
Introduction

China is one of the countries with the largest energy 
consumption and carbon dioxide emissions in the world. 
Fossil energy constitutes over 80% of its overall energy 
consumption structure [1]. The sixth assessment report 
of the Intergovernmental Panel on Climate Change (IPCC) 

has indicated that the transportation industry has become 
the fourth-largest source of emissions globally since 2019. 
In China, carbon dioxide emissions from the transporta-
tion industry constitute 10% of the country’s total carbon 
emissions. The accelerated urbanization in China has made 
interregional exchanges more and more frequent. Given 
this context, China has gradually recognized the significant 
potential for reducing emissions in the transportation in-
dustry, identifying it as an important research area for low-
carbon development. The emphasis on energy conservation 
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Abstract

To assess whether Shaanxi Province’s transportation industry can achieve the carbon peak tar-
get by 2030 and to determine the total carbon emissions of the industry by that year. A model based 
on dual feature extraction (DFE) and an improved Pelican algorithm (IPOA) to optimize the kernel 
extreme learning machine (KELM) is proposed in this study and used to predict transportation in-
dustry carbon emissions from 2022 to 2040. First, the influencing factors of carbon emissions are ex-
tracted through Spearman and gradient boosting decision trees (GBDT), and the extracted factors are 
used as the input set of the carbon emission prediction model. Secondly, the IPOA is used to optimize 
the parameters of the KELM to overcome its shortcomings of easily falling into local optimal solu-
tions. Finally, the combined model is used to predict the future carbon emissions of the transportation 
industry in Shaanxi Province. Comparing the prediction results and error indicators with other opti-
mal benchmark models, the model improved by 19.98%, 30.72%, and 21.33% in the three indicators 
of MAPE, RMSE, and MAE, respectively. It is confirmed that the carbon emission prediction model 
proposed in this study is more effective and can more accurately reflect the future carbon emission trend 
of the transportation industry in Shaanxi Province, China.
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and emission reduction in this industry is pivotal for China 
to realize its carbon peak target by 2030 and achieve car-
bon neutrality by 2060 [2]. Hence, there is significant 
practical importance in precisely analyzing the primary 
factors influencing carbon emissions in the transportation 
industry and formulating scientifically sound and feasible 
predictions [3, 4].

Due to the severity and urgency of the global climate 
warming problem, the carbon emissions issue in the trans-
portation industry has received widespread attention. At 
present, research on carbon emissions in the transporta-
tion industry mainly focuses on two aspects: the analysis 
of influencing factors and the establishment of prediction 
models.

In the examination of factors influencing transpor-
tation carbon emissions, commonly employed methods 
encompass the scalable stochastic environmental impact 
assessment model (STIRPAT) [5], the Logarithmic Mean 
Divisia Index (LMDI) [6], the Generalized Divisia Index 
Decomposition Method (GDIM) [7], and various regres-
sion models [8]. Some scholars believe that the carbon 
emissions of urban transportation should be studied from 
the perspective of sustainable development, and by identify-
ing different sources of carbon dioxide emissions, the main 
factors that affect the mitigation of greenhouse gas emis-
sions should be found [9-12]. Qin et al. [13] optimized 
Xinjiang’s industrial structure from the aspects of economic 
development, industrial structure, and energy utilization 
efficiency to effectively control and reduce the growth rate 
of carbon emissions. Huang Z.H et al. [14] used the mile-
age method to analyze the current situation, future change 
trends, and main driving factors of my country’s road traffic 
carbon emissions. The LMDI model has also been widely 
developed to explore the influencing factors of energy 
consumption and carbon emissions in the transportation 
industry [15, 16]. Some scholars used the LMDI decom-
position method to study the driving factors of carbon 
emissions in the transportation industry in a certain region 
of China [17-20]. Decomposition methods such as LMDI 
can improve the accuracy of calculations. This statistical 
analysis method, in a general sense, has a wider scope 
of analysis and can flexibly handle various situations, but 
there are many influencing factors.

In terms of prediction model research on transporta-
tion carbon emissions, traditional forecasting models are 
computationally complex, and their accuracy is restricted 
by historical data, including the establishment of regres-
sion forecasting models and time series models. Wu et al. 
[21] and Chen et al. [22] applied the GM (1, 1) model to 
forecast both carbon emission intensity and overall carbon 
emissions in different provinces in China. Zhu et al. [23] 
used the IPAT model to predict energy-related carbon emis-
sions in Shanxi Province, China, and determine the peak 
year. Wang et al. [24] used the expanded STIRPAT model 
to predict the carbon emission peak of China’s industry. 
Some studies used the hierarchical prediction method to 
predict short-term and medium-term carbon emissions at 
different consumption levels in various provinces in China 
[25, 26]. Ning and Sun used the ARIMA model to predict 

the development trend of transportation carbon emissions 
under the baseline scenario and the “dual carbon” target 
scenario [27, 28]. He et al. [29] used the ADL-MIDAS 
model to forecast and analyze the total amount and struc-
ture of carbon dioxide emissions in China from 2021 to 
2025. Wang J. et al. used a gray forecast model to predict 
industrial carbon emissions in a certain region of Anhui 
Province, China, from 2021 to 2030 [30, 31]. However, 
traditional prediction methods face challenges in han-
dling high-dimensional nonlinear data and accounting for 
coupling factors in the data. Therefore, machine learning 
methods [32] are gradually being applied by some schol-
ars to the field of carbon emission prediction. Tian et al. 
[33] used joint learning based on SARIMA clustering to 
predict industrial carbon emissions in China. Liu et al. [34] 
used a two-way long short-term memory neural network 
model to predict the carbon emissions generated by urban 
domestic waste in China. However, when the hyperparam-
eters in a single model are not chosen appropriately, it is 
difficult to capture the complex relationships in the data. 
Problems such as poor generalization ability and over-
fitting are prone to occur, which leads to poor accuracy 
of prediction results. To overcome the shortcomings [35], 
some scholars combine intelligent optimization algorithms 
with predictive models [36]. Wang et al. [37] used the ELM 
model improved by the whale optimization algorithm to 
predict China’s future carbon emissions. Zuo et al. [38] 
used the LSTM-STIRPAT model to predict China’s carbon 
emission peak in 2030. Sun et al. [39] and Yan et al. [40] 
both adopt the ensemble empirical mode decomposition 
method to combine with the PSO-BP model and the BSO-
GPR model to predict carbon emissions. Wang Q et al. 
[41] used a combined prediction model combining VMD, 
the SSA search algorithm, and LSSVM to predict carbon 
emissions in the transportation industry. Chi et al. [42] pro-
posed the WPD-ISSA-CA-CNN carbon emission predic-
tion model with component augmentation input to predict 
the carbon emissions of power plants.

