
Introduction

Cities are the primary drivers of a country’s economic 
development, and maintaining a harmonious and dynamic 
balance between urban economics and the environment 
is a critical global issue. Cities contribute approximately 
80% to the global GDP, yet they are also responsible for 
over 70% of total global greenhouse gas emissions. On one 
hand, cities serve as hubs for population and industry con-
centration, accommodating more than half of the world’s 

population. The United Nations predicts that by 2050, 
70% of the global population will reside in urban areas. 
On the other hand, resource consumption and environ-
mental pollution resulting from human activities present 
significant challenges to the sustainability of urban devel-
opment [1]. As China’s urbanization process undergoes 
a gradual shift from high-speed expansion to high-quality 
development, the urban development paradigm is required 
to transition from a quantitative growth model overly reliant 
on resources to a qualitative growth model that takes into 
account resource and environmental constraints. Within 
this context, enhancing urban ecological efficiency has 
emerged as an imperative necessity to realize a harmonious 
coexistence of both the quality and quantity dimensions 
of economic development [2].
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Abstract

With the emergence of carbon neutrality and peak carbon emissions goals, coupled with the rapid 
expansion of the digital economy, digital technologies have a significant impact on environmental gov-
ernance. This study, based on panel data from 247 Chinese cities spanning 2007 to 2021, employs multi-
period DID and SDM to examine the impact of digital infrastructure on urban ecological efficiency. 
Findings indicate a positive relationship between digital infrastructure and urban ecological efficiency, 
consistent across various robustness tests. Resource-based cities in both the eastern and western re-
gions, as well as those implementing pilot policies, benefit more from digital infrastructure. The study 
identifies three main channels through which digital infrastructure affects ecological efficiency: promot-
ing green innovation, supporting information platforms, and upgrading industrial structures. Addition-
ally, it notes a negative spatial spillover effect on neighboring cities’ ecological efficiency. By integrating 
digital infrastructure and urban ecological efficiency, this study offers insights into their spatial dynam-
ics, informing future research and policy implementation in this area.
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the impact pathways of digital infrastructure on urban 
ecological efficiency plays a crucial role in achieving green 
and sustainable development in China and worldwide. To 
fully leverage the supportive role of the latest informa-
tion technology in urban upgrading and transformation, 
the Chinese government initiated the National Smart City 
Pilot Program in 2012. Over the next two years, the scope 
of the pilot program was gradually expanded. As of 2020, 
the number of pilot cities in China’s smart city develop-
ment approached 500 (covering over 89% of cities at or 
above the prefecture level and 47% of cities at or above 
the county level). The challenge of maintaining orderly 
and sustainable urban development has become a pressing 
issue for many countries [17]. Against this backdrop, this 
study explores whether digital infrastructure will contribute 
to the improvement of urban ecological efficiency, aiming 
to provide insights into achieving a dynamic balance be-
tween economic development and ecological conservation 
in cities.

Currently, research related to Digital Infrastructure Con-
struction (DIC) and Urban Ecological Efficiency (UEE) 
primarily focuses on the spatiotemporal evolution of eco-
logical efficiency measurement and the impact of digital 
infrastructure on specific industries or sectors. Few studies 
combine the two and analyze their transmission mecha-
nisms. The most relevant research to this paper at present 
is Ren et al.’s (2023) study on the impact of new digital 
infrastructure construction on agricultural ecological ef-
ficiency. However, research on the effect of DIC on cities 
remains confined to a single industry or sector. The find-
ings of this paper may contribute to the field of urban 
ecological efficiency. Secondly, this paper, building on 
existing research, incorporates a carