1.96)

Industrial structure 
upgrading

1.624*** 0.525

(4.43) (0.54)

Human capital level
-1.988*** 0.355

(-2.86) (0.22)

Economic development 
level

0.949* 0.234

(1.92) (0.28)

Industrialisation level
1.975*** -1.774**

(6.50) (-2.53)

Foreign direct 
investment (FDI)

-2.939** 10.965**

(-2.32) (2.36)

rho
0.054**

(2.27)

sigma2_e
4.152***

(12.91)

Observations 270

R-squared 0.383

Number of id 30

Note: ***, **, * denote significance tests passed at 1%, 5% 
and 10% significance levels, respectively; parameters in 
parentheses are t-test values.
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on the average carbon emissions of the whole region.
It can be seen from the regression results that 

the direct and indirect effects of the digital economy 
on carbon emissions, as well as the total effect of the 
regression results, are -13.829, -9.312, and -23.141, 
respectively, and are significant under different 
conditions, indicating that the development of the 
digital economy will inhibit the carbon emissions 
of the entire region, albeit with a slightly weaker 
inhibition in the neighboring regions. The regression 
results for the control variables also coincide with the 
reference regression findings in Table 6. The positive 
test coefficients of the direct, indirect, and total effects 
of upgrading the industrial structure and the economic 
development level provide further evidence that the 
control variables encourage increasing carbon emissions 
in the study area and the neighboring regions. Both the 
main effect and the total effect of human capital level 
are shown to be negative, whereas the spillover effect 
is found to be positive. This indicates that increased 

human capital reduces the intensity of carbon emissions 
throughout the region while increasing emissions 
in neighboring areas. The primary effect test of 
industrialization level is positive. However, the spillover 
effect is negative, suggesting that a higher industry level 
influences carbon emissions in the study area or the 
overall region. However, less affects carbon emissions 
in neighboring regions. While FDI was found to have 
a negative main effect, it was found to have a positive 
spillover effect and a positive total effect, suggesting 
that, while FDI may have a dampening effect on local 
carbon emissions, it will have a stimulating effect on 
emissions in neighboring areas and across the region.

The findings collectively indicate that the digital 
economy has a spatial spillover impact on the carbon 
emissions of adjacent regions. This can be attributed 
to the absence of spatial constraints within the digital 
economy, which represents a distinct advantage over the 
conventional economy. This advantage facilitates the 
diffusion of the digital economy from the region to its 

VARIABLES
(1)

First-order inverse 
distance

(2)
Spatial adjacency 

matrix

(3)
Alternate 

measurement 
methods

(4)
Culling the lag of 

the first order

L.W Carbon Emissions
1.649*** 0.652** 2.657***

(2.84) (2.28) (4.68)

Digital economy
-12.843*** -13.547*** -14.206*** -14.577***

(-5.50) (-7.22) (-5.04) (-7.76)

Industrial structure upgrading
1.091*** 1.804*** 1.060*** 1.089***

(2.84) (5.20) (2.72) (3.21)

Human capital level
-1.372* -2.192*** -1.750** -1.496**

(-1.93) (-3.57) (-2.40) (-2.31)

Economic development level
1.389*** 0.666 1.287** 1.282***

(2.70) (1.53) (2.47) (2.72)

Industrialisation level
2.063*** 2.282*** 2.026*** 1.423***

(7.28) (8.59) (7.10) (5.33)

Foreign direct investment (FDI)
-5.584*** -1.947 -4.824*** -4.337***

(-3.65) (-1.50) (-3.13) (-3.75)

rho
0.496*** 0.317*** 0.516*** 0.394***

(3.02) (3.08) (3.06) (3.44)

sigma2_e
4.057*** 3.643*** 4.166*** 3.767***

(12.91) (12.91) (12.91) (12.13)

Observations 270 270 270 300

R-squared 0.112 0.329 0.135 0.151

Number of id 30 30 30 30

Note: ***, **, * denote significance tests passed at 1%, 5% and 10% significance levels, respectively; parameters in parentheses are 
t-test values.