Based on the above research findings, uncertainty 
in the selection of carbon emission factors may affect 
the accuracy of predictions. Previous studies usually 
used a single decomposition method to solve this prob-
lem. Due to the diversity of carbon emissions, a single-
factor selection method may not fully consider all key 
factors. In addition, the regional transportation carbon 
emission system is a complex, nonlinear system. Tra-
ditional prediction methods lack the data sample learn-
ing process, resulting in fuzzy nonlinear relationships,  
complex calculation processes, and reduced prediction 
result accuracy.

To solve the above problems, this paper proposes to 
build a kernel extreme learning machine model based on 
double screening (DFE) to predict the carbon emissions 
of the transportation industry. DFE is used in this model 
to ensure that the selected factors can fully reflect the com-
plexity of carbon emissions, thereby more accurately pre-
dicting their trends and changes. The IPOA-KELM model 
can effectively deal with problems such as insufficient sam-
ple size and nonlinearity in the prediction model and shows 
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certain advantages in high-dimensional pattern recognition. 
Therefore, this study provides a new scientific method for 
transportation carbon emission prediction.

Study Area

This study focuses on the transportation industry 
in Shaanxi Province, China. The transportation industry 
is not only a pillar industry in Shaanxi Province but also 
has a significant impact on the country’s social and eco-
nomic development. At the same time, Shaanxi Province 
plays a crucial role as a major energy resource province 
in China with abundant oil, gas, and coal resources. Shaanxi 
Province is located in the Central Plains region and has 
always played an important role as a key transportation 
hub connecting northwest China to the world. The Silk 
Road is one of the most important trade routes in ancient 
and modern China. Shaanxi Province is located at the core 
of the Silk Road. This geographical location allows Shaanxi 
Province to play an important role in domestic and foreign 
trade exchanges, thereby contributing to the prosperity 
and development of the local economy. As the national 
economy rapidly develops and the Western Development 
Strategy is deeply implemented, Shaanxi Province will 

further strengthen cooperation and exchanges with other 
regions to enhance its comprehensive competitiveness. 
Due to the evident spatial variations in resources, popula-
tion, economy, and industrial structure of various regions 
in Shaanxi Province, the specific measures for regional 
carbon emission reduction are also different. The results 
of carbon emission reduction in the region directly impact 
the achievement of China’s overall carbon reduction objec-
tives. Hence, research on the carbon emissions of the trans-
portation industry in this region can offer both theoretical 
and practical foundations for its emission reduction efforts. 
Fig. 1 is drawn through ArcMap software.

Material and Methods

Carbon Emission Calculation

There are no standardized calculation rules for the cal-
culation of carbon emissions in the transportation industry. 
The transportation industry is vast, dispersed, and highly 
mobile, posing challenges for precise and accurate meas-
urement of carbon emissions. Hence, scholars typically 
employ fuzzy estimation methods to calculate carbon emis-
sions in the transportation industry. The carbon emission 

Fig. 1. Geographical location of Shaanxi Province, China.



Minghu Wang, et al.4

coefficient method proposed in the 2006 IPCC Guidelines 
for National Greenhouse Gas Inventories is used by many 
countries to calculate domestic carbon dioxide emissions. 
The carbon emission coefficient method is divided into two 
approaches: the “Top-down Approach” and the “Bottom-up 
Approach”. The “Top-down Approach” calculates car-
bon emissions based on the annual energy consumption 
in the transportation sector and the corresponding carbon 
emission factors. Because of the ease of data acquisition 
and the relatively accurate estimation results, numerous 
scholars have employed this method to assess carbon 
emissions in different regions. Liu et al. [43] calculate 
and analyze the current situation of urban traffic carbon 
emissions using various methods. Other scholars [44–46] 
use the “Top-down Approach” method to calculate carbon 
emissions from the transportation industry in each province 
and city in China. On the contrary, the “bottom-up” method 
calculates carbon emissions in the transportation industry 
based on refined data, including the type of vehicle, mile-
age, and energy consumption proportion. In comparison 
to the “Top-down Approach”, the “Bottom-up Approach” 
necessitates the collection of a broader range of basic data, 
increasing the difficulty of actual measurement. Ning et al. 
[47] estimated the carbon emissions from residential trans-
portation in Zhengzhou City. Furthermore, some scholars 
integrate the two methods. Tian et al. [48] employed two 
combined methods to establish a transportation carbon 
emission measurement model with explicit statistical stand-
ards that can be benchmarked against international norms. 
They calculated the carbon emissions of China’s transporta-
tion industry and various modes of transportation in 2019.

This study employed the “Top-down Approach” to 
calculate the carbon emission data for the transportation in-
dustry in Shaanxi Province from 1995 to 2021. The carbon 
emissions calculation model of the transportation industry 
can be established using Equation (1).

 t t t t
t t

C C Eλθ= =∑ ∑  (1)

In Equation (1), C is the total carbon emissions of the trans-
portation industry; t is the type of energy; Ct is the carbon 
emissions of the t-th energy; λt is the carbon emission coef-
ficient of the t-th energy source, which is the carbon diox-
ide produced by consuming unit energy; θt is the conversion 
coefficient of the t-th energy into standard coal, which is 
the amount of unit energy converted into standard coal; Et 
is the consumption of the t-th energy. The energy consump-
tion data for the transportation industry in Shaanxi Province, 
China, can be obtained from the China Energy Statistical 
Yearbook. The data in this study were sourced from the web-
site of the China Bureau of Statistics, the Shaanxi Statistical 
Yearbook, and the China Transportation Industry Statistical 
Yearbook from 1995 to 2021. Eight types of terminal energy 
consumption, including raw coal, crude oil, gasoline, kero-
sene, diesel, fuel oil, electricity, and natural gas, will serve as 
the basis for accounting for carbon emissions in the provincial 
transportation industry. As per the National Greenhouse Gas 

Inventory Guidelines issued by the IPCC in 2006, the carbon 
emission accounting coefficients are shown in Table 1.

Dual Feature Extraction

Spearman Coefficient

Due to the strong nonlinearity and complexity of car-
bon emission data, the Spearman coefficient suitable for 
nonlinear data is selected for the first feature selection. 
The calculation formula for the Spearman coefficient is 
shown in Equation (2):
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In Equation (2), X and Y are two random features 
in the data set; RX and RY are the ranks of the X feature 
and Y feature, respectively; n is the number of features.

GBDT Model

This study employs the gradient boosting decision tree 
regression model for the second stage of feature selec-
tion. The gradient boosting decision tree is an ensemble 
learning algorithm that consists of multiple decision trees. 
The forward-distributed iteration method is mainly used 
to optimize the loss function by learning the base function 
and updating the weight coefficient in each iteration so that 
the algorithm can effectively handle the nonlinear relation-
ship between features. In the gradient boosting decision tree 
model, feature contribution can be estimated by observing 
the contribution of features to the loss function in each 
iteration. Specifically, the gradient information (negative 
gradient) of each feature after each iteration can be used 

Table 1. The carbon emission conversion factor.

