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Abstract

Environmental issues worldwide are growing increasingly severe, leading to concerns about 
sustainable food systems. Therefore, it is significant to research sustainable agricultural development 
(SAD). This study focuses on China as a research area since it is one of the largest agricultural 
countries globally. A key objective of this research is the development of a novel evaluation framework 
for Sustainable Agricultural Development (SAD), alongside the analysis of the spatiotemporal 
differentiation and evolution of China’s SAD levels, and the exploration of the heterogeneity in its 
driving factors. The goal is to facilitate relevant departments in formulating differentiated regional 
agricultural sustainable development strategies. SAD levels across various Chinese provinces are 
evaluated through the development of an index-based assessment system, with a focus on three key 
aspects: Resource Conservation, Environmental Friendliness, and Production Efficiency. Additionally, 
spatiotemporal differentiation and evolution are analyzed using Kernel Density Estimation and Spatial 
Autocorrelation models. We explore the spatiotemporal heterogeneity of driving factors for SAD through 
the Geographical and Temporal Weighted Regression (GTWR) model. Findings indicate a steady rise 
in SAD levels across China from 2013 to 2021, with notable regional variations. The southeast coastal 
region exhibits high SAD levels, while the western inland and northeastern regions show lower levels. 
There is a strong positive correlation in SAD levels amongst these selected Chinese provinces, with 
increasing agglomeration effects over time. Low-low agglomeration zones are primarily concentrated 
in the west, while high-high agglomeration zones are more prevalent in the east. Based on the outcomes, 
the factors exhibit spatial and temporal heterogeneity. Economic Development Level, R&D Investment, 
and Agricultural Socialized Services positively influence SAD. However, a positive shift to a negative 
shift in the impact of Human Capital Education and Openness Level on SAD over time indicates 
the areas China’s government should focus on in order to revitalize a path towards great SAD. 
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Introduction

Sustainable development aims to achieve ecological 
health, social responsibility, and economic prosperity [1]. 
Given that agriculture forms the foundation of environmental, 
social, and economic well-being [2], it is crucial to explore 
sustainable agricultural practices. The United Nations 
made the 2030 Agenda Declaration for Sustainable 
Development, providing a shared framework for global 
peace and prosperity. The 17 Sustainable Development 
Goals form the core of this agenda, functioning as a global 
call to action for all nations, irrespective of their stage of 
development.

Currently, academic research is focused on defining 
“agricultural sustainable development”, quantitatively 
evaluating its progress, and identifying key influencing 
factors. The concept of sustainable agriculture is 
multifaceted, with varying interpretations among 
scholars [3, 4]. An instance is that of Roy and Chen 
defining sustainable agriculture, as the practices that 
satisfy essential criteria while maintaining ecological 
stability, economic viability, and social equity [5]. Cao 
and Solangi considered sustainable agriculture to boost 
agricultural prolificacy, distribute yield impartially, 
and conserve natural resources [6]. Diverse definitions 
and metrics of sustainable agriculture underscore 
its interdisciplinary nature and the necessity for 
comprehensive monitoring approaches. Researchers 
have identified indicators such as resource conservation 
[7], social economy [8], and environmental friendliness 
[9] to assess agricultural sustainability. By constructing 
a comprehensive evaluation index system for 
sustainable agriculture [10–13], researchers have 
measured and evaluated the SAD level in specific areas 
and researched the influence of factors such as the digital 
economy and environmental regulations on SAD by 
using intermediary effects models; threshold panel mod 
els; structural equation models and others [14–21].

Overall, the theoretical foundation and research 
methods in the existing studies on SAD are robust. 
However, the previous research on the evolution of SAD 
levels in China is insufficient, especially on the regional 
agglomeration effect and the spatiotemporal heterogeneity 
of driving factors. Therefore, this paper uses a variety 
of spatial econometric models to research the above 
problems. The main contribution of this paper lies in: (1) 
An innovative comprehensive index system constructed to 
measure SAD level, which introduces industry integration 
indicators; (2) Using Kernel Density Estimation to analyze 
the spatiotemporal differentiation and evolution of SAD; 
(3) The Spatial Autocorrelation model is used to explore 
the regional agglomeration effect of SAD; (4) Based 
on the GTWR model, this paper innovatively explores 
the spatiotemporal heterogeneity of driving factors of SAD, 
providing new insights for the implementation path towards 
sustainable agriculture development.

The rest of the paper is arranged as follows: Section 
2 outlines the methodological framework and processes 
underpinning the model construction, along with a detailed 

account of the data sources utilized in this study. Section 
3 expounds on the empirical results and analysis. Section 
4 is devoted to the conclusions. Section 5 presents 
the discussion.

Material and Methods   

Construction of an Indicator System 
to Assess SAD Level

Building on the theoretical foundations of Sustainable 
Agricultural Development (SAD), this article develops 
an indicator system that assesses SAD levels in terms 
of Resource Conservation, Environmental Friendliness, 
and Production Efficiency. Resource Conservation is 
reflected in the protection and rational utilization of all 
kinds of resources in the process of agricultural production, 
improving resource utilization efficiency to reduce 
natural resource consumption. Four specific indicators 
are chosen, namely the water-saving irrigation rate, 
the cropland replanting rate, the intensity of agricultural 
electricity consumption, and the level of fiscal support 
for agriculture. Environmental Friendliness refers to 
reducing pollution levels in agricultural production 
for the ecological environment (including greenhouse 
gas emissions from agricultural production). Select 
six specific indicators, including fertilization intensity, 
pesticide usage, agricultural membrane usage, agricultural 
Chemical Oxygen Demand (COD) emissions, agricultural 
ammonia nitrogen emissions, and the crop disaster rate. 
Production Efficiency refers to the comprehensive 
improvement of economic, ecological, and social benefits. 
Six specific indicators are identified, encompassing unit 
grain sowing area yield, unit agricultural machinery 
power output value, labor productivity, land output rate, 
the structural composition of the agricultural industry, 
and the degree of industry integration. 

