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Abstract 

Using China’s “dual-carbon” targets as a reference, this paper focuses on Zhejiang’s manufacturing 
sector as the research object and constructs a STIRPAT (stochastic impacts by regression on population, 
affluence, and technology)-based model to analyze the factors influencing carbon emissions associated 
with manufacturing and predict the peak emission levels. Among these influencing factors, investment-
scale expansion and economic growth contribute to increases in carbon emissions, while energy-
structure optimization and reduced carbon-emission intensity help restrain them. Notably, the economic 
level is identified as the predominant factor affecting carbon emissions. Among the nine proposed 
scenarios, scenario 6, characterized by “medium growth” and “high emission reduction”, emerges 
as the most conducive to achieving high-quality and sustainable growth. Its carbon peak is projected 
for 2026, reaching 75.15 million tons of carbon dioxide emissions, making it the optimal model  
for Zhejiang’s manufacturing sector. Based on the findings, two policy directions are proposed: optimize 
the energy-consumption structure and accelerate the development and use of low-carbon technologies. 
This research offers insights into carbon emissions in Zhejiang’s manufacturing sector, presenting  
a blueprint for achieving a carbon peak and sustainable economic growth.

Keywords: STIRPAT, manufacturing industry, peak carbon dioxide emissions, scenario prediction



Nixi Wei, Duhui Dong3344

Introduction

With rapid global economic development and 
accelerated industrialization, climate change has 
become increasingly serious. As the world’s largest 
energy consumer and greenhouse gas emitter, 
China has pledged to achieve a carbon peak by 2030 
and carbon neutrality by 2060 (the “dual- carbon” 
targets) [1], demonstrating its commitment to climate 
change mitigation and green, low-carbon, sustainable 
development. Zhejiang Province is one of the most 
economically active and developed regions in China; 
moreover, it has also established itself as a pioneer in 
carbon emission reduction reform. In recent years, the 
province has implemented green production; accelerated 
the adjustment, optimization, and upgrading of the 
industrial structure; and achieved significant results in 
carbon-emission reduction. In June 2021, Zhejiang took 
the lead by issuing the Zhejiang Province Carbon Peak 
and Carbon Neutrality Scientific and Technological 
Innovation Action Plan [2], aiming to achieve the 
dual-carbon targets ahead of time, by 2025 and 2030, 
respectively. In July of the same year, Zhejiang Province 
released the Guidelines for Carbon Emission Assessment 
of Construction Projects in Zhejiang Province (Trial) 
[3], making it the first province in China to carry out 
carbon assessment work across its entire area. Despite 
Zhejiang’s pioneering efforts in establishing a low-
carbon industrial system, promoting low-carbon clean 
energy, advocating for low-carbon lifestyles, and 
advancing regional low-carbon development, Zhejiang 
still faces two significant challenges under the backdrop 
of the “dual carbon” goal: the pressure exerted on 
production factor resources and constraints on market 
resources. As a major manufacturing province, Zhejiang 
faces several prominent problems, such as rapid growth 
in energy consumption, strong rigidity in energy 
demand, and imbalances in energy consumption within 
the manufacturing industry. Actively identifying factors 
affecting carbon emission reduction in Zhejiang’s 
manufacturing sector and developing scientifically 
sound prediction methods for carbon emission peak 
scenarios in the province are not only essential for China 
to ensure it can conform to global development trends, 
but are also key to achieving sustainable development 
goals.

Research on the carbon peak has focused on 
identifying the key factors and exploring potential 
emission scenarios. Common methods include the 
Kaya constant equation, logarithmic mean Diels’ index 
decomposition (LMDI), the environmental Kuznets 
curve, the Tapio method, and stochastic impacts by 
regression on population, affluence, and technology 
(STIRPAT).

Regarding the factors affecting carbon emissions, 
Kaya [4] proposed the Kaya constant equation and 
identified the different effects of factors such as the 
economy, policies, and population by linking them 
to anthropogenic CO2 emissions. Based on this,  

Ang and Lee developed the LMDI method, which has 
the advantages of high flexibility, decomposition path 
independence, and no residual errors [5], and is widely 
used in the study of carbon emission driving factors [6, 
7]. Shahbaz et al. [8] studied the relationship between 
economic growth and CO2 emissions in Türkiye based 
on the EKC curve and found that energy intensity and 
economic growth increased CO2 emissions, but the 
EKC model had obvious shortcomings in measurement 
and insufficient explanatory power [9]. Wang and 
Jiang [10] used the Tapio decoupling model to measure  
the elasticity of decoupling between China’s economy 
and emissions; they found that the most significant factor 
for reducing CO2 emissions was the investment effect, 
while labor input and economic structure were also 
contributors. Revising the IPAT (impact, population, 
affluence, and technology) model of Ehrlich and 
Holdren [11], Dietz and Rosa [12] proposed STIRPAT, 
which is useful for studying environmental issues as it 
introduces multiple independent variables to test their 
effect on environmental pressure. Chekouri et al. [13] 
found that population is a decisive factor in Algeria’s 
CO2 emissions, followed by energy use. Yildirim and 
Akin [14] noted that energy use is a worldwide pivot 
factor in CO2 emissions. Based on the emission data of  
23 OECD countries, it was discovered that a 1% 
increase in energy intensity, nonrenewable energy 
production, and renewable energy production leads 
to long-term increases in CO2 emissions of 1.129%, 
1.047%, and 0.032%, respectively. Li and Lu [15] 
used the STIRPAT model to quantify the potential 
of energy-service electrification in China based on 
the “electrifying energy use” strategy proposed by  
the State Grid Corporation of China. They indicated 
that when China’s economic growth slows down, the 
potential for electrification growth will also slow down, 
but the level of technology can slow this decelerating 
trend.