Index Standard coal 
coefficient

Carbon emission 
coefficient

raw coal 0.71 0.75

electricity 1.23 2.21

crude 1.43 0.59

gasoline 1.47 0.55

kerosene 1.47 0.57

diesel fuel 1.46 0.59

fuel oil 1.43 0.62

natural gas 13.3 0.45

Dual Feature Extraction
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to estimate its contribution. Feature selection is performed 
by evaluating the contribution of features.

Define the model after the m – th round of iteration as 
Fm(x), and the loss function as L(y, Fm(x)). The negative 
gradient gim represents the negative gradient of the model 
for the actual label yj of sample i after the m-th iteration. 
The contribution of feature j to sample i after iteration m can 
be estimated by calculating the partial derivative of feature j.

The gradient j of feature for the sample i after the m-th 
iteration can be shown in Equation (3).

 
( , ( )) ( )

( )
i m i m i
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∂ ∂
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In Equation (3), xij is the j-th feature of sample i. 
The contribution degree gijm is further associated with 
the gradient gijm(m–1) of feature j in the previous iteration. 
The following results are obtained through the chain rule 
of Equation (4).

(4)
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In Equation (4), gijm(m–1) is the gradient of feature j 
after (m-1) iterations. The second term of the formula on 
the right side represents the contribution of feature j to 
sample i due to changes in the model in the m-th iteration. 
This contribution can be accumulated through iterations. 
The contribution of feature in the GBDT model can be 
shown in Equation (5).

 1 1

M N
j ijmm i

I g
− =

= ∑ ∑  (5)

In Equation (5), M is the total number of iterations, 
and N is the number of training samples.

Pelican Optimization Algorithm 

The POA was introduced in 2022 and is primarily com-
posed of two phases: the exploration phase and the develop-
ment phase. The algorithmic process is as follows:

First, initialize the pelican population.

 ( ) 1, 2,... , j 1, 2...,i j j j jx l rand u l i N m= + − = =  (6)

In Equation (6), xij is the position of the i – th pelican 
in the j-th dimension; N is the population number of peli-
cans; m is the dimension of the problem to be solved; rand 
is a random number in the range of [0,1]; the variables  uj 
and lj are represent the upper and lower bounds for solving 
the J-dimensional problem. 

After the initialization is completed, the pelican enters 
the exploration stage, generates the prey location randomly 
in the solution space, and moves toward the prey location. 
Its expression is shown in Equation (7).

 ( ),1
( ),{ i j j i j p i

i j i j j

x rand p I x F FP
ij x rand x p elsex + − × <

+ −=  (7)

In Equation (7), xP1
ij is based on the j-th dimension 

position of the i-th pelican after the first stage update; 
I take on a random integer of 1 or 2; pj is the position 
of the prey in the j-th dimension; Fi is the objective func-
tion value of the i-th pelican; Fp is the objective function 
value of the prey.

In POA, the pelican accepts a new position if the objec-
tive function value at that position is better. The process 
is in Equation (8).
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In Equation (8), Fp1
i  is the objective function value based 

on the new position of the i-th pelican updated in the first 
stage. After the exploration phase is completed, the pelican 
enters the development phase, converging toward better 
hunting positions. Its expression is in Equation (9).

 2
, ,(1 ) (2 1)P

ij i j i j
tx x R rand x
T

= + − × × − ×  (9)

In Equation (9), R is a constant with a value of 0.2; t is 
the current number of iterations, and T is the maximum num-
ber of iterations. In the development stage, when the optimal 
value is smaller, it is updated according to Equation (9).
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x F F
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In Equation (10), xp2
i  is the new position of the i-th 

pelican and Fp2
i  is the objective function value based on 

the second stage. As the number of iterations increases, 
the Pelican optimization algorithm also faces defects such 
as falling into local optimality. Therefore, the Pelican op-
timization algorithm is improved in the following aspects: 
therefore, the POA is improved in the following aspects, 
and the improved algorithm is called the IPOA.

Adaptive Weight

In the improvement of intelligent optimization algo-
rithms, the introduction of weights can effectively improve 
the optimization accuracy of the algorithm. Therefore, 
linear weights are introduced in the exploration phase 
and development phase of the Pelican optimization algo-
rithm, as shown in Equation (11).
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 2( ) ( ) ( 0.5 ( ) )min max min
max

tw t w w w exp
T

= + − − ×  (11)

In Equation (11), wmax = 0.9, wmin = 0.2.

Tent Chaos Mapping

Chaos has the characteristics of being random, non-
repetitive, and ergodic. Chaos theory is introduced to 
improve the initialization phase of the algorithm to obtain 
an initial population uniformly distributed in the search 
space, which is beneficial to maintaining the diversity 
of the population, expanding the search range of the popu-
lation, and improving the search performance of the al-
gorithm. Tent mapping is used to initialize the population 
and expand the search range of the initial solution, as 
shown in Equation (12).

 2 ( ),0 ( ) 0.5
2[1 ( )],0.5 ( ) 1( 1) X m X m

X m X mX m ≤ ≤
− ≤ ≤+ = {  (12)

In Equation (12), X(m) is the chaos value.

The basic steps are: 
Step 1: Randomly generate an n-dimensional matrix 

from 0 to 1 in the space, which is X(1);
Step 2: Iteratively generate the Tent chaos sequence 

of other individuals from the first individual X(1) according 
to the following formula:

Step 3: After obtaining all the solutions in the search 
space, map them to the original space again, as shown 
in Equation (13).

 (1 )( )
2n n n n

xX max min min+
= − × +  (12)

In Equation (13), Xn is the initial solution generated by 
the Tent chaos map, minn is the lower limit of the control 
variable, and maxn is the upper limit of the control variable.

Fig. 2(a) shows the population distribution diagram 
generated by random initialization, and Fig. 2(b) shows 
the population distribution after using the Tent chaotic 
mapping model. It can be seen that the population is 
more dispersed in the mapped initialization distribution, 
and the number of individuals on the boundary and overlap-
ping individuals is smaller. The wider distribution in the ini-
tialization stage can ensure the diversity of the population 
and reduce the attraction of local optimality.

Gaussian Mutation and Gaussian Perturbation

Gaussian variation refers to extracting a random number 
from the normal distribution with mean μ and σ2 variance 
and replacing the parameter variables in the POA algo-
rithm to achieve the purpose of optimizing the algorithm. 
According to the distribution characteristics of the normal 
distribution curve, the main search range of a Gaussian 
mutation is a certain area near the original individual. 
Hence, the characteristics of the Gaussian mutation deter-
mine that it has strong local search capabilities, which is 
conducive to the algorithm finding global extreme points 
efficiently and accurately for optimization problems involv-
ing multimodal functions. To this end, Tent chaos mapping 
and Gaussian mutation are combined to coordinate global 
search and local exploration capabilities, aiming to improve 
the convergence speed and evolution performance of POA. 
The Gaussian variation formula is shown in Equation (14).