Using the Panel Entropy Weighting 
Method to Weight the Indicators

The Shannon Entropy Weighting method is an 
objective technique used to assign weights to indicators 
based on the magnitude of their information entropy. In 
addition, panel data can offer additional insights into 
the dynamic behavior of the samples. When exploring 
the development of SAD, it is also crucial to investigate 
how SAD has evolved over time in response to various 
factors in different provinces. Consequently, the panel 
entropy method is used in this article as a weight 
indicator.

Table 1 shows various indicators and weights.  
The indicator attribute “positive” means the value increases 
with the indicator data; “negative” means the value decreases 
with the indicator data. According to the weights and values 
of indicators, the evaluation value y of SAD in the 31 
provinces (excluding Hong Kong, Taiwan, and Macao) 
from 2013 to 2021 can be calculated.



Sustainable Agricultural Development... 3393

Using Kernel Density Estimation (KDE) 
to Explore the Evolution of SAD

We used the KDE method to fit the level of SAD 
in the 31 provinces from 2013 to 2021 to further explore 
its temporal evolution [25]. KDE is a non-parametric 
data distribution detection model that fits the distribution 
properties of the data [26]. As a statistical inference method 
based on data samples, Kernel Density Estimation does not 
need to make too many assumptions about the population 
distribution, so it can better reflect the actual situation 
of the data. The model form is as follows

  (1)

where N = 31 is the sample size, yi is the level of SAD 
in the i-th province, K(∙) is kernel function, h is density 
estimation bandwidth. Given that the Epanechnikov Kernel 
is optimal in terms of minimizing mean square error when 
determining the optimal bandwidth, and considering its 

minimal efficiency loss, this study selects the Epanechnikov 
Kernel as the kernel function, as outlined below.

 
Otherwise

,  (2)

Exploring the Agglomeration Effect 
of the Spatial Autocorrelation Model

Spatial Autocorrelation analysis enables the identification 
of spatial correlation patterns in the Sustainable Agricultural 
Development (SAD) levels across the 31 provinces 
examined in this study. The Global Moran’s I is employed 
to assess the presence of spatial clustering phenomena, 
and its calculation formula is provided below.

  (3)

Table 1. Index system for sustainable development level of agriculture.

Guideline Index Calculation method Attribute Weight %

Resource 
conservation

Water-saving irrigation rate Water-saving irrigation area/actual total irrigation area positive 12.14

Cropland replanting rate Crop sowing area/cultivated land area Negative 4.46

Agricultural electricity in-
tensity

Electricity consumption/total output value of agricul-
ture, forestry, animal husbandry, and fishery Negative 1.02

Fiscal support for agriculture Expenditure on agricultural, forestry, and water affairs/
general public budget expenditure of local finance Negative 4.91

Environment 
Friendliness

Fertilizer intensity Fertilizer application rate/crop sowing area Negative 3.63

Pesticide usage Pesticide application rate/crop sowing area Negative 1.50

Agricultural membrane usage Usage of agricultural membrane /planting area of crops Negative 1.90

Agricultural COD emission 
intensity Agricultural COD emission intensity Negative 0.25

Agricultural ammonia nitro-
gen emission Agricultural ammonia nitrogen emission intensity Negative 1.23

Crop disaster rate Affected area of crops/Sowing area of crops Negative 1.40

Production 
Efficiency

Unit grain sowing area yield Total grain yield/grain sowing area positive 6.77

Unit agricultural machinery 
power output value

Total agricultural output value/total power of agricul-
tural machinery positive 7.91

Labor productivity Total output value of agriculture, forestry, animal hus-
bandry and fishery/primary industry employees positive 11.29

Land output rate Planting output value/cultivated land area positive 15.73

The structural form of agri-
cultural industry

Value added of professional and auxiliary activities 
in agriculture, forestry, animal husbandry and fishery/
total output value of agriculture, forestry, animal hus-

bandry and fishery

positive 8.25

Industrial integration level
Operating income from large-scale agricultural product 

processing industry/total output value of agriculture, 
forestry, animal husbandry, and fishery

positive 17.65
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  (4)

where wij is the adjacency weight of the i-th and j-th 
provinces. If the i-th and j-th provinces are adjacent, then 
wij = 1, otherwise wij = 0. To meet the needs of the model, 
Hainan and Guangdong are defined as adjacent and specifies 
wij = 0, if i = j.

The null hypothesis can be rejected, as the significant 
p-value suggests that the feature is not randomly distributed 
in the study area. At this stage, Local Moran’s I can be 
applied to identify the location, extent, and significance 
of agglomeration, and its calculation formula is provided 
below.

  (5)

If Ii > 0, represents the spatial pattern of high-level 
provinces gathering to form a high-high agglomeration 
zone or low-level provinces gathering to form a low-low 
agglomeration zone; Conversely, Ii < 0 reflects the formation 
of high-low or low-high patterns, where high-level and low-
level provinces interact.

Constructing a GTWR Model 
to Explore the Driving Factors 
of Agricultural Sustainability

The degree of SAD varies amongst provinces due 
to variations in their natural environments, geographic 
locations, and socioeconomic developments. This 
paper begins by examining the relationship between 
humans and the environment and selects five indicators, 
including Economic Development Level, R&D 
Investment, Human Capital Education, Agricultural 
Socialized Services, and Openness Levels. Table 
2 shows driving factors and selected indicators. 
The specific instructions are outlined below.

(1) Economic Development Level.
Areas with high levels of economic development 

have a relatively high input-output ratio for agricultural 
production, which is strong in favor of promoting SAD.

(2) R&D Investment. 
Technological advancements are pivotal in driving 

agricultural progress, with R&D investment fostering 
innovation in agricultural technologies and promoting 
the sustainability of agricultural development [28].