Based on the STIRPAT model, Sidi et al. [16] studied 
the influencing factors of carbon dioxide emissions in 
Algeria in order to better curb carbon dioxide emissions 
and formulate a low-carbon development plan.  
The results show that population, energy use, 
urbanization, and affluence (GDP per capita) are the 
four major factors affecting carbon dioxide emissions. 
Tian et al. [17] analyzed the driving factors of energy 
consumption in rural areas of China’s Henan province 
based on the STIRPAT model. The results show that 
effective irrigation area is the most important influence 
therefore; in addition, the growth of rural energy 
consumption in Henan province is also influenced 
by such factors as per capita living space, peasant 
household investment, agricultural machinery power, 
agricultural gross output value, and per capita income. 
Çağlar [18] investigated the determinants of emissions 
in the Turkish energy sector within the framework of the 
EKC and the STIRPAT model and found that economic 
level, population, and environmental patents increased 
emissions. 
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Regarding predicting peak carbon, Ge et al. [19] 
simulated emissions using the STIRPAT model and 
achieved high accuracy, with an average error of 1.78%. 
Thus, STIRPAT is a promising approach for predicting 
the time of peak carbon. Analyzing six emission 
scenarios in Beijing, Kang et al. [20] found that Beijing 
will not reach a carbon peak until 2035 unless cleaner 
production is applied, which could potentially achieve 
a carbon peak by 2030. Bai et al. [21] predicted that 
in the next decade, there will be a 1.5-fold increase in 
emissions in Baotou, which is a slower rate of increase 
than in the previous decade. Based on that finding and 
the identified factors, emission-reduction strategies, such 
as optimizing the industrial structure and improving 
agricultural production efficiency, are proposed. Based 
on the STIRPAT model, Feng et al. [22] conducted  
a scenario analysis of the synergistic effects of Yangtze 
River Delta air pollution control and carbon emission 
reduction. The results showed that the Yangtze River 
Delta could achieve synergistic emission reduction in the 
2026 region; by 2030, the combined emission reduction 
of air pollution and carbon emissions will provide  
a reference for the decision-making process of promoting 
carbon reduction and further achieving carbon peak and 
carbon neutrality.

In summary, scholars have endeavored to construct 
diverse models utilizing various methodologies to 
examine the factors influencing carbon emissions and 
peak prediction. Concerning research methodologies, 
each approach possesses its own strengths and 
limitations. Notably, the STIRPAT method stands 
out as an efficacious technique for scrutinizing and 
comprehending the influence of intricate socio-
economic factors on environmental stress owing to 
its commendable scalability. Particularly within the 
domain of carbon emissions research, the STIRPAT 
model proves instrumental in uncovering the primary 
driving forces behind carbon emissions. Furthermore, 
its integration with scenario analysis facilitates carbon 
emission predictions, a practice that has gained 
widespread acceptance. Across varying models, regions, 
and industries, the disparate research findings underscore 
the intricate nature of factors impacting carbon 
emissions, thereby presenting formidable challenges 
in forecasting carbon peaks. Furthermore, existing 
research exhibits certain inadequacies. Primarily, in 
terms of research scope, prior studies predominantly 
focused on national-level entities, with scant attention 
directed towards specific industries, thereby impeding 
the formulation and implementation of industry-level 
carbon peak policies by local governments. Regarding 
the selection of factors influencing carbon emissions, 
prevalent studies commonly consider parameters such 
as investment scale, economic growth rate, energy 
structure, and carbon emission intensity. Nevertheless, 
significant disparities persist in the identification of 
indicator variables and the methodologies employed 
for their measurement. Moreover, when establishing 
carbon emission scenarios, prevalent approaches 

rely heavily on deductive or empirical assessments 
grounded in historical data, with limited consideration 
given to national and local government imperatives 
concerning economic and social development planning, 
as well as energy conservation and carbon reduction 
policies. This tendency may engender disparities in the 
prediction outcomes regarding the carbon peak within 
the manufacturing industry, hence compromising the 
scientificity and feasibility of the carbon peak path. 
To fill these gaps, this study targets the manufacturing 
sector in Zhejiang Province using data for 2012–2021. 
Against the background of China’s dual-carbon targets, 
STIRPAT is used to predict the time of the carbon peak, 
investigate potential emission-reduction pathways,  
and make policy suggestions.

Materials and Methods

CO2 Emission Levels in the Manufacturing Sector

Referring to the baseline method described in the 
2006 IPCC Guidelines for National Greenhouse Gas 
Inventories [23], carbon emissions in the manufacturing 
sector are calculated based on energy consumption.  
The statistical caliber of the manufacturing sector 
is based on the classification standards for energy 
consumption in industrial sub-sectors in the China 
Energy Statistical Yearbook, covering eight energy 
inputs including raw coal, coke, crude oil, natural gas, 
fuel oil, gasoline, kerosene, and diesel. The calculation 
formula is as follows:

	 	 (1)

where i represents energy type, and C, E, and NCV 
represent total carbon dioxide emissions, energy 
consumption, and average low calorific value, in 
units of million tons, million tons, and kilojoules/
kg, respectively. CEF provides the carbon-emission 
factor for IPCC (2006), COF is the carbon oxidation 
factor (usually 1, according to IPCC), and 44/12 is the 
molecular weight ratio of CO2 to C.

STIRPAT Model

Based on the classic IPAT model, Dietz and Rosa 
[12] proposed the STIRPAT (stochastic impacts by 
regression on population, affluence, and technology) 
model. STIRPAT has been widely used in the prediction 
of carbon peaks; its application expression is as follows:

	 	 (2)

where I is the environmental effect (i.e., carbon 
emissions); P, A, and T represent population size, 
wealth, and technology level, respectively; a is the 
model coefficient; b, c, and d represent the elasticity 
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coefficients of each indicator, which can be interpreted 
as the percentage of change in environmental impact 
owing to the change in P, A, and T; and e is the error 
term.