 (1 (0,1))gT T N= +  (14)

In Equation (14),  Tg is the value after Gaussian muta-
tion of the original parameters; T is the original parameter 
variable; N(0,1) is a normal random distribution number 
with an expected value of 0 and a standard deviation of 1.

Gaussian perturbation. In order to improve POA’s abil-
ity to jump out of the local optimal solution, Gaussian 

a)

Fig. 2. Dual Feature Extraction. Fig. 2 (a) shows the population distribution diagram generated by random initialization. Fig. 2 (b) shows 
the population distribution after using the Tent chaotic mapping mode.

b)
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micro-perturbation is performed on the individual optimal 
position after each iteration to help it better escape from 
the local optimal area. The Gaussian perturbation expres-
sion is shown in Equation (15).

 2(1 ( , ))bG G Gaussian m s= +  (15)

 ( ( ))1 {
t t t
b b

t
NG f NG f Gt
G else

G <+ =
        (16)

In Equation (16), Gb is the optimal position of the peli-
can in each iteration; G is the fitness before Gaussian per-
turbation, Gaussian (μ, σ2) is a Gaussian function with mean 
μ and variance σ2; NGt

b is the fitness value of the pelican 
individual after the disturbance; Gt is the optimal fitness 
of the pelican individual in the t – th iteration. After the pop-
ulation iteration is completed, new individuals are perturbed 
to speed up the convergence accuracy of the population. 
Hence, a Gaussian variation disturbance factor is used, 
which effectively prevents the population from falling into 
local optimality.

KELM Model

KELM is an improved algorithm proposed based on 
the Extreme Learning Machine (ELM) and combined with 
the kernel function. KELM can improve the prediction 
performance of the model while retaining the advantages 
of ELM. The ELM network structure is shown in Fig. 3.

ELM is a single hidden layer feedforward neural net-
work, and its learning objective function  can be expressed 
as a matrix.

 F(x) = h(x) × β = H × β = L (17)

In Equation (17), x is the input vector, h(x) and H are 
the hidden layer node outputs, β is the output weight, and  
L is the expected output.

Turning network training into a linear system solution 
problem, β is determined according to β = H * L, where  H* 
is the generalized inverse matrix of H. In order to enhance 
the stability of the neural network, the regularization coef-
ficient c and the identity matrix I are introduced, and then 
the least squares solution of the output weight is shown 
in Equation (18).

 β = HT   HHT + L
-1

 


 


I
c  (18)

Introducing the kernel function into ELM, the kernel 
matrix is shown in Equation (19).

 ( ) ( ) ( , )T
ELM i j i jHH h x h x K x xΩ = = =  (19)

In Equation (19), xi, xj are test input vectors, then 
the above formula can be shown in Equation (20).

 
1

1( ) [ ( , );... ( , )]n
IF x K x x K x x L
c

−
 = + Ω 
 

ELM  (20)

In Equation (20), (x1, x2, …, xn) is a given training sam-
ple, n is the number of samples, K is the kernel function, 
and c is the regularization coefficient. In summary, it can be 
seen that the kernel function parameter s and regularization 

Fig. 3. ELM network structure diagram.
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coefficient c are important factors affecting the prediction 
performance of KELM.

DFE-IPOA-KELM Model Construction

Carbon Emissions Forecasting Process 
for the Transportation Industry

This study takes real carbon emission data from 
the transportation industry in Shaanxi Province, China, 
spanning from 1995 to 2021, as the experimental dataset. 
First, relevant data on carbon emissions in the transporta-
tion industry was collected according to the China Energy 
Statistical Yearbook, and its carbon emissions were cal-
culated through the “Top-down approach” in the IPCC 
formula. Secondly, the Spearman coefficient and gradient 
boosting decision tree regression are used to select features 

that affect carbon emissions. The outcomes of feature selec-
tion are fed into the finalized KELM model for predicting 
carbon emissions. Finally, to enhance the prediction accu-
racy of the KELM model, this study will utilize the IPOA 
algorithm to optimize the KELM model, thereby creating 
a comprehensive prediction model. The model constructed 
is named DFE-IPOA-KELM. The specific algorithm flow 
is illustrated in Fig. 4.

The specific steps for prediction by the DEF-IPOA-
KELM model are:

1. Input data.
Preprocessing the computed dataset involves outlier 

correction and normalization, as per Equation (17), trans-
forming numerical values into the range of . This process 
eliminates dimensional differences to prevent signifi-
cant errors caused by large differences in the magnitude 

 Fig. 4. DEF- IPOA-KELM carbon emission prediction model.
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of the input data. The initial 70% and the remaining 30% 
of the preprocessed dataset are segregated into training 
and test sets for the prediction model.

 min

max min

i
i

x xx
x x

∗ −
=

−
 (21)

In Equation (21),  is the minimum value in the in-
fluencing factor data sequence,  is the maximum value 
in the sequence,  is the initial input data, and is the data 
after normalization.

2. Initialize the improved Pelican optimization 
algorithm.

Add the Tent chaos map generate the initial pelican 
population, and calculate the population fitness. The pelican 
population location information is mapped to two hyper-
parameter values of the KELM internal kernel function 
parameter  and regularization coefficient c.

3. Update the individual locations of the pelican 
population.

Assign adaptive inertial weights to the initial popula-
tion of IPOA, calculate the optimal fitness, and update 
the individual positions within the pelican population. 
Assess whether the fitness exceeds the average value. If 
it surpasses the fitness value, employ Gaussian variation 
to calculate the average fitness value at this time. In cases 
where fitness is below the average value, apply Gaussian 
perturbation to facilitate movement away from the optimal 
position. Keep a record of the current individual’s optimal 
solution and the global optimal solution until the maximum 
number of evolutions is attained.

4. Determine the number of iterations.
If the population reaches the maximum number of evo-

lutions, the optimal parameters will be output and assigned 
to the KELM model. Otherwise, repeat steps (2–3).

5. The DFE-IPOA-KELM model
Establish a complete DFE-IPOA-KELM prediction 

model and conduct experimental comparative analysis 
using proportionally divided data sets.

Results 

Data Description 

Regarding energy consumption in the transportation 
industry in Shaanxi Province, petroleum products consti-
tute the predominant share. Consequently, carbon dioxide 
emissions from this type of energy significantly influence 
the overall carbon emission structure of the transportation 
industry. Fig. 5. illustrates that the proportion of carbon 
dioxide generated by oil energy consumption has risen 
from 72.3% in 1995 to 90.1% in 2021, whereas carbon 

dioxide emissions from coal have decreased from 27.7% 
in 1995 to approximately 1% in 2021. As natural gas was 
not extensively utilized before 2003, the carbon emissions 
from natural gas during this period were not incorporated 
into the total carbon emissions in the transportation indus-
try for that year. Despite the gradual promotion of clean 
energy by the Chinese government and enterprises since 
2003, leading to a rise in the proportion of carbon emis-
sions to 8.9% by 2021, the primary source of carbon emis-
sions in the transportation industry remains the consump-
tion of fossil energy. A potential reason for this issue is 
the continued economic development of Shaanxi Province 
following western China’s development. Simultaneously, 
enhancements to the transportation system and the diversi-
fication of transportation modes have facilitated increased 
regional exchanges, leading to a rapid upsurge in energy 
consumption in the transportation industry.