(3) Human Capital Education. 
Human Capital Education has been shown to 

increase the innovation and flexibility of agricultural 
producers [29], leading to improvements in the efficiency 
and quality of agricultural production. This also enhances 
the competitiveness and resilience of the agricultural 
sector.

(4) Agricultural Socialized Services. 
By providing professional,scientific and efficient ser-

vices, agricultural socialized service organizations play 
a crucial role in enhancing various aspects of agricultural 
supply,including guarantee capabilities, technological in-
novation capabilities, sustainable development capabilities 
and international competitiveness. These services facilitate 
the adoption of sustainable agricultural technologies by 
smallholders, thereby transitioning conventional agriculture 
towards sustainable practices [30].

(5) Openness Level. 
Advancing the comprehensive internationalization 

of agricultural practices is crucial for mitigating domestic 
resource shortages, alleviating resource and environmental 
pressures, and fostering a conducive environment for 
Sustainable Agricultural Development (SAD)[31].

This paper uses the GTWR model to explore 
the impact of these driving factors on SAD. The GTWR 
model is a regression linear model that periphrastically 
reflects the spatiotemporal heterogeneity characteristics 
of the study data by calculating the trends for changes 
in parameters with time and space [32, 33]. Currently, this 
method is predominantly applied in analyzing the scale 
and intensity of carbon emissions, rural settlement 
patterns, urban planning, and the spread of epidemics. 
It is less applied to the field of influencing factors 
in agricultural development, especially the driving 
factors of sustainable agricultural development. This 
paper uses the spatiotemporal and geographical weighted 
regression model to analyze the influence of various 

Table 2. The driving factors of China’s sustainable agricultural development level.

Driving factors Select indicators

Economic Development Level Regional per person GDP

R&D Investment Agricultural R&D investment funds/Regional GDP

Human Capital Education The proportion of people with a high school education and above

Agricultural Socialized Services Agricultural professional and auxiliary activity output value/regional GDP

Openness Level Actual utilization of foreign direct investment/regional GDP
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factors on agricultural sustainable development from 
the perspective of time and space and provides theoretical 
support and empirical experience for formulating relevant 
policies to promote agricultural sustainable development. 
The model is structured as follows.

  (6)

where yi is the SAD level of the i-th province, xik is 
the observed value of the k-th driving factor in the i-th 
province, (ui, υi) is the spatial position coordinate of the i-th 
province, ti represents the corresponding time dimension, 
βk(ui, υi, ti) is the regression coefficient of the k-th driving 
factor in the i-th province, β0(ui, υi, ti) is the spatiotemporal 
intercept of the i-th province, and εi represents the random 
error. If βk > 0, then there is a positive correlation between 
the SAD and driving factors; otherwise, it is a negative 
correlation. The weighted least square method (WLS) is 
used to calibrate the GTWR model. The matrix expression 
of the estimated coefficients of the i-th province can be 
given as shown in formula (7).

  (7)

Using the method of Huang et al. [33], the weight matrix  
is constructed based on adaptive bandwidth, Gaussian 
kernel function, and Euclidean distance.

Data Source and Processing

The data used in this study mainly comes from the China 
Statistical Yearbook, the China Statistical Yearbook on 
Environment, the China Agricultural Products Processing 
Yearbook, and the statistical yearbooks of provinces. 
Any missing data was completed using an interpolation 
method.

Results and Analysis

The Measurement Results of the SAD Level

This article used the panel Entropy Weight method 
to measure the evaluation index system of SAD [34] 
mentioned above and obtain the level values in 31 provinces 
in China from 2013 to 2021. Table 3 displays the results.     

From a national perspective, the average level of SAD 
has been increasing year by year, from 0.326 in 2013 
to 0.422 in 2021, with an average annual growth rate 
of 3.28%. This demonstrates China’s SAD is accelerating, 
and agriculture is transforming and upgrading. In addition, 
as can be seen from the measurement results, the level 

Table 3. The level of sustainable agricultural development in 31 provinces of China.

Region 2013 Ranking 2015 Ranking 2017 Ranking 2019 Ranking 2021 Ranking

Anhui 0.280 24 0.302 24 0.321 23 0.320 23 0.349 24

Beijing 0.454 2 0.466 3 0.513 2 0.548 2 0.608 3

Fujian 0.391 7 0.420 6 0.449 6 0.535 3 0.614 2

Gansu 0.265 27 0.273 28 0.273 28 0.282 29 0.295 29

Guangdong 0.338 10 0.364 10 0.395 8 0.464 7 0.526 6

Guangxi 0.295 20 0.309 21 0.334 21 0.353 20 0.396 18

Guizhou 0.230 30 0.281 26 0.320 24 0.328 22 0.385 21

Hainan 0.282 23 0.325 19 0.355 17 0.438 8 0.506 8

Hebei 0.324 12 0.327 16 0.357 15 0.375 14 0.425 13

Henan 0.295 21 0.333 13 0.390 11 0.374 15 0.401 16

Heilongjiang 0.311 16 0.308 22 0.334 22 0.308 26 0.345 25

Hubei 0.314 14 0.344 12 0.359 14 0.385 13 0.426 12

Hunan 0.305 17 0.327 18 0.350 18 0.361 19 0.404 15

Jilin 0.378 8 0.373 8 0.368 12 0.312 24 0.326 27

Jiangsu 0.408 5 0.451 4 0.481 4 0.494 4 0.531 5

Jiangxi 0.298 19 0.331 15 0.349 19 0.364 17 0.388 20

Liaoning 0.420 4 0.387 7 0.380 9 0.398 10 0.419 14
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of SAD in China’s provinces from 2013 to 2021 showed 
significant spatial heterogeneity changes.