STIRPAT allows for the estimation of coefficients 
as parameters and the appropriate decomposition of 
factors [11]. Many studies have been conducted based 
on the above formula and have improved it according 
to research purposes [24, 25]. Grossman et al. [26], for 
example, suggested that in economic activities, scale, 
structure, and technological effects are the three major 
factors affecting environmental quality. Drawing on 
previous research and considering the characteristics 
and data availability of manufacturing in Zhejiang 
Province, this study extends the STIRPAT model and 
analyzes manufacturing-sector emissions based on the 
following factors:

(1) Investment scale (Q): Traditionally, the 
labor-intensive, high-energy-consuming nature of 
manufacturing led researchers to use the number 
of employees as a metric for industry size when 
investigating its effect on emissions [27, 28]. However, 
with advancements in artificial intelligence, big data, 
and industry development, there is an increasing 
emphasis on the manufacturing sector developing its 
unique carbon footprint. New technologies have made 
manufacturing processes more intelligent, automated, 
and digitized. Thus, the conventional approach of 
using the number of employees as an indicator is no 
longer suitable. Since Zhejiang’s economy remains 
investment driven, increased fixed-asset investment 
is expected to cause the spatial spillover of emissions 
from high-emission manufacturing sectors, resulting 
in overall increases in carbon emissions [28]. Hence, 
the investment scale is selected as an indicator variable 
influencing carbon emissions, measured by the amount 
of fixed-asset investment [29-31].

(2) Economic level (U): With economic growth, 
the scale of manufacturing expands and production 
increases, thus increasing energy demand and 
consumption. Energy production and consumption are 
the main sources of carbon emissions in manufacturing, 
especially the burning of fossil fuels such as coal, 
oil, and natural gas, which produce a large amount of 
greenhouse gases such as carbon dioxide. Economic 
level is thus an important factor affecting emissions 
from the manufacturing sector. Referring to Wang et al. 
[32], Liu et al. [33], and Zhang [34], this study selects 
economic level as a main factor to measure carbon 
emissions, which are measured by per capita gross 
industrial output value.

(3) Energy structure (S): The choice of energy 
sources affects carbon emissions in the manufacturing 
industry; therefore, it is imperative for China to 
transition to a cleaner energy mix to achieve its dual-
carbon targets [32]. Historically, manufacturing has 
relied heavily on fossil energy sources such as coal, 
crude oil, natural gas, and fuel oil, with coal contributing 
the most to emissions [33]. Emission-control systems 

aim to curtail the consumption of coal-based energy and 
promote the growth of clean energy, which can meet 
development needs while also aligning with dual-carbon 
targets. Referring to Zhang [34], Liu et al. [35], and Liu 
[36], this study includes the energy structure as one of 
the main factors in measuring carbon emissions, which 
is measured by the ratio of coal consumption to total 
primary energy consumption.

(4) Carbon-emission intensity (T): Technological 
innovation can provide economic benefits while also 
mitigating energy consumption and emissions through 
the introduction of low-carbon technologies. This 
contributes to energy conservation, emission reduction, 
and environmental improvement. To capture the effect of 
technology level on carbon emissions, previous studies 
used carbon-emission reduction intensity as a metric to 
gauge the development of low-carbon technology and 
examine its influence on emissions in manufacturing 
[32, 33]. Referring to the literature, this study includes 
carbon-emission intensity as one of the main factors in 
carbon-emission measurement; it is measured by the 
ratio of carbon emissions to the total output value of the 
manufacturing sector.

Based on the above, an extended STIRPAT model is 
obtained:

	 	 (3)

where I is the carbon emissions of the manufacturing 
industry, Q is the scale of investment, U is the economic 
level, S is the energy structure, and T is carbon-emission 
intensity.

Scenario Setting

The scenario setting is based on several factors 
related to industry development. The parameter values 
of the index variables of each factor in the model 
are used to simulate future development trends and 
evolution paths of carbon emissions. Based on China’s 
dual-carbon targets and the completion of targets in 
Zhejiang’s manufacturing sector from the 10th to 14th 

Five-Year Plan periods, with 2021 as the benchmark and 
2022–2035 as the forecast period, the indexes of the four 
factors in the model are set to high, medium, and low 
change modes to estimate their scenario boundaries. 
The 10th Five-Year Plan refers to the “Outline of the 
11th Five-Year Plan for the National Economic and 
Social Development of Zhejiang Province” (2001-
2005), which aims to guide the government toward 
future development goals. The 11th, 12th, 13th, and 14th 

Five-Year Plans have the same connotations, with  
time spans of 2006-2010, 2011-2015, 2016-2020, and 
2021-2025, respectively [37–41]. The estimation basis 
for each indicator variable is as follows:

(1) Estimation of investment scale indicator variables:
According to data from the Zhejiang Bureau of 

Statistics, fixed-asset investment in the manufacturing 
sector showed significant growth, rising from  
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GDP is expected to be about 150 thousand yuan, with  
a growth rate of 5.8%, establishing a high-growth model. 
Considering China’s dual-carbon targets and Zhejiang’s 
aim to “lead in achieving its carbon peak by 2030” amid 
the complexities of the volatile international market 
and increasing downward pressure on the economy, 
adjustments are being made to the growth pattern.  
The estimated per capita industrial output value of 
Zhejiang’s manufacturing industry is around 126 
thousand yuan, with a downward-adjusted growth 
rate of 3.8%, indicating a low growth pattern. In 
summary, the future per capita industrial output value 
of the manufacturing industry in Zhejiang Province is 
expected to exhibit a rising trend year by year.