The evolution of total carbon emissions from the trans-
portation industry in Shaanxi Province can be delineated 
into three stages, as shown in Fig. 6. Before 2000, the re-
gion’s carbon emissions fluctuated around one million tons. 
This fluctuation can be attributed to the transportation 
industry’s relatively modest development during this pe-
riod, resulting in lower energy consumption demands. 
From 2001 to 2015, driven by the accelerated urbanization 
process and the in-depth advancement of the Western De-
velopment Project, the transportation industry in Shaanxi 
Province entered a stage of rapid expansion. In this period, 
the consumption of fossil energy led to an explosive growth 
in carbon emissions from the transportation industry. Due 
to the effective implementation of the carbon emission 
reduction strategy and the gradual adoption of low-carbon 
development initiatives by the Shaanxi provincial gov-
ernment, carbon emissions in the transportation industry 
subsequently plummeted, dropping below four million 
tons in 2016. However, in recent years, the overall carbon 
emissions from the transportation sector in Shaanxi Prov-
ince have remained elevated compared to the initial stage.

Dual Feature Extraction 

Based on the energy consumption characteristics 
of the transportation industry among provinces, this study 
selected the urbanization rate (U), GDP, transportation 
gross product value (TGDP), energy intensity (EI), energy 
consumption (EC), energy structure (ES), population (P), 
vehicle ownership (VO), passenger volume (PV), freight 
volume (FV), passenger turnover (PT), and cargo turnover 
(CT). These 12 variables serve as the main factors affecting 
carbon emissions in the transportation industry.

The thoughtful selection of input parameters is crucial 
for establishing a carbon emission prediction model. To 
enhance prediction accuracy, it is essential to extract the fea-
tures of influencing factors before inputting prediction data. 
The initial step involves utilizing the Spearman correlation 
coefficient to calculate the relationship between relevant 
explanatory variables and transportation carbon emissions 
(C), as well as the correlation between each explanatory vari-
able. Retaining factors are strongly correlated with carbon 



Minghu Wang, et al.10

emissions, and highly correlated variables are eliminated. 
Subsequently, the gradient boosting decision tree regression 
method is applied to calculate the contribution of each feature 
in the original data to affecting carbon emissions.

The analysis results of the Spearman correlation coef-
ficient are shown in Fig. 7, which reveal that eight factors: 
TGDP, ES, EC, FV, CT, U, GDP, and VO have correlation 

coefficients exceeding 0.7. This indicates that these factors 
exhibit a strong positive correlation with carbon emissions 
in the transportation industry, implying a significant impact 
on carbon emissions. 

To mitigate the potential bias from a single method 
on feature selection, the gradient boosting decision tree 
was used to further calculate the contribution of each 

Fig. 5. Carbon emission structure in the Shaanxi transportation industry from 1995 to 2021.

Fig. 6. Carbon Emission Trend of Transportation from 1995 to 2021.
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influencing factor to carbon emissions. As depicted 
in Fig. 8, the greater the contribution of each factor, 
the more significant its impact on carbon emissions 
in the transportation industry. According to the gradient 
boosting decision tree regression results, the top six con-
tributors to carbon emissions are as follows: energy struc-
ture contributes 29.4% to carbon emissions, energy con-
sumption accounts for 18.8%, freight turnover accounts 

for 15.9%, and transportation industry The contribution 
of GDP and urbanization rate were 12.5% and 9%, re-
spectively, and the contribution of the number of motor 
vehicles reached 10.2%.

Through cross-comparing the Spearman coefficient 
and GBDT contribution, the TGDP, EC, ES, VO CT, and U 
were identified as predictors of carbon emissions from 
the transportation industry, as shown in Table 2.

Fig. 7. Correlation coefficient of various characteristics affecting carbon emissions.

Fig. 8. Contribution degree of each characteristic to carbon emissions.
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Model Evaluation Index

To assess the prediction effectiveness of the proposed 
combination model, this study employed the root mean 
square error (Root Mean Square Error, RMSE), the mean 
absolute error value (Mean Absolute Error, MAE), 
and the mean absolute percentage error (Mean Absolute 
Percentage Error, MAPE) as the evaluation index to quan-
tify the difference in error between predictions and ground 
truth variables. The specific calculation formula is as 
follows: In general, a higher value and a lower RMSE/
MAE/MAPE value indicate better estimation performance 
of the model.
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Where η^k is the predicted value; ηk is the real value.

Configuration of Model Parameters

In this study, the MATLAB R2022A software platform 
will be used to verify the prediction effect of the proposed 
DFE-IPOA-KELM model. The training set and test set 
data are divided according to the 7:3 ratio. After repeated 
training of the model, the DFE-IPOA-KELM model works 
best when the pelican population is set to 30, and the maxi-
mum number of iterations is 50. Therefore, in this study, 
the population size of IPOA and POA was standardized to 
30, and the maximum number of iterations was uniformly 
set to 50. Five models, namely KELM, SSA-KELM, PSO-
KELM, POA-KELM, and IPOA-KELM, were employed 
for comparative analysis. To ensure the comparability 
of the experiment, the configuration of these five mod-
els is standardized: the number of input layer neurons is 

set to 6, the number of hidden layer neurons is set to 9, 
the number of output layer neurons is 1, and the number 
of training times and accuracy requirements remains con-
sistent. Specifically, the number of training times is set to 
500, and the accuracy target is 0.001. On the training set, 
the trend changes in the fitness of four algorithms, SSA, 
PSO, POA, and IPOA, are shown in Fig. 9. The search 
range of the kernel function parameter (s) is set to [10-2, 
10], and the search range of the regularization coefficient 
(c) is set to [10-2, 102]. Through multiple experiments, 
the parameter results optimized by different algorithms 
are averaged and input into the KELM model. The optimal 
kernel function parameters  and regularization coefficient  
for different model structures are shown in Table 3.

Comparative Analysis of Predictive Outcomes

Based on the model parameters set in the previous 
steps, input the preprocessed data and iteratively train 
the model. The comparison curve between the predicted 
value and the actual value of each model is shown in Fig. 
10. The relative error curves calculated for various com-
parison models are shown in Fig. 11.