Table 9. Benchmark regression results.
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neighboring regions, resulting in spatial spillover. This is 
evident in the phenomenon where regions with a higher 
level of digital economy can stimulate the development 
of adjacent regions by transferring talents, technologies, 
and other factors to regions with a lower level of 
digital economy. This process strengthens interregional 
exchanges and connections, and promotes the flow of 
resources between regions, ultimately leading to overall 
common development and progress.

Robustness Testing

This research study uses a robust type test to 
determine whether the empirical results are reliable 
by replacing the distance-based neighborhood spatial 
weight matrix with a first-order inverse distance spatial 
weight matrix and a neighborhood spatial weight 
matrix based on the number of nearest neighbors, and 
by recalibrating how the digital economy is measured 
(primarily by applying the TOPSIS comprehensive 
evaluation method to the results). As can be seen from 
the analysis in Table 9, the digital economy’s regression 
coefficients on carbon emissions remain negative, and 
all of them pass the significance test under the condition 
of 1%, demonstrating that the baseline regression results 
are of a robust type and that the digital economy has  
a clear inhibition effect on carbon emissions. Conclusions 
generated from the baseline regression are robust since 
the control variables are consistent with the outcomes of 
these methods.

Conclusions and Recommendations

Discussion and Deficiencies

This study mainly focuses on the data of 30 
provinces in China from 2012 to 2021, explores the 
spatial and temporal evolution characteristics of the 
digital economy and carbon emissions from a spatial 
and temporal perspective, and analyses the path of 
carbon emission reduction empowered by the digital 
economy using the spatial Durbin model, which enriches 
the existing theories on carbon emission reduction 
empowered by the digital economy and has important 
theoretical and practical significance for the achievement 
of the “dual-carbon” development goal in China. It is of 
great theoretical and practical significance for China to 
achieve the “dual carbon” development goal. Therefore, 
this study may have the following innovative points 
and marginal contributions: First, in the process of 
measuring the digital economy, existing studies mainly 
construct the indicator system from two to three levels 
of the five aspects of digital infrastructure level, digital 
industrialization level, industrial digitization level, 
digital technology innovation level, and digital finance 
development level, which cannot comprehensively 
measure the comprehensive development of the digital 
economy in the process of measurement. Therefore, this 

study comprehensively reconstructs the comprehensive 
evaluation index system of the digital economy by 
combining the above five aspects, which enriches the 
research theory on digital economy measurement. 
Secondly, existing studies mainly focus on exploring the 
development characteristics of the digital economy and 
carbon emissions in time sequence. However, according 
to the first and second laws of geography, there is  
a spatial influence effect in the process of evolution of 
various things. Therefore, this study innovatively starts 
from the pattern of spatial and temporal distribution 
and is based on the kernel density estimation and 
the standard deviation ellipse to explore the spatial 
economic agglomeration characteristics and evolution 
trends of the digital economy and carbon emissions, 
which is conducive to the relevant departments 
grasping the digital economy and carbon emissions 
comprehensively and exploring the development trend of 
the digital economy and carbon emissions. Thirdly, most 
existing studies use panel regression models to explore 
the linear or non-linear relationship between the digital 
economy and carbon emissions, and only some literature 
has explored the spatial spillover effect between the 
two. Therefore, based on the spatial Durbin model, 
this study extends the effect of the digital economy on 
carbon emissions to the spatial spillover effect, which 
is conducive to providing theoretical references for 
the relevant departments in formulating development 
policies for the process of carbon emission reduction.

However, there are some limitations to this paper: 
First, in terms of data availability, the sample of this 
study is provincial data from 2012-2021, and the latest 
data and more detailed samples have not been obtained; 
therefore, in future studies, mathematical modeling 
needs to be used to obtain brand new first-hand data and 
update the research data to ensure the timeliness of the 
study. Second, due to the limitation of the number of 
research samples, this study only analyzes the spatial and 
temporal evolution characteristics and impact effects of 
the digital economy and carbon emissions based on the 
data at the provincial level in China and does not explore 
the impact effects of the digital economy-enabled carbon 
emission reduction from the perspective of prefecture-
level cities or county-level cities in a more detailed 
way. Third, comprehensively verifying the impact of 
the digital economy on carbon emission reduction is a 
comprehensive and systematic work that requires long-
term and stable data and experience accumulation and 
even more methodological innovations to be applied 
to empirical research. Therefore, the impact of the 
relationship between the digital economy and carbon 
emissions will be explored in depth in future research, 
and the research method will be innovated.