(3) Estimation of energy structure indicator 
variables:

In Zhejiang Province, as a major consumer but 
minor producer of energy resources, coal consumption 
has historically held a significant position in the 
energy consumption structure, maintaining a share of 
around 60%. During the 12th Five-Year Plan period, 
the average annual growth rate of the proportion of 
coal consumption to total primary energy consumption 
increased by 4.38%, reflecting a high dependence on 
coal at that time. However, with the strengthening 
of environmental awareness and adjustments in the 
energy structure during the 13th Five-Year Plan period, 
the average annual decrease rate of this proportion 
reached 4.78%, demonstrating a clear optimization 
trend. Looking ahead, considering the opinions of 
the Central Committee of the Communist Party of 
China and the State Council on Fully, Accurately, and 
Comprehensively Implementing the New Development 
Philosophy and Doing Well in Carbon Peaking and 
Carbon Neutrality Work [44], which proposes that 
the share of non-fossil energy consumption should be 
around 20% by 2025 and around 25% by 2030, Zhejiang 
Province will further accelerate industrial restructuring 
and upgrading. It is estimated that the rate of decline in 
the proportion of coal consumption in Zhejiang Province 
in the future will be 6.5%, setting a high emissions 
reduction mode. However, with continued economic 
growth across the province, energy consumption will 
exhibit a period of rigid growth. At present, traditional 
manufacturing and high-energy-consuming industries 
account for a relatively high proportion, indicating 
significant potential for energy conservation and 
emission reduction in the future. Referring to the 14th 
Five-Year Plan for Energy Development in Zhejiang 
Province [45] and the “dual-carbon” goals, it is estimated 
that the rate of decline in the total coal consumption of 
the manufacturing industry in the future will be 5.5%, 
setting a low emissions reduction mode. Taking the 
average of the low and high emissions reduction modes, 
a moderate emissions reduction mode is established.

(4) Estimation of carbon intensity indicator variables:
During the 12th and 13th Five-Year Plan periods, 

carbon emissions per unit of GDP in Zhejiang Province 
decreased by 19% and 20.5%, respectively, achieving 

530.54 billion yuan in 2012 to 1,172.00 billion yuan 
in 2021, for an average annual growth rate of 9.21%. 
Notably, during the 13th Five-Year Plan, the growth 
rate decreased to 5.75% compared with 12.62% during 
the 12th Five-Year Plan. During the 14th Five-Year 
Plan period, Zhejiang Province’s investment focus 
is on accelerating the effectiveness of revitalizing 
manufacturing investment, guiding enterprises to 
actively deploy low-carbon and efficient manufacturing 
industries with high economic contribution and added 
value, as well as strategic emerging industries. Support 
enterprises in targeting high-end, intelligent, and green 
industries [42]. Consequently, the estimated fixed-
asset investment is around 1,451.91 billion yuan, with 
an average annual growth rate of 6.5%, indicating  
a medium growth pattern. Additionally, aligning with 
the 14th Five-Year Plan’s Goals for High-end Equipment 
Manufacturing in Zhejiang [43], which aim to establish 
a first-class international innovation and industrial 
highland, fixed-asset investment is projected to 
substantially increase, with an estimated average annual 
growth rate of 7.5%, representing a high-growth pattern. 
However, considering the current emphasis on energy 
conservation and emission reduction, future investment 
will be controlled to curb high-energy-consuming, 
high-emission projects. This includes accelerating the 
elimination of carbon-inefficient industries such as 
chemical fibers, textile printing and dyeing, and paper, 
aiming to eliminate backward production. As a result, 
the growth rate of fixed-asset investment is expected to 
decline, set at 5.5%, representing a low-growth model. 
In summary, the future scale of fixed-asset investment 
in Zhejiang’s manufacturing sector is expected to show 
fluctuations.

(2) Estimation of economic level indicator variables:
As Zhejiang’s economic development transitions 

to a new normal, characterized by a slowdown in the 
growth rate after more than 30 years of high growth, the 
province’s GDP exhibited growth rates of 11%, 8.2%, 
and 6.5% during the 10th, 11th, and 13th Five-Year Plans, 
respectively. Specifically, the per capita industrial output 
value in manufacturing increased from 96.07 thousand 
yuan in 2012 to 134.48 thousand yuan in 2021, with 
an average annual growth rate of 3.81%. The growth 
rates during the 12th and 13th Five-Year Plans were 
2.40% and 0.69%, indicating a steady increase in total 
volume but at a slower growth rate. In the upcoming 
14th Five-Year Plan period, the province aims to exceed 
8.5 trillion yuan and 130 thousand yuan for GDP and 
per capita GDP, respectively, striving for an average 
annual regional GDP growth rate of 5.5% or more. 
Additionally, the total output value of the equipment 
manufacturing industry is projected to surpass 4 trillion 
yuan. In achieving planning goals, the future per capita 
industrial output value of the manufacturing industry is 
expected to be about 136 thousand yuan, with a growth 
rate of 4.8%, establishing a medium-growth model.  
As Zhejiang Province further develops and reaches  
the level of medium-developed economies, its per capita 
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national emission-control targets. Carbon emissions 
per unit of output value in the manufacturing sector 
decreased from 1.24 t/10 thousand yuan in 2012  
to 0.82 t/10 thousand yuan in 2021, with an average 
decline of 4.61%. During the 12th and 13th Five-Year 
Plan periods, the average annual decline rate of carbon 
intensity was 4.57% and 2.00%, respectively. After the 
14th Five-Year Plan, the potential for emission reduction 
through energy supply structure adjustment will be 
limited; thus, emission reduction in the manufacturing 
industry in the whole province will face increasing 
difficulties and pressure, and the rate of carbon intensity 
decline will also slow down. According to the calculation 
of an annual decline rate of 3%, it is estimated that 
carbon emissions per unit of output value in the 14th 