The results of the DFE-IPOA-KELM model on the test 
set sample data show that this model is better than other 
control models in predicting carbon emissions in the trans-
portation industry. The suboptimal fitting performance 
of the standalone KELM prediction model indicates 
its effect is not ideal. Likewise, the fitting performance 
of the KELM model, even after optimization through 
the algorithm, remains subpar. Essentially, the predicted 
values from both model structures display a significant 
deviation from the actual values, indicating a low level 
of accuracy. The prediction results of various model struc-
tures are shown in Table 4, which  represents the rela-
tive error value. Simultaneously, by combining Fig. 11 
and Table 5, it is evident that the DFE-IPOA-KELM model 
exhibits the smallest relative error value, with an average 
relative error of only 2.51%. The average relative errors 
for KELM, POA-KELM, and IPOA-KELM are 9.82%, 
5.91%, and 4.12%, respectively. The average relative er-
rors of the DFE-IPOA-KELM model are lower than those 
of the other three control models, once again affirming that 
the model has higher prediction accuracy.

The analysis of error indicators for predicting trans-
portation industry carbon emissions for different models 
is visually displayed in Table 5 and Fig. 12. The RMSE 
of DFE-IPOA-KELM is 94.06, 51.90, 9.15, 63.09, 
and 84.16 lower than SSA-KELM, PSO-KELM, IPOA-
KELM, POA-KELM, and KELM, respectively. The  for 
the model proposed in the research is 97.75%, surpassing 

Table 2. Based on dual feature extraction, carbon emission influencing factors

factor ES EC CT TGDP VO U

contribution 29.4% 18.8% 15.9% 12.5% 10.2% 9.0%
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Fig. 9. POA and IPOA optimize the fitness curve of KELM.

Fig. 10. Prediction results of different models.

Table 3. Optimal Parameters for Various Models.

Model parameter optimal value

KELM
s 0.06
c 89.21

POA-KELM
s 0.08
c 100.00

PSO-KELM
s 0.21
c 81.36

SSA-KELM
s 0.46
c 71.59

IPOA-KELM
s 1.18
c 65.32
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that of the other three control models. Simultaneously, 
MAPE and MAE outperform the other five models. Com-
paring KELM, SSA-KELM, PSO-KELM, POA-KELM, 
IPOA-KELM, and DFE-IPOA-KELM, it is evident that 
the prediction model utilizing the gradient boosting deci-
sion tree for feature selection combined with the IPOA 
significantly influences the transportation industry. The car-
bon emissions prediction accuracy is superior, indicating 
minimal deviation of the model’s predicted values from 
the true values. Therefore, DFE-IPOA-KELM outperforms 
traditional KELM and the singly optimized KELM predic-
tion model, demonstrating greater stability and robustness. 

The above experimental results demonstrate that 
the DFE-IPOA-KELM model exhibits superior predic-
tion accuracy compared to the KELM, POA-KELM, PSO-
KELM, SSA-KELM, and IPOA-KELM models. On one 
hand, the improved prediction performance of the pro-
posed model can be attributed to the introduction of kernel 

functions and optimization processes into the extreme 
learning machine, effectively addressing the issues of re-
duced generalization and stability caused by the random 
assignment of hidden layer neurons. On the other hand, 
gradient boosting decision tree regression is employed to 
conduct feature screening on the dataset, minimizing the ef-
fects of multicollinearity between indicators. Hence, DFE-
IPOA-KELM can serve as an effective model for carbon 
emission prediction research in the transportation industry.

Scenario Simulation

Scenario Setting
In this study, we will consult pertinent policy reports 

and data releases from the Shaanxi Provincial Government 
to establish distinct rates of change for factors influencing 
carbon emissions in the transportation industry. As shown 
in Tables (6-7), different changing rates of influencing 

Fig. 11. Comparison of relative errors of prediction results.

Table 4. Test Results of Model Data.

ηk
KELM PSO-KELM SSA-KELM POA-KELM IPOA-KELM DFE-IPOA-

KELM

η^k δ/% η^k δ/% η^k δ/% η^k δ/% η^k δ/% η^k δ/%

1 120.9 198.1 64.0 21.7 82.0 238.9 97.8 50.2 58.4 147.3 21.9 105.9 12.4

2 198.2 268.1 35.3 111.3 43.8 289.1 45.9 147.3 25.7 236.2 19.2 219.9 11.0

3 295.3 350.2 18.7 267.4 9.4 378.1 28.1 211.8 28.3 325.1 10.1 322.4 9.2

4 678.8 443.2 34.7 552.5 18.6 491.4 27.6 526.7 22.4 610.2 10.1 653.6 3.7

5 521.3 375.4 28.0 484.0 7.2 416.7 20.1 448.6 14.0 485.9 6.8 496.8 4.7

6 408.7 272.2 33.4 429.0 5.0 304.8 25.4 354.9 13.1 382.1 6.5 401.1 1.8

7 330.6 208.4 37.0 361.1 9.4 251.2 23.8 273.5 17.3 293.2 11.3 314.3 4.9
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factors correspond to different carbon emission scenarios. 
This study will conduct scenario forecasts of carbon emis-
sions from the transportation industry from 2022 to 2040. 
To make the prediction process more consistent with the ac-
tual situation and the prediction results more scientific 
and reasonable, this study will set up four stages to predict 
the future carbon emissions of the transportation industry 
in Shaanxi Province.

The six influencing factors identified above in this 
study are used as research objects for future carbon emis-
sions from the transportation industry in Shaanxi Province. 

The change rate of factors affecting carbon emissions is 
determined by national policies, national development 
plans, and the research results of relevant scholars.

Gross Domestic Product of the Transportation Indus-
try. From 1995 to 2021, the GDP of Shaanxi Province’s 
transportation industry increased at an average annual rate 
of 3.34%; it has risen from 7.792 billion yuan in 1995 
to 124.717 billion yuan in 2021. During the “Thirteenth 
Five-Year Plan” period, Shaanxi Province completed a to-
tal of 460 billion yuan in transportation investment, an 

Fig. 12. Comparison of model performance evaluation indexes.

Table 5. Comparison of model performance evaluation indexes.

MAPE% RMSE（WT） MAE（WT） R2

KELM 35.85% 104.79 120.39 74.05%

POA-KELM 25.58% 83.72 77.18 87.72%

PSO-KELM 25.04% 72.53 61.18 82.59%

SSA-KELM 38.37% 94.69 109.47 89.91%

IPOA-KELM 12.26% 29.78 27.42 92.16%

GBDT-IPOA-KELM 9.81% 20.63 21.57 97.75%
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increase of 15% compared with the “Twelfth Five-Year 
Plan” period. The “14th Five-Year Plan” proposes that 
the province’s comprehensive transportation corridors will 
be basically completed by 2025. The network layout will 
be more optimized, and the coverage rate of high-efficiency 
transportation infrastructure will reach 100%. The change 
rate of the GDP of the transportation industry under differ-
ent scenarios in the future is shown in Table 8.