Based on a comparative analysis across provinces, 
Shanghai (0.546), Beijing (0.516), and Tianjin (0.487) 
rank highest amongst the provinces in terms of average 
sustainable agricultural development from 2013 to 
2021. These three provinces have strong capacities for 
innovation in agricultural technology, high levels 
of economic development, and conditional advantages 
in SAD. The bottom three provinces are Xizang (0.234), 
Qinghai (0.251), and Yunnan (0.270). These three areas 
face limitations in terms of local agricultural resources 
and technological advancements, resulting in a relatively 
underdeveloped state of SAD.

The top three provinces are Hainan (7.776%), Guizhou 
(6.766%), and Zhejiang (5.86%) in terms of the growth rate 
of SAD levels; Jilin (-1.55%), Liaoning (0.04%), and Inner 
Mongolia (0.77%) are the lowest three provinces.

The Spatiotemporal Evolution of SAD 

During the period of 2013 to 2021, the kernel density 
curves for SAD in different provinces, including the eastern, 
central, and western regions, all moved towards the right. 
This suggests that the level of SAD has progressively 
improved over time. There was a notable improvement 
in the degree of SAD in the eastern and western regions, 
as evidenced by the comparatively large changes observed 
in these regions, whereas the central region experienced 
relatively small changes (Fig. 1). The distribution pattern 
indicates that the primary peak of kernel density in the eastern 
region remains relatively stable, with an overall rightward 
shift in the estimated curve, indicating minimal internal 

variations within this region. However, in the central 
and western regions, there has been a consistent decrease 
in the main peak value of kernel density estimation each 
year, accompanied by an increase in bandwidth width. 
This suggests a widening gap in the levels of sustainable 
agricultural development among provinces in these 
regions. The maximum level of sustainable agricultural 
development at the national level experiences a rise 
followed by a decline, with the range of variation gradually 
expanding. The distribution shape indicates a “weak 
double peak” on the 2021 curve in the eastern region, but 
the difference in peak values is not statistically significant. 
Furthermore, the country’s overall curve displays a single 
peak and a gradually elongating right tail, suggesting that 
high-level provinces of SAD are emerging and the overall 
level of SAD is continuously improving.

Spatial Differentiation and Agglomeration 
Effect of SAD Level

Each province’s sustainable agricultural development 
level is categorized into four stages based on the maximum, 
minimum, and average levels of China’s SAD for each year: 
low level, medium-low level, medium-high level, and high 
level. A general improvement phenomenon of SAD was 
observed in different Chinese provinces between 2013 
and 2021 (Fig. 2), and there was a significant overall 
spatial distribution heterogeneity, indicating a high level 
of development in the eastern coastal region and a low 
level in the western inland and northeastern regions. From 
the perspective of regional evolution types of SAD level, 
from 2013 to 2021, the proportion of low and medium-low 
level development cities gradually decreased from 38.71% 

Region 2013 Ranking 2015 Ranking 2017 Ranking 2019 Ranking 2021 Ranking

Inner Mongolia 0.303 18 0.300 25 0.292 27 0.299 27 0.321 28

Ningxia 0.268 26 0.306 23 0.317 25 0.335 21 0.359 22

Qinghai 0.234 28 0.248 29 0.232 31 0.247 30 0.287 30

Shandong 0.403 6 0.421 5 0.454 5 0.438 9 0.467 9

Shanxi 0.275 25 0.281 27 0.305 26 0.309 25 0.350 23

Shaanxi 0.316 13 0.331 14 0.362 13 0.392 11 0.428 11

Shanghai 0.513 1 0.498 1 0.515 1 0.562 1 0.638 1

Sichuan 0.312 15 0.327 17 0.356 16 0.370 16 0.395 19

Tianjin 0.445 3 0.479 2 0.492 3 0.477 5 0.548 4

Xizang 0.229 31 0.226 31 0.242 30 0.232 31 0.251 31

Xinjiang 0.358 9 0.365 9 0.378 10 0.387 12 0.441 10

Yunnan 0.231 29 0.243 30 0.265 29 0.287 28 0.330 26

Zhejiang 0.331 11 0.361 11 0.402 7 0.472 6 0.520 7

Chongqing 0.292 22 0.320 20 0.341 20 0.363 18 0.398 17
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in 2013 to 9.68% in 2021, and SAD in coastal provinces 
gradually entered a high level.

Using Stata17 software to calculate the Global Moran’s 
I index from 2013 to 2021. The results are shown in Table 4.

The Moran index exhibited a p value below 0.05 across 
all years, indicating statistical significance. The results 
indicate a significant positive relationship between the level 
of SAD across various provinces in China. Moreover, 
the global Moran index has shown a consistent increase 
each year, indicating a strengthening agglomeration effect 
of these trends within each province over time. This shows 
that the nation has advocated ecological construction 
and sustainable development since the 12th Five Year 
Plan, and several provinces have stepped up their efforts 
to enhance SAD. The agglomeration effect has been 
strengthened by neighboring provinces’ experience with 
and borrowing from sustainable agricultural development 
initiatives.

Draw Local Moran’s I scatter plots for 2013, 2017, 
and 2021 (Fig. 3), with the four quadrants corresponding 
to four types in turn: high-high agglomeration zone, 
low-high agglomeration zone, low-low agglomeration 
zone, and high-low agglomeration zone. A high-high 
agglomeration zone refers to a region where both 
the province itself and its neighboring provinces exhibit 

high levels of sustainable agricultural development (SAD). 
Similar interpretations apply to other agglomeration 
patterns in different regions.

High-high agglomeration zones are primarily found 
in China’s eastern regions, which include Beijing, Tianjin, 
Jiangsu, Shanghai, and Zhejiang, as Fig. 3 illustrates. 
Guangdong and Hainan also displayed a high-high 
agglomeration situation in 2021. In the meantime, the high-
high agglomeration zones progressively moved from 
the northeast to the southeast over time. Western China 
is the primary location for low-low agglomeration zones. 
These regions include Yunnan, Xizang, Ningxia, Gansu, 
Qinghai, Guizhou, and Shanxi. It’s evident that there is 
an obvious spatial agglomeration in SAD across different 
provinces, which is constrained by things like the natural 
geographic setting and the economic climate.