Five-Year Plan period will decrease to 0.74t/10 thousand 
yuan, and a low emission-reduction mode will be set. 
During the 14th Five-Year Plan period, the national target 
for the carbon intensity reduction rate in Zhejiang is 
not less than 20.5%. The Implementation Opinions on 
Completely, Accurately, and Comprehensively Adhering 
to New Development Concepts to Do a Good Job 
of Carbon Dioxide Emission Reduction and Carbon 
Neutrality Work [46], issued by Zhejiang Province, 
propose that by 2030, carbon emissions per unit of 
GDP will decrease by more than 65% compared with 
2005. Based on these target constraints and the future 
acceleration of carbon-emission controls in Zhejiang, 
carbon intensity is expected to significantly improve, 
with an average annual decline rate of 5%. Further, 
carbon emissions per unit of output value will decrease 
to 0.68 t/10 thousand yuan, thus setting a high emission-

reduction mode. Taking the average value of low and 
high emission reductions, a medium emission reduction 
mode is set with an average annual decline rate of 
4%. Since carbon intensity is directly affected by coal 
consumption and GDP, there might be some fluctuations 
in its increase or decrease rate in the future.

Based on the above discussion, it is evident that 
the values of investment scale and economic level 
exhibit an increasing trend over time, while the values 
of energy structure and carbon emission intensity 
continuously decrease over time. Consequently, the 
four influencing factors – investment scale, economic 
level, energy structure, and carbon emission intensity 
– have been categorized into two groups for scenario 
configuration. Investment scale and economic level are 
grouped as industrial development indicators, given the 
general principles of economic development and market 
regulation, where an increase in investment scale and 
economic level is likely to lead to an increase in carbon 
emissions; while energy structure and carbon emission 
intensity are categorized as energy consumption 
indicators, under the premise of not considering the 
interaction among different factors, the optimization of 
energy structure and the reduction of carbon emission 
intensity can effectively restrain carbon emissions. 
Furthermore, based on estimated parameter values for 
each indicator variable, high, medium, and low values 
are assigned to the indicators, and through permutation 
and combination, nine scenarios for carbon emissions 
in the manufacturing industry of Zhejiang province are 
derived, as shown in Table 1.

Table 1. Carbon emission scenarios with different levels for the manufacturing sector.

Table 2. The definitions and sources for the variables used in the extended STIRPAT model.

Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 Scenario 9

Scale of investment High High High Medium Medium Medium Low Low Low

Economic growth 
rate High High High Medium Medium Medium Low Low Low

Energy structure Low Medium High Low Medium High Low Medium High

Carbon intensity Low Medium High Low Medium High Low Medium High

Variable Notation Definitions of Variables Units Source

Carbon emissions I Total CO2 emissions from 
manufacturing industry Million tons CEADs

Investment scale Q Fixed assets investment in the 
manufacturing industry Billion Zhejiang Provincial

Bureau of Statistics

Economic level U Total industrial output value/
Resident population

10 thousand yuan/
10 thousand people

Zhejiang Provincial
Bureau of Statistics

Energy structure S Coal consumption/
Total energy consumption % Zhejiang Provincial

Bureau of Statistics
Carbon emission

intensity T Carbon emissions/
Total industrial output value

Tons/
10 thousand yuan

Zhejiang Provincial
Bureau of Statistics
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Data Sources

Taking Zhejiang’s manufacturing sector from 2012 
to 2021 as the research sample, energy consumption 
data for manufacturing terminals in the China Emission 
Accounts and Datasets (CEADs) are used to estimate 
its carbon emissions. The carbon-emission coefficient 
is taken from the guidelines for national greenhouse 
gas inventories issued by the IPCC in 2006, and the 
accounting results are reliable. In addition, the data 
used to measure investment scale, economic level, 
energy structure, carbon-emission intensity, and other 
indicators come from Zhejiang Province’s statistical 
yearbooks over the years. Table 2 presents the variable 
descriptions.

Results and Discussion

Collinearity Test

Demonstrating the effectiveness of the prediction 
model requires multicollinearity processing. 
Multicollinearity refers to the correlation between 
multiple independent variables during regression 
calculation, which can make the model’s coefficients 
lose practical significance. All of the above variable 
data are logarithmized, and historical data from 2012 to 
2021 are analyzed using SPSS to conduct multiple linear 
regression and collinearity tests. Tables 3-5 show the 
results.

We can see in Tables 3 and 4 that the correlation 
coefficient R is 0.982, which is close to 1, indicating a 
strong correlation between variables. The goodness-
of-fit R2 is 0.964, and the adjusted R2 is 0.935. This 
means that the four independent variables – investment 
scale, economic level, energy structure, and carbon-
emission intensity – can explain 93.5% of the variation 
in the dependent variable (carbon emissions), and the 

significance coefficient is 0.001, indicating a significant 
result. We can see that the regression fitting effect of 
the STIRPAT model is good; however, we can see in 
Table 5 that the variance inflation factor (VIF) of all of 
the variables is significantly greater than 10, indicating 
strong multicollinearity between variables.

Ridge Regression Analysis

There are several methods for addressing 
multicollinearity, including the least-squares method, 
the partial least-squares method, and ridge regression. 
Among them, ridge regression has strong generalization 
ability and reliability. Therefore, this study uses ridge 
regression to re-regress the data, obtain the ridge 
trace map, and change the trend of the determination 
coefficient, as shown in Fig. 1 and 2, where R2 is the 
goodness of fit of the STIRPAT model and K is the ridge 
regression parameter.