Cargo turnover. During the “Thirteenth Five-Year Plan” 
period, the average annual growth rate of freight turnover 
was 7.21%. From the perspective of category characteris-
tics, bulk material transportation has grown steadily, and de-
mand for small-batch and multi-frequency logistics has 
grown rapidly. From the perspective of mode characteris-
tics, the transportation volume of railways and aviation will 
steadily increase, especially the proportion of bulk cargo 
and medium and long-distance cargo railway transporta-
tion will further increase, and the transportation structure 
will continue to be optimized. The rationalization of cargo 
transportation is gradually improving, and it is expected that 
freight turnover will show a slight downward trend after 
the “14th Five-Year Plan”. The future change rate of ur-
banization under different scenarios is shown in Table 9.

Urbanization rate. According to the goals of the “14th 
Five-Year Plan”, the urbanization rate of the province’s per-
manent population will reach about 65% by 2025. During 
the “14th Five-Year Plan” period, China’s urbanization rate 
is expected to increase by an average annual rate of 1.03%. 
Compared with the “13th Five-Year Plan” period, it de-
clined during the Five-Year Plan period. The growth rate 
of China’s urbanization development will begin to slow 
down during the “14th Five-Year Plan” period and will 
show a relatively stable trend after 2035. The change rate 
of urbanization under different scenarios in the future is set 
as shown in Table 10.

Energy consumption. According to the long-term goals 
of the “14th Five-Year Plan”, the province’s raw coal, 
crude oil, and natural gas production will reach 740 million 
tons, 27 million tons, and 36 billion cubic meters, respec-
tively, by 2025. “Air Quality Standards Compliance Plan 
(2023-2030)” Shaanxi Province’s transportation industry 
energy consumption increased rapidly during the period 
2021-2030, and the growth rate slowed down after 2030 
with an average annual growth rate of 1.1%. The chang-
ing rates of energy consumption under different scenarios 
in the future are shown in Table 11.

Table 6. Carbon emission scenario description of the transportation industry.

Scenario Scenario description

Baseline  
scenario

Under the premise that the economic development of Shaanxi Province complies with the general rules of econom-
ics, the policy of maintaining the same level of energy environment and energy structure will continue to be imple-

mented.

Energy sav-
ing scenario

This scenario emphasizes optimizing the energy composition of the transportation sector and enhancing energy ef-
ficiency. While state-formulated policies support the continued growth of the transportation industry, they do not 

address aspects such as residents’ travel patterns or industrial structure.

Low carbon 
scenario

This scenario fully considers the impact of transportation on the environment. The government actively adopts poli-
cies to seek ways to reduce carbon emissions in the transportation industry and promotes the development of green 

and low-carbon transportation.

Table 7. Change rate of carbon emission factors in the transportation industry.

scenario
rate of change

ES EC CT TGDP VO U

Baseline scenario Low Low High High Low High

Energy saving scenario Middle Middle Middle Middle Middle Middle

Low carbon scenario High High High Middle High Low

Table 8. Change rate of GDP in the transportation industry.

rate of change
GDP of the transportation industry

2022–2025 2026–2030 2031–2035 2036–2040

High 5.96% 4.26% 3.42% 2.96%

Middle 4.65% 3.55% 2.15% 1.92%

Low 3.37% 2.48% 1.14% 0.91%
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Energy structure. The average annual growth rate 
of the energy structure from 2000 to 2019 was 7.6%. 
The Outline for Building a Powerful Transportation Nation 
proposes to “optimize the transportation energy structure, 
promote the application of new energy and clean energy, 
and promote all urban public and urban logistics distribu-
tion vehicles to be electrified, new energy and clean.” 
The rate of change of the energy structure under different 
scenarios in the future is shown in Table 12.

Motor vehicle ownership. According to the average 
annual change in motor vehicle ownership in Shaanxi 
Province from 1995 to 2021 of 2.3%, the number of civil-
ian vehicles had reached 8 million by the end of 2020, 
and the average annual maximum change did not exceed 

2.5%. The change rates of motor vehicle ownership under 
different scenarios in the future are shown in Table 13.

Multi-Scenario Forecast Results

The trained DFE-IPOA-KELM model is used to predict 
carbon emissions in the transportation industry from 2022 
to 2040. This work uses this model to study the carbon 
emissions, peak value, and peak time of the transporta-
tion industry during this period. Based on the above sce-
nario settings, the trained DFE-IPOA-KELM model is 
used to predict transportation carbon emissions in Shaanxi 
Province year by scenario. The carbon emissions from 
the transportation industry in Shaanxi Province from 2022 

Table 9. Change rate of cargo turnover.

rate of change
cargo turnover

2022–2025 2026–2030 2031–2035 2036–2040

High 3.8% 3.1% 2.4% 1.5%

Middle 3.5% 2.8% 2.1% 1.3%

Low 3.2% 2.6% 1.9% 0.9%

Table 10. Change rate of urbanization.

rate of change
urbanization rate

2022–2025 2026–2030 2031–2035 2036–2040
High 1.29% 1.12% 0.96% 0.65%

Middle 1.16% 0.95% 0.81% 0.50%

Low 0.98% 0.78% 0.65% 0.35%

Table 11. Change rate of energy consumption.

rate of change
energy consumption

2022–2025 2026–2030 2031–2035 2036–2040

High -4.24% -2.14% -1.98% -1.65%

Middle -4.11% -3.79% -1.71% -1.42%

Low -5.26% -2.29% -2.12% -1.09%

Table 12. Change rate of energy structure.

rate of change
energy structure

2022–2025 2026–2030 2031–2035 2036–2040

High -3.24% 2.26% -1.82% -0.92%

Middle -3.74% -3.08% -2.48% -0.16%

Low -4.18% -2.61% -2.19% -1.29%
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to 2040 under the three scenarios of baseline, energy saving, 
and low carbon are shown in Fig. 13.

The prediction results show that after reaching their 
peak of carbon emissions, carbon emissions from the trans-
portation industry in Shaanxi Province will gradually show 
a slow downward trend in the future. Under different sce-
narios, the peak value of carbon emissions in the transporta-
tion industry is different, and the time to reach the peak is 
also different. Under the baseline scenario, carbon emis-
sions from the transportation industry will only reach a peak 
in 2032 and peak at 4.81 million tons. Under current social 
and economic development, the peak carbon emissions 
of the transportation industry in Shaanxi Province are more 
realistically reflected in this scenario. Under the energy-
saving scenario, the carbon emissions of the transportation 
industry in Shaanxi Province will peak at 4.01 million tons 
of carbon emissions in 2029. This scenario focuses on 
the optimization of the energy structure and the improve-
ment of energy efficiency and promotes the development 
of the transportation industry through the formulation 

of relevant policies. Under the low-carbon scenario, car-
bon emissions from the transportation industry in Shaanxi 
Province will peak at 3.58 million tons in 2027. Under this 
scenario, the transportation industry will gradually carry 
out energy-saving and green development through energy 
structure optimization and industrial structure adjustment. 
Comparative analysis of the three scenarios shows that 
the peak carbon emissions of the low-carbon scenario 
are 34.36% and 19.95% lower than the baseline scenario 
and the energy-saving scenario, respectively, and the peak 
time is also earlier. After peaking in 2027, carbon emis-
sions under the low-carbon scenario show a more obvious 
downward trend.