Analysis of Driving Factors for SAD

Analysis of Basic Regression Results

Based on the global linear regression model, using 
R4.2.2 software (RStudio) to estimate the coefficients. 
Table 5 demonstrates that the Economic Development Level, 
R&D Investment, Human Capital Education, Agricultural 

Fig. 1. The spatiotemporal evolution of China’s sustainable agricultural development level.
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Socialized Services, and Openness Level exhibit a positive 
impact on SAD, aligning with the anticipated findings. 
Furthermore, all statistical tests conducted met the criteria 
for statistical significance at a 5% level. From the diagnostic 
information of the global regression model, if the variance 

inflation factor (VIF) of each explanatory variable is less 
than 7.5, it can be considered that there is no significant 
multicollinearity between the explanatory variables. 
At the same time, it was found that the determinability 
coefficient of the model was relatively high (R2 = 0.8172), 

Fig. 2. The level and changes of sustainable agricultural development in various provinces of China in 2013, 2017, and 2021.

Table 4. Global Moran’s I index of the level of sustainable development in agriculture.

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021

Moran’s I 0.341*** 0.376*** 0.392*** 0.429*** 0.436*** 0.452*** 0.478*** 0.475*** 0.483***

Z 3.179 3.475 3.589 3.905 3.959 4.111 4.288 4.298 4.337

P-value 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Fig. 3. Scatter plot of the Moran Index for the overall level of sustainable agricultural development in various provinces across China 
in 2013, 2017, and 2021.
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Fig. 4. Time variation of GTWR regression coefficient from 2013 to 2021.

Table 5. Basic linear regression results.

Factors Estimate Std. Error t value Pr(>|t|) VIF

(Intercept) 0.237 0.005 46.701 < 2e-16 *** —

Economic Development Level 0.335 0.016 21.265 < 2e-16 *** 1.671

R&D Investment 0.037 0.016 2.254 0.025 * 2.179

Human Capital Education 0.048 0.012 3.905 0.000 *** 1.488

Agricultural Socialized Services 0.084 0.013 6.232 1.74e-09 *** 1.387

Openness Level 0.056 0.018 3.041 0.003 ** 1.536
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indicating a good fit of the global regression model 
and a strong explanatory power of the model.

Analysis of GTWR Model Results

As mentioned above, the data is multicollinearity-free 
and passed the Moran test, satisfying the prerequisites for 
the GTWR model. Based on the GTWR module in ArcGIS 
10.8 software, we conducted a regression on the driving 
factors of SAD in various provinces of China from 2013 
to 2021. To further verify the spatiotemporal heterogeneity 
of driving factors in various provinces, this paper 
compared the fitting effects of different models. Compare 
the calculation results of Time Weighted Regression 
(TWR), Geographically Weighted Regression (GWR), 
and Geographically and Temporally weighted regression 
(GTWR) models. The result shows that the AICc of TWR 
is -1054.99, R2 = 0.819 and adjusted R2 = 0.816; the AICc 
of GWR is -1184.04, which R2 = 0.907 and adjusted 
R2 = 0.906; and the AICc of GTWR is -1395.39, R2 = 0.970 
and adjusted R2 = 0.969. The fitting results of GTWR are 
significantly better than those of TWR and GWR.

The Influence of Driving Factors 
Presents Temporal Heterogeneity 

Unlike OLS, GTWR gives the coefficients of each 
independent variable at different times and locations. If 
the coefficient is positive, it indicates that the driving factor 
has a positive effect on the dependent variable. On the other 
hand, if the coefficient is negative, the driving factor has 
an inhibitory effect on the dependent variable. The greater 
the absolute value of the coefficient, the stronger the effect. 
In general, the Economic Development Level, R&D 
Investment, and Agricultural Socialized Services work 
to support the SAD. The influence of Human Capital 
Education and Openness Level on SAD has gradually 
changed from being supportive to inhibitive (Fig. 4). 
Additionally, each explanatory variable’s influence shows 
time heterogeneity behavior.

According to Fig. 4 (a), the average regression coefficient 
of the Economic Development Level fluctuated from 0.335 
(2013) to 0.381 (2021). This is because the nation first 
proposed the goal of “overall improvement of ecological 
environment quality” during the 13th Five Year Plan 
period, which forced provinces to deepen measures about 
SAD. Simultaneously, the establishment of the initial 
set of National Sustainable Agricultural Development 
Demonstration Zones, completed towards the close of 2017, 
additionally bolstered the stimulating influence of economic 
development on SAD.

Fig. 4(b) presents an inverted U-shaped feature where 
the average regression coefficient of R&D Investment 
gradually increased from 0.058 (2013) to 0.070 (2015) 
and then decreased to 0.029 (2021). This suggests that as time 
goes on, agricultural technology research and development 
has become more mature, while the factors driving the level 
of sustainable agricultural development are gradually 
diminishing.

The average Human Capital Education regression 
coefficient dropped from 0.061 (2013) to -0.019 (2021), as 
shown in Fig. 4(c). In contrast to technological investment, 
the current human capital aggregation resulting from 
SAD is predominantly low-level. Although it encourages 
economic growth in the short term, it also creates obstacles 
for the later stages of regional agriculture’s upgrading 
and transformation, which limits the advancement of SAD.