The key to ridge regression is determining an 
appropriate ridge regression parameter, K. The K 
value is negatively correlated with R2, meaning that 
as the K value decreases, R² increases. Therefore, we 
should choose a smaller K value while ensuring that 
the ridge trace curve gradually stabilizes and that  
the corresponding R2 in the graph of R2 versus K is  
at a relatively high level. In Fig. 1, we can see that when 
the K value is set to 0.02, the regression coefficients 
of the variables start to stabilize, and the R2 value is 
relatively large, indicating the best fit of the model. 
Subsequently, ridge regression is conducted; Tables 6 
and 7 show the results.

Based on the obtained results, the goodness-of-
fit R2 value is 0.829. This suggests that the selected 
independent variables can elucidate approximately 
82.9% of the variations in carbon emissions in 
Zhejiang Province. The F-statistic value of 6.075, with 
a significance coefficient of 0.037, indicates that the 
independent variables have passed the significance 
test at the 5% level, signifying a better-fitting model. 
Therefore, the STIRPAT model is as follows:

ln I = 6.857 + 0.045ln Q + 0.355ln U – 0.089ln S  
	 + 0.227ln T	 (4)

From Equation (4), we can see that each variable 
influences carbon emissions in the order of economic 
level, carbon-emission intensity, energy structure, and 
investment scale. Among them, every 1% increase  
in investment scale will lead to a 0.045% increase  

Table 3. Summary of models.

Parameters Values

R 0.982

R2 0.964

Adjusted 0.935

Errors in standardized estimates 0.106

Table 4. Analysis of variance.

Model Sum of squares Degrees of freedom Mean square F Significance

Regression 0.005 4 0.001 33.385 0.001

Residual 0.000 5 0.000

Total 0.005 9
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in the carbon emissions of Zhejiang’s manufacturing 
sector, indicating that investment scale positively affects 
carbon emissions. When the investment scale increases, 
the production activities of the manufacturing industry 
might increase, thus increasing energy consumption and 
emissions. However, as we can see from the coefficient, 
the effect of investment scale on carbon emissions 
is small, which might be because manufacturing 
investment in Zhejiang mainly aims to improve energy 
efficiency, technological progress, and the industrial 
structure. The overall effect of multiple factors has 
helped manufacturing develop in a greener and lower 
carbon direction. Every 1% increase in the economic 
level will increase manufacturing-sector emissions 
by 0.355%, indicating that the economic level has  
a significant positive effect on carbon emissions.  
As the economy improves, production and consumption 
activities in the manufacturing sector typically increase, 
which can lead to more energy consumption and 
emissions. The economic level is thus an important 
factor affecting carbon emissions. Each 1% reduction 
in energy structure will lead to a 0.089% reduction  

in carbon emissions in Zhejiang’s manufacturing 
industry, indicating that energy-structure optimization 
has a significant negative effect on carbon emissions. 
Energy-structure optimization is an important way to 
achieve the dual-carbon targets. Every 1% increase in 
carbon-emission intensity will lead to a 0.227% increase 
in emissions in Zhejiang’s manufacturing sector.  
This indicates that carbon-emission intensity has  
a significant positive effect on carbon emissions, and 
carbon-emission intensity can be reduced through policy 
adjustments and technological progress.

To test the model’s goodness of fit and ensure that 
it can accurately predict carbon emissions in Zhejiang 
Province, the values of the independent variables from 
2012 to 2021 are substituted into Equation (4) for error 
testing. The error ratio between the fitted value and the 
actual value is calculated, and then the actual carbon 
emissions and the model-fitting results are obtained.  
As shown in Fig. 3, actual carbon emissions in 2014 were 
66.76 million tons, while simulated carbon emissions 
were 67.23 million tons, with an absolute error ratio 
of 1%. Actual emissions in 2016 were 66.83 million 

Fig. 1. Ridge plot of factors affecting carbon emissions in the manufacturing industry of Zhejiang Province.

Table 5. Results of multicollinearity analysis.

Parameters
Non-standardized coefficient Standardized 

factor T-test P
Covariance statistic

Regression coefficient Standard error Tolerances VIF**

Constant () -2.847 2.812 -1.012 0.358

lnQ* 0.363 0.148 2.899 2.449 0.058 0.005 193.928

lnU 0.902 0.148 3.625 6.099 0.002 0.020 48.907

lnS -0.004 0.040 -0.059 -0.107 0.919 0.023 42.818

lnT 1.135 0.241 5.790 4.705 0.005 0.005 209.684

*: Q is the scale of investment, U is the economic growth rate, S is the energy mix, and T is the carbon emission intensity. **: 
variance inflation factor
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tons, and the simulated emissions were 67.59 million 
tons, with an absolute error ratio of 1.13%. Actual 2020 
emissions were 67.50 million tons, while the simulated 
emissions were 69.24 million tons, with an absolute error 
ratio of 2.52%. The absolute error ratios of other years 
are all within 1%, indicating that the model simulation 
results have a good correlation, and the simulated values 
basically match the actual values, indicating that it has 
practical simulation significance. Therefore, Equation (4) 
can be used to predict potential carbon emissions in 
Zhejiang’s manufacturing sector.

Predicting Peak Carbon

Using the future development mode settings,  
the values of the abovementioned indicator variables 
are inserted into the model (Equation 4) to generate  
a carbon-peak path diagram for Zhejiang’s 
manufacturing industry, as shown in Fig. 4.

According to the predicted results, the trend 
of carbon emissions in Zhejiang’s manufacturing 
sector shows significant heterogeneity under different 
scenarios. Based on the characteristics shown  
in Fig. 4, the nine scenarios can be divided into three 
groups.

First, scenarios 1, 2, and 3 (the first group) are 
compared. In terms of scenario settings, all three 
scenarios have high growth rates for industrial 
development indicators, while the energy-consumption 
indicators are low emission reduction, medium emission 
reduction, and high emission reduction. From the trend 
of carbon emissions under scenario 1, the emissions of 
Zhejiang’s manufacturing sector show an overall upward 
trend. There is a significant turning point in 2025,  

Fig. 2. R2 plot corresponding to k value.