Research Conclusions

By empirically analyzing the panel data of 30 
Chinese provinces from 2012 to 2021, this paper uses 
kernel density estimation, standard deviation ellipse,  
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the Moran index, and the spatial Durbin model to study 
the spatial-temporal evolution and spatial influence 
effects of the digital economy and carbon emissions.  
It comes to the following conclusions:

Firstly, the spatial difference between the digital 
economy and carbon emissions in terms of time-series 
changes is empirically examined through a kernel 
density estimation model, refined to complement the 
existing studies regarding time-series research. It was 
found that China’s digital economy showed an increasing 
trend during the study period, while carbon emissions 
showed the opposite trend to the digital economy. From 
the distribution pattern and trailing condition, it can 
be seen that the spatial difference between the digital 
economy and carbon emissions is in a shrinking trend 
of change.

Secondly, the standard deviation ellipse model 
is used to draw the spatial distribution pattern and 
evolutionary characteristics of the digital economy 
and carbon emissions to explore the evolutionary 
characteristics of the research object in terms of spatial 
change, which is conducive to the relevant departments 
to comprehensively grasp the development status of the 
digital economy and carbon emissions. The study finds 
apparent differences in the spatial distribution of digital 
economic development levels, with a decreasing trend of 
“East-Centre-West.” Comparing the spatial distribution 
patterns of the digital economy and carbon emissions 
in different years, it is found that the digital economy 
shows an upward trend. In contrast, carbon emissions 
show a downward trend. From the trend of the standard 
deviation ellipse, the results show that the digital 
economy moves to the north, indicating that the digital 
economic development level is higher in the north than 
in the south, while the carbon emission moves to the 
south-west, indicating that the carbon emission level in 
the south of China is higher than that in the northern 
region.

Thirdly, the spatial Durbin model is used to explore 
the effect of the digital economy on carbon emissions 
in order to explore the spatial spillover effect between 
the two from a spatio-temporal perspective. The results 
show that the development of the digital economy has a 
significant inhibitory effect on carbon emissions, i.e., the 
development of the digital economy can reduce carbon 
emissions to a certain extent. At the same time, there 
is a significant spatial spillover effect on the impact of 
carbon emissions in neighboring regions.

Research Recommendations

The conclusion of the study leads to the formulation 
of the following subsequent recommendations:

First, we need to quicken the pace at which digital 
infrastructure is built. Achieving the dual-carbon target 
requires cutting-edge digital infrastructure, which is 
essential to a low-carbon transformation of the digital 
economy. Therefore, to improve energy efficiency 
and minimize energy consumption while fostering 

the high-quality development of the digital economy, 
the government should raise investment, improve the 
quality of human resources, and increase foreign direct 
investment.

Second, the favorable geographical spillover effect of 
the digital economy should be brought into full play. The 
digital economic growth of surrounding regions benefits 
from proximity to more advanced locations. Therefore, 
to improve the overall efficiency of carbon emissions, 
it is necessary to strengthen the links and exchanges 
between different regions, to fully play the radiation 
effect of the digital economy in the core regions, and to 
use effects such as technological spillovers to promote 
the development of the digital economy in the peripheral 
regions.

Third, it’s crucial to make sure that digital economies 
are growing at roughly the same rate everywhere in the 
world. High-quality development is in conflict with the 
uneven distribution of our digital economy and carbon 
emissions across the country. Therefore, the government 
should take multiple steps to address the issue. 
Government policy assistance, greater investment in 
infrastructure building, technical and financial support, 
stronger talent training, and preferential policies for 
foreign direct investment can all contribute to the rapid 
expansion of the digital economy in undeveloped areas. 
The government should encourage faster-growing areas 
to invest in infrastructure, technology, and human 
capital to help drive and support slower-growing areas 
so that the development gap can be narrowed, a more 
balanced and high-quality digital economy can be 
achieved, and China can achieve its dual-carbon goals.
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