As shown in Fig. 4(d), the average regression coefficient 
of Agricultural Socialized Services decreased gradually from 
0.162 (2013) to 0.0961 (2021). This is a result of the three 
industries’ ongoing promotion of rural integration, which 
raises the standard of Agricultural Socialized Services 
across different areas. The impact of Agricultural Socialized 
Services on Sustainable Agricultural Development (SAD) 
has progressively diminished in recent years compared to 
the early stages of development. This decline is attributed 
to the continuous advancements and improvements 
in various aspects of agricultural development, including 
material supply, technical services, information services, 
financial services, production services, insurance services, 
and agricultural product sales.

The average regression coefficient of the Openness 
Level has gradually dropped from 0.058 (2013) to -0.008 
(2021), as shown in Fig. 4(e). This is due to the increasing 
caution in opening agricultural products to the international 
market, driven by the current complex global landscape 
and the need to safeguard national security. Consequently, 
the influence of openness on Sustainable Agricultural 
Development (SAD) has progressively diminished.

The Influence of Driving Factors 
Presents Spatial Heterogeneity

This study visualizes the regression coefficient 
intervals of each driving factor and investigates their 
spatial heterogeneity to intuitively describe the impact 
of various driving factors on SAD in various provinces. 
Using the natural breakpoint principle, we found the mean 
of the regression coefficients for each driving factor from 
2013 to 2021, as indicated in Fig. 5.

The regression coefficient of the Economic Development 
Level from Fig. 5(a) demonstrates a trend of increasing from 
north to south. Economic Development in Guangdong, 
Guangxi, and Hainan provinces has a significant impact 
on SAD. This is attributed to the higher level of economic 
development in the southern region, where agricultural 
development initiated the green transformation earlier, 
providing substantial momentum for the sustainable 
development of agriculture. The northern and western 
regions are experiencing a slight slowdown in economic 
development, and there is little to no impact of this on SAD.

From Fig. 5(b), (c), and (d), we can observe that 
the regression coefficients for R&D Investment, Human 
Capital Education, and Agricultural Socialized Services 
all exhibit a consistent upward trend from the southeast 
to the northwest. This is due to the higher levels of R&D 
Investment, Human Capital Education, and Agricultural 
Socialized Services in the southeast, leading to a maturing 



Li Yu, et al.3402

Fig. 5. Regression coefficients of various driving factors from 2013 to 2021.
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and stabilizing impact on SAD. In contrast, the northwest 
is experiencing rapid growth in technology, human capital, 
and agricultural services for sustainable development 
in agriculture, resulting in a greater overall impact.

From Fig. 5(e), the regression coefficient of Openness 
Level shows an increasing trend from the eastern coastal 
areas to the western inland areas, indicating that Openness 
Level in the eastern coastal areas is relatively high. As 
the level of Sustainable Agricultural Development (SAD) 
continues to improve, its impact has gradually diminished. 
However, in recent years, with the persistent advancement 
of international trade initiatives such as the Belt and Road 
Initiative, the openness level of the western inland regions 
has progressively increased, resulting in a greater influence 
on SAD.

From the above analysis, the impact of various driving 
factors on the level of SAD shows spatial heterogeneity.

Conclusions 

This article uses various econometric methods such as 
panel Entropy Weight method, Kernel Density Estimation, 
Spatial Autocorrelation analysis, and GTWR model to 
comprehensively measure the level of SAD in 31 provinces 
in China from 2013 to 2021 and analyze their spatiotemporal 
evolution and driving factors. The main conclusions are as 
follows.

Between 2013 and 2021, the level of SAD in China’s 
provinces increased annually. It exhibits significant spatial 
heterogeneity. The southeastern coastal areas had high levels 
of SAD, while the western inland areas and northeastern 
regions had low levels of the same development.

The level of Sustainable Agricultural Development 
(SAD) across Chinese provinces from 2013 to 2021 
demonstrates a strong positive correlation, with 
the agglomeration effect in individual provinces intensifying 
over time. The majority of the high-high agglomeration 
zones are found in China’s eastern provinces, including 
Beijing, Tianjin, Jiangsu, Shanghai, and Zhejiang. Low-
low agglomeration zones are mostly found in western 
China, primarily in the provinces of Yunnan, Xizang, 
Ningxia, Gansu, Qinghai, Guizhou, and Shanxi. Over time, 
the high-high agglomeration zones progressively move 
from the northeast to the southeast.

Overall, the Economic Development Level, R&D 
Investment, and Agricultural Socialized Services have 
a positive promoting effect on SAD. The impact of Human 
Capital Education and the Openness Level on SAD has 
gradually shifted from positive promotion to negative 
inhibition. The influence of each explanatory variable 
exhibits temporal and spatial heterogeneity.

Discussion

For the establishment of the indicator system for 
SAD, some scholars have examined the entire life cycle 
of agricultural production by integrating the developmental 

process from input, through production to output [35, 36]. 
Several scholars have measured Sustainable Agricultural 
Development (SAD) across three dimensions, namely 
the economy, society, and environment [37, 38]. Building 
upon these three levels — Resource Conservation, 
Environmental Protection, and Efficient Production 
— this study introduces two additional indicators, 
the Structural Form of Agricultural Industry and the Level 
of Industrial Integration. The rationale for this inclusion 
is that the advancement of industrial integration supports 
environmental conservation and ecological sustainability 
[39, 40]. For example, ecological agriculture combines 
the principles of traditional farming with modern 
agricultural technologies and auxiliary activities. This 
not only optimizes the efficient use of agricultural 
resources, but also emphasizes the scientific preservation 
and restoration of agricultural ecosystems [41]. On the other 
hand, industrial integration can promote rural and social 
sustainable development [42]. The government will also 
introduce various favorable policies and measures to attract 
the young and middle-aged labor force, college students, 
and others to return to their hometowns for entrepreneurship 
or employment, fully utilize various rural resources, 
and stimulate new vitality in SAD.