Table 6. Ridge Regression Models.

Parameters Values

R 0.910

R2 0.829

F 6.075

Sig F 0.037

Fig. 3. Zhejiang’s Actual Carbon Emissions from 2012 to 2021 and STIRPAT Model Simulation of Carbon Emissions.
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with emissions rising sharply from 78.74 million tons in 
2022 to 89.69 million tons in 2025 and then gradually 
slowing down until 92.99 million tons in 2035. Under 
scenarios 2 and 3, emissions show a trend of rapid 
increase followed by a slow decline, with peak values  
of 88.69 million tons and 85.78 million tons, respectively. 
Looking at peak time during the forecast period, 
scenario 1’s emissions are on the rise, failing to achieve 
a carbon peak. Although scenario 2 has a peak, it is in 
2030, thus failing to meet Zhejiang’s aim to achieve  
a carbon peak before 2030. Scenario 3 reaches its carbon 
peak in 2029, consistent with the policy goal. We can 
speculate that under scenarios 1 and 2, high industry 
growth causes emissions to increase at a faster rate than 
carbon-reduction efforts, and the carbon peak will be 
delayed or not achieved. Therefore, those two scenarios 
reflect unsustainable development models.

Second, comparing the second group (scenarios 4, 
5, and 6), the industrial development indicators of the 
three scenarios are all medium growth, and the energy-
consumption indicators are low emission reduction, 
medium emission reduction, and high emission 
reduction. In terms of carbon-emission trends, the 
emissions of Zhejiang’s manufacturing industry show 
a trend of slow increase followed by gentle decline, 
with peak values of 79.77 million tons, 77.39 million 

tons, and 75.15 million tons. In terms of peak time, 
during the forecast period, the peak years of scenarios 
1, 2, and 3 are 2028, 2027, and 2026, respectively, all 
consistent with policy goals. In addition, compared 
with the first group, carbon emissions in this group of 
scenarios show a clear downward trend, and the peak 
time is advanced. We can speculate that the decrease 
in industrial development indicators suppresses 
emissions in Zhejiang’s manufacturing industry and 
accelerates the carbon peak. First, the decrease in 
investment scale might limit expanding manufacturing 
enterprises’ production capacity, thereby reducing 
energy consumption and reducing carbon-peak time. 
Especially in traditional manufacturing, which has high 
energy consumption and emissions, the decrease in 
investment scale might lead enterprises to reduce their 
investment in high-pollution, high-emission equipment 
and technologies, thereby reducing carbon emissions. 
Second, the slowdown in economic levels could slow 
down market demand, thereby reducing manufacturing 
production and emissions. At the same time, enterprises 
are more inclined to adopt environmentally friendly 
production methods and technologies to achieve 
sustainable development. As a result, carbon emissions 
from the production process are reduced, and the peak 
time is correspondingly advanced.

Fig. 4. Trends in future carbon emissions of Zhejiang Province’s manufacturing industry under different scenarios.

Parameters Coefficient Standard error Standardized factor

Constant 6.857 1.015 0

lnQ* 0.045 0.052 0.361

lnU 0.355 0.106 1.425

lnS -0.089 0.026 -1.192

lnT 0.277 0.078 1.412

Table 7. Ridge regression model coefficients.
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Finally, scenarios 7, 8, and 9 (the third group) are 
compared. In terms of scenario settings, the industrial 
development indicators of the three models are all high 
growth, and the energy-consumption indicators are low 
emission reduction, medium emission reduction, and 
high emission reduction. In terms of carbon-emission 
trends, under scenarios 7, 8, and 9, the emissions 
of Zhejiang’s manufacturing sector show a trend of 
gentle increase followed by a rapid decrease, with peak  
values of 75.57 million tons, 73.64 million tons,  
and 71.75 million tons, respectively. In terms of 
peak time, during the forecast period, the peak years 
of scenarios 1, 2, and 3 are 2029, 2029, and 2028, 
respectively, consistent with policy expectations. In 
addition, compared with the previous two groups, overall, 
emissions in this group of scenarios continue to show 
a clear downward trend, but the peak time is between 
that of the first group and the second. We can speculate 
that when the industrial development indicators exceed 
a certain range and continue to decrease, it could have 
negative effects on Zhejiang’s manufacturing industry. 
First, a significant decrease in investment scale might 
limit the development of the manufacturing industry 
and restrict production capacity expansion. This could 
make it difficult for manufacturing enterprises to 
promptly upgrade equipment and technologies, thereby 
affecting carbon-emission reductions. In addition, if 
enterprises cannot obtain sufficient financial support, 
it might also make it difficult for them to bear the cost 
of carbon-emission reduction, thus further affecting 
carbon-emission reduction. Second, under the low 
economic level mode, the process of optimizing 
and adjusting the industrial structure is hindered.  
In particular, some high-energy-consuming, high-
emission industries might continue to occupy important 
positions in the sector. Economic weakness might also 
lead to a decrease in R&D investment and an innovation 
lag in these enterprises. This will affect the development 
and application of new technologies, thereby delaying 
the carbon peak.