Discussion

Our study shows that Shaanxi Province’s transportation 
industry is likely to achieve its carbon peak target in 2027 
under a low-carbon scenario. However, under the baseline 

Table 13. Change rate of motor vehicle ownership.

rate of change
motor vehicle ownership

2022–2025 2026–2030 2031–2035 2036–2040

High 2.21% 2.41% 2.01% 1.70%

Middle 2.05% 2.25% 1.85% 1.50%

Low 1.95% 1.95% 1.55% 1.25%

Fig. 13. Transportation industry carbon emission forecast results from 2022 to 2040.
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scenario, the transportation industry in Shaanxi Province 
will reach its carbon peak in 2032. The use of fossil energy 
has led to a sharp increase in carbon dioxide emissions, 
which has put tremendous pressure on environmental pro-
tection. According to the prediction results, it is not difficult 
to find that in Shaanxi Province’s transportation industry, 
to achieve the goal of carbon peaking before 2030, corre-
sponding low-carbon measures must be taken to promote 
carbon emission reduction work.

The transportation industry in China’s regional sector 
constitutes a complex, large, and highly mobile system, 
and the carbon emissions it generates are also a complex 
system problem. Therefore, it is difficult to consider care-
fully in the study of this article, and some factors need to 
be ignored. This study measures carbon emissions from 
the transportation industry; it only calculates direct carbon 
emissions based on the industry’s fossil energy consump-
tion. However, in recent years, the widespread use of new 
energy vehicles in China has caused the transportation 
industry to indirectly produce a portion of carbon dioxide 
emissions. For example, the manufacturing and use of new 
energy vehicles will generate a large amount of electricity 
consumption, which will also indirectly increase carbon 
dioxide emissions from the transportation industry. In addi-
tion, this study ignores carbon emissions from fixed places 
such as stations, terminals, and airports. The lack of this im-
portant data may lead to certain deviations in the measure-
ment results of the industry’s carbon emissions. In the pre-
diction model training stage, due to missing data in some 
years, the amount of data used for model training in this 
study is limited, which may affect the prediction accuracy.

This study conducts modeling and policy simulation 
of the transportation industry’s carbon emission system to 
better describe the development process of the transpor-
tation industry’s carbon emissions and help the Shaanxi 
provincial government formulate a scientific and effec-
tive carbon emission control plan. However, the issue 
of transportation carbon emissions is a complex one. How 
to better simulate the transportation carbon emission sys-
tem in conjunction with carbon emission reduction policy 
requirements still requires further in-depth research. At 
the same time, follow-up research will refine the spatial 
scale of the research object. We hope to use more detailed 
indicators to study the specific situation of transportation 
carbon emissions to make the research results more tar-
geted. In the future, this research will focus on strengthen-
ing the collection and statistics of mileage data for electric 
vehicles, and it is very meaningful to calculate their electric 
energy consumption. How to quantify the impact of new 
energy vehicles on carbon dioxide emissions from China’s 
transportation industry will be a research direction and hot 
spot in the future.

Conclusions

This study proposes a model based on dual feature 
extraction and an improved Pelican algorithm to opti-
mize the kernel extreme learning machine. This model 

has high prediction accuracy and can more accurately 
describe the future carbon emission trend of the transporta-
tion industry in Shaanxi Province. This work first conducts 
a double screening of factors affecting carbon emissions 
in the transportation industry and adds macro-indicators 
that have an impact on carbon emissions as input variables 
of the prediction model. Secondly, by comparing the total 
carbon emission prediction results and error indicators 
of different models from 1995 to 2021, the advantages 
of the DFE-IPOA-KELM prediction model are proven. 
This article draws the following conclusions: 
1. The DFE-IPOA-KELM prediction model construct-

ed in this article has the minimum error-index value. 
Compared with the KELM, SSA-KELM, PSO-KELM, 
POA-KELM, and IPOA-KELM models, the RMSE, 
MAE, and MAPE of this model dropped to 20.63, 
21.57, and 9.81%, respectively, and the R2 increased 
to 97.75%. The prediction accuracy of this model is 
better and is suitable for carbon emission prediction 
in the transportation industry.

2. The trained DFE-IPOA-KELM model is used to predict 
the carbon emissions of the transportation industry 
in three scenarios: baseline, energy saving, and low car-
bon. The predicted peak carbon emission results under 
the three scenarios are 4.81 million tons, 4.01 million 
tons, and 3.58 million tons, respectively, and the peak 
times are 2032, 2029, and 2027, respectively. Accord-
ing to the prediction results of the scenario simulation, 
the total carbon emissions from the transportation in-
dustry in Shaanxi Province will continue to increase 
until 2032. Therefore, in order to realize the carbon 
emission reduction commitment and reach the peak 
of carbon emissions as soon as possible, corresponding 
measures need to be taken to reduce total carbon emis-
sions and actively respond to global warming.
Based on the factors influencing carbon emissions 

in the transportation industry proposed in this article 
and the prediction results of the above model, to enable 
the transportation industry in Shaanxi Province to achieve 
the carbon peak goal as soon as possible, the following 
policies and suggestions are put forward.
1. Focus on promoting the adjustment of the energy struc-

ture and recommend the use of clean energy. The huge 
consumption of fossil energy is the main factor affecting 
transportation carbon emissions. To alleviate the exces-
sive use of primary energy, low-carbon technologies, 
and clean energy should be used as much as possible to 
promote the development of green transportation while 
ensuring the basic needs of transportation. On the other 
hand, we will improve relevant incentive policy systems 
and strengthen the trend toward low-carbon and high-
quality development of related transportation equip-
ment in the transportation field.

2. Promote urbanization rationally and reduce the pres-
sure on land and resources caused by urban expansion. 
Based on the steady economic improvement of Shaanxi 
Province, urban residents’ awareness of low-carbon 
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environmental protection will be gradually improved, 
and the concept of green and low-carbon travel will 
be cultivated. Finally, technological progress and in-
novation related to energy conservation and emission 
reduction should be vigorously encouraged.

3. Carbon dioxide capture and storage (CCUS) technology 
is one of the key technologies to achieve low-carbon 
transformation of fossil energy and cope with climate 
change. China’s CCUS/CCS technology started late, 
so relevant policies should be actively introduced to 
support the development of carbon capture and other 
technologies to achieve the rapid development of CCUS 
technology in China.
Through policy adjustments, Shaanxi Province should fo-

cus on the main factors affecting carbon emissions in the trans-
portation industry, so as to achieve the goal of peaking carbon 
emissions in the transportation industry as soon as possible.
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