To enhance the SAD in China, it is imperative 
to address the disparity in levels of development 
between the southeastern and western inland regions 
and the northeastern regions. Each province and region 
should leverage its distinct resources to strategically 
develop and utilize a range of natural resources. 
Furthermore, they should leverage their strengths to foster 
the growth of environmentally friendly and sustainable 
agricultural practices and harness agglomeration effects to 
facilitate the inter-regional exchange of capital, technology, 
and resources.

There are still some shortcomings in this paper that 
need further refinement in subsequent research. In future 
studies, the possible interaction between various factors 
and indirect effects can be further considered. For example, 
environmental regulation [43], digital construction [44], 
and energy security [45] may affect economic growth 
and then influence sustainable agricultural development 
levels. Besides, considering that some data were missing due 
to inconsistent implementation of agricultural development 
policies in various provinces, we did not include policy 
factors in the driving factors, which may affect the accuracy 
of the model. We will continue to pay attention to the policy 
effect and incorporate it into the model as a possible driving 
factor after data becomes available in the future.

Acknowledgments

This research was funded by the National Natural 
Science Foundation of China (11971433), the Characteristic 
& Preponderant Discipline of Key Construction 
Universities in Zhejiang Province (Zhejiang Gongshang 
UniversityStatistics), “Digital+” Discipline Construction 
Management Project of Zhejiang Gongshang University 



Li Yu, et al.3404

(SZJ2022B004) and Statistics Bureau of Zhejiang Province 
(24TJQN08).

Conflict of Interest

The authors declare no conflict of interest. 

References

1. BASHEER M., NECHIFOR V., CALZADILLA A., 
RINGLER C., HULME D., HAROU J.J. Balancing 
national economic policy outcomes for sustainable 
development. Nature Communications, 13 (1), 5041, 2022.

2. ZHANG X., YAO G., VISHWAKARMA S., DALIN 
C., KOMAREK A.M., KANTER D.R., DAVIS K.F., 
PFEIFER K., ZHAO J., ZOU T., D‘ODORICO P., 
FOLBERTH C., RODRIGUEZ F.G., FANZO J., ROSA 
L., DENNISON W., MUSUMBA M., HEYMAN A., 
DAVIDSON E.A. Quantitative assessment of agricultural 
sustainability reveals divergent priorities among nations. 
One Earth, 4 (9), 1262, 2021.

3. JANKER J., MANN S., RIST S. What is sustainable 
agriculture? Critical analysis of the international political 
discourse. Sustainability, 2018.

4. VELTEN S., LEVENTON J., JAGER N., NEWIG J. 
What is sustainable agriculture? A systematic review. 
Sustainability, 7 (6), 7833, 2015.

5. ROY R., CHAN N.W. An assessment of agricultural 
sustainability indicators in Bangladesh: Review 
and synthesis. The Environmentalist, 32 (1), 99, 2012.

6. CAO J., SOLANGI Y. Analyzing and prioritizing 
the barriers and solutions of sustainable agriculture 
for promoting sustainable development goals in China. 
Sustainability, 15, 8317, 2023.

7. WANG Z., HUANG L., YIN L., WANG Z., ZHENG D. 
Evaluation of sustainable and analysis of influencing 
factors for agriculture sector: Evidence from Jiangsu 
province, China. Frontiers in Environmental Science, 10, 
2022.

8. YE H., WANG H., NIE C., WANG J., HUANG W., TENG 
L., WU M. Measurement indicators and an evaluation 
approach for assessing the sustainable development 
capacity of tropical agriculture: A case study for Hainan 
Province, China. Sustainability, 15 (11), 1, 2023.

9. LUO M., LIU F., CHEN J. Data-driven evaluation 
and optimization of agricultural sustainable development 
capability: A case study of Northern Anhui. Processes, 9, 
2036, 2021.

10. CHEN J.Y. Evaluation on the development level of low 
carbon agriculture in China. Ekoloji, 28 (107), 1529, 2019.

11. WANG Z., ZHU J.Y., LIU X.Q.H., GE D.D., LIU B. 
Research on spatial-temporal characteristics and affecting 
factors of agricultural green total factor productivity 
in Jiangxi Province. Sustainability, 15 (11), 19, 2023.

12. ZHOU J. Spatial – temporal evolution and spatial spillover 
of the green efficiency of urban construction land 
in the Yangtze River Economic Belt, China. Scientific 
Reports, 13 (1), 14387, 2023.

13. KASZTELAN A., NOWAK A. Construction and empirical 
verification of the Agri-Environmental Index (AEI) as 
a tool for assessing the green performance of agriculture. 
Energies, 14 (1), 12, 2021.

14. HONG M.Y., TIAN M.J., WANG J. The impact 
of digital economy on green development of agriculture 
and its spatial spillover effect. China Agricultural 
Economic Review, 15 (4), 708, 2023.

15. SHEN Z.Y., WANG S.K., BOUSSEMART J.P., HAO Y. 
Digital transition and green growth in Chinese agriculture. 
Technological Forecasting and Social Change, 181, 14, 
2022.

16. XU L.Y., JIANG J., DU J.G. The dual effects of environmental 
regulation and financial support for agriculture on 
agricultural green development: Spatial spillover effects 
and spatio-temporal heterogeneity. Applied Sciences-Basel, 
12 (22), 20, 2022.

17. XU L.Y., JIANG J., DU J.G. How do environmental 
regulations and financial support for agriculture affect 
agricultural green development? The mediating role 
of agricultural infrastructure. Journal of Environmental 
Planning and Management, 28, 2023.

18. WANG J., XIA L., ZHOU F., CHEN C., ZHU Q. Impacts 
of the integrated development of agriculture and tourism 
on sustainable development of agriculture – Based on 
provincial data of China from 2008 to 2019. Polish Journal 
of Environmental Studies, 2023.

19. TANG W., HUANG K., ZHOU F. Can high-standard 
farmland construction policy promote agricultural green 
development? Evidence from quasi natural experiments 
in Hunan, China. Polish Journal of Environmental Studies, 
32, 5333, 2023.