We can see that within each group of scenarios, with 
the industrial development indicators kept constant, 
as the energy-consumption indicators transition from 
low emission reduction to medium emission reduction 
and then to high emission reduction, the time to reach 
the carbon peak in Zhejiang’s manufacturing sector 
continuously advances, and the peak value decreases 
accordingly. Among the three scenario groups, focusing 
on the peak value and time to reach the carbon peak, 
the turning point occurs the earliest when the industrial 
development indicators are set to medium growth. This is 
especially evident in scenario 6, where carbon emissions 
increase slightly from 73.23 million tons in 2022 to 
75.13 million tons in 2026 and then gradually decline to 
69.03 million tons in 2035. By comparison, this mode 
achieves the earliest peak time and has a lower peak 
value. Furthermore, in scenario 6, the medium growth of 
industrial development indicators is highly aligned with 
the goals of the 14th Five-Year Plan, which prioritizes 

high-quality development and achieving stability after 
reaching the carbon peak. The high emission reduction 
in the energy-consumption indicators also aligns with 
the national dual-carbon policy and the current energy-
consumption structure of Zhejiang’s manufacturing 
industry. The aim is to further strengthen policies 
supporting energy conservation and emission reduction, 
guide enterprises to optimize the energy-consumption 
structure, improve carbon-emission intensity, and 
significantly reduce emissions. This scenario aims to 
ensure stable growth in economic development and 
per capita output value through intensive development.  
It is a highly feasible model for high-quality, sustainable 
growth. In conclusion, scenario 6 should be prioritized 
as a development model for achieving the carbon peak 
in Zhejiang’s manufacturing sector.

Conclusions

Based on the actual development of Zhejiang’s 
manufacturing sector, this study first extracts two 
industrial development indicators (investment scale 
and economic level) and two energy-consumption 
indicators (energy structure and carbon-emission 
intensity). Among them, investment-scale expansion 
and economic growth will promote the development of 
Zhejiang’s manufacturing sector but will also increase 
carbon emissions. Energy-structure optimization and 
reduced carbon-emission intensity can restrain carbon-
emission reduction, which is an important breakthrough 
for achieving a carbon peak.

Using data spanning 2012-2021 for Zhejiang 
Province, this study uses an enhanced STIRPAT model 
to predict and analyze peak carbon emissions in the 
manufacturing sector. First, two industrial development 
indicators (investigation scale and economic level) and 
two energy-consumption indicators (energy structure 
and carbon-emission intensity) are proposed. Expanding 
the investment scale and raising the economic level will 
promote the development of Zhejiang’s manufacturing 
sector but increase emissions. Meanwhile, energy-
structure optimization and reduced carbon-emission 
intensity will restrain carbon-emission reduction, 
which is also important for promoting carbon-peak 
achievement. Further, based on STIRPAT and data 
from the last decade, this study analyzes nine potential 
scenarios for reaching the carbon peak and concludes the 
following:

Among the four factors influencing carbon 
emissions, investment-scale expansion and economic 
growth have boosting effects, while energy-structure 
optimization and improved carbon-emission intensity 
have suppressing effects. A 1% change in investment 
scale, economic level, energy structure, and carbon-
emission intensity results in 0.045%, 0.355%, −0.089%, 
and 0.227% changes in emissions in Zhejiang’s 
manufacturing sector. Notably, the economic level has 
the most substantial effect on carbon emissions.
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Among the nine carbon-emission scenarios, scenario 
6 achieves a carbon peak in 2026, reaching a peak 
value of 75.15 million tons. This scenario mitigates 
the boosting effect of fixed investment on emissions, 
reinforces the inhibiting effect of energy-structure 
optimization and low-carbon technology adoption, and 
reflects the expectation of stable economic development. 
This alignment with the concept of high-quality 
development makes it the preferred model for Zhejiang’s 
manufacturing sector to lead in the achievement  
of the carbon peak.

These findings can guide the development 
of emission-reduction policies and promote 
environmentally conscious, low-carbon, sustainable 
growth in the manufacturing industry. Based on the 
above, two suggestions are proposed in terms of energy 
structure and carbon-emission intensity, aiming to 
provide a decision-making reference for the green, low-
carbon, sustainable development of manufacturing.

(1) Optimize the energy-consumption structure. 
Promote energy-structure adjustment based on the 
characteristics and development trends of manufacturing 
industries in different regions. Implement pollution-
reduction and carbon-reduction actions in the key 
areas of manufacturing, controlling the total amount 
of fossil energy while ensuring sustainable economic 
development. Strengthen energy-saving and emission-
reduction transformations in high-energy-consumption 
and high-pollution industries such as steel and chemicals. 
Reduce excessive energy consumption and pollution 
in these industries’ production processes, and reduce 
reliance on nonrenewable energy sources. Improve the 
carbon-emission system, enhance the environmental 
protection and carbon-emission regulation of 
manufacturing enterprises, and comprehensively 
manage and control carbon emissions. Advocate for 
the implementation of circular economy models in 
manufacturing enterprises, emphasizing the recycling of 
resources and the reduction of waste. Through the use of 
waste resources and the closed-loop design of industrial 
chains, we can reduce reliance on raw materials, 
decrease emissions and pollution, and ensure the 
coordinated development of the manufacturing industry 
and environmental protection.

(2) Accelerate R&D on low-carbon technologies. 
Increase investment in R&D in the manufacturing 
sector; expedite R&D on high-efficiency, energy-saving 
technologies, and advanced equipment technologies; 
and promote the development and use of zero-carbon 
energy technologies and renewable energy. Strengthen 
technology-driven, intelligent manufacturing and 
digitalization services; use information technology 
to build a digital platform; dig deeper into the 
digital potential of the green transformation of the 
manufacturing industry; enhance the effectiveness of 
emission reduction in the traditional manufacturing 
industries of textiles and chemicals; and create a more 
environmentally friendly industrial chain. At the same 
time, continue to increase the share of high-tech, low-

emission, high-end manufacturing industries such as 
artificial intelligence, integrated circuits, computer 
networks, and communication equipment. Focus on 
building several provincial low-carbon industrial 
bases with distinctive features, strong product 
competitiveness, and high levels of innovation to 
promote the optimization and upgrading of the industrial 
structure of the manufacturing industry. Accelerate the 
transformation of the manufacturing sector into a low-
carbon, intelligent, and servicing-oriented industry.
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