20. HIEN B.T., CHI N.T.K. Green innovation in agriculture 
development: the impact of environment awareness, 
technology spillover, and social networks. International 
Journal of Sustainable Agricultural Management 
and Informatics, 9 (1), 19, 2023.

21. ZHANG J. Spatial Distribution of Green Total Factor 
Productivity in Chinese Agriculture and Analysis 
of Its Influencing Factors. Polish Journal of Environmental 
Studies, 33 (3), 2473, 2024.

22. HUANG Y., YANG Y., XIONG Z. The Synergy of Fertilizer 
and Pesticide Reduction in China: Measurement 
and Driving Factors. Polish Journal of Environmental 
Studies, 33 (4), 3665, 2024.

23. HABIB A., SARWAR S., AHSON U., IDREES A.S. 
Measuring green growth in agriculture: A comparative 
analysis of world economies. Quality & Quantity, 57 (6), 
5491, 2023.

24. REZAEE A., BOZORG-HADDAD O., CHU X. 
Reallocation of water resources according to social, 
economic, and environmental parameters. Scientific 
Reports, 11 (1), 17514, 2021.

25. LIU J., WAN G., LIU W., LI C., PENG S., XIE Z. High-
dimensional spatiotemporal visual analysis of the air 
quality in China. Scientific Reports, 13 (1), 5462, 2023.

26. PLESOVSKAYA E., IVANOV S. An empirical analysis 
of KDE-based generative models on small datasets. 
Procedia Computer Science, 193, 442, 2021.

27. QIU M., ZUO Q., WU Q., YANG Z., ZHANG J. Water 
ecological security assessment and spatial autocorrelation 
analysis of prefectural regions involved in the Yellow 
River Basin. Scientific Reports, 12 (1), 5105, 2022.

28. HAMID I., WU L., HU K., OLEKSII L., PIMONENKO 
T. The impact of government subsidies on technological 
innovation in agribusiness: The case for China. 
Sustainability, 14, 14003, 2022.

29. FARSANI E.D., CHOOBCHIAN S., NAGHANI M.S. 
Unlocking agricultural innovation: A roadmap for growth 



Sustainable Agricultural Development... 3405

and sustainability. Journal of the Knowledge Economy, 
2024.

30. HUAN M., LI Y., CHI L., ZHAN S. The Effects 
of Agricultural Socialized Services on Sustainable 
Agricultural Practice Adoption among Smallholder 
Farmers in China. Agronomy, 12, 2198, 2022.

31. CHANG Y., WANG S. China’s pilot free trade zone 
and green high-quality development: an empirical study 
from the perspective of green finance. Environmental 
Science and Pollution Research, 30 (38), 88918, 2023.

32. WANG Z., LIU L., YANG K. Geographical 
and temporal weighted regression model and its 
application in epidemiology: A review. Chinese Journal 
of Schistosomiasis Control, 35, 199, 2022.

33. HUANG B., WU B., BARRY M. Geographically 
and temporally weighted regression for modeling spatio-
temporal variation in house prices. International Journal 
of Geographical Information Science, 24 (3), 383, 2010.

34. TAO Z., XIANG G. Empirical measurement 
and evaluation of rural green development: take Hunan 
Province, China as an example. Environmental Earth 
Sciences, 81 (9), 268, 2022.

35. WANG J., HAN X., LIU W., NI C., WU S. Comprehensive 
assessment system and spatial difference analysis on 
development level of green sustainable agriculture 
based on life cycle and SA-PP model. Journal of Cleaner 
Production, 434, 139724, 2024.

36. HONG M., TIAN M., WANG J. Digital inclusive 
finance, agricultural industrial structure optimization 
and agricultural green total factor productivity. 
Sustainability, 14, 11450, 2022.

37. BATHAEI A., STREIMIKIENE D. A systematic review 
of agricultural sustainability indicators. Agriculture, 13, 
241, 2023.

38. KALINOWSKA B., BÓRAWSKI P., BEŁDYCKA-
BÓRAWSKA A., KLEPACKI B., PERKOWSKA A., 
ROKICKI T. Sustainable Development of Agriculture 
in Member States of the European Union. Sustainability, 
14 (7), 2022.

39. YANG J., WANG T. Synergistic effects of technological 
innovation, industrial structure upgrading, and ecological 
environment optimization — evidence from China. 
Frontiers in Ecology and Evolution, 11, 2023.

40. WANG X., ZHOU W., ZHOU F. The Effect of Agricultural 
Industrial Agglomeration on the Efficiency of Agricultural 
Green Development: Empirical Evidence from China. 
Polish Journal of Environmental Studies, 32 (6), 5825, 
2023.

41. CHENGJUN S., RENHUA S., ZULIANG S., YINGHAO 
X., JIUCHEN W., ZHIYU X., SHANGBIN G. Construction 
process and development trend of ecological agriculture 
in China. Acta Ecologica Sinica, 42 (6), 624, 2022.

42. WANG Y., HUANG H., LIU J., REN J., GAO T., CHEN 
X. Rural industrial integration‘s impact on agriculture 
GTFP growth: Influence mechanism and empirical 
test using China as an example. International Journal 
of Environmental Research and Public Health, 20 (5), 
2023.

43. YANG W., ZHENG X., YANG Y. Impact of Environmental 
Regulation on Export Technological Complexity of High-
Tech Industries in Chinese Manufacturing. Economies, 12 
(2), 1, 2024.

44. YANG W., ZHU C., YANG Y. Does Urban Digital 
Construction Promote Economic Growth? Evidence from 
China. Economies, 12, 59, 2024.

45. YANG W., PAN L., DING Q. Dynamic analysis of natural 
gas substitution for crude oil: Scenario simulation 
and quantitative evaluation. Energy, 282, 128764, 2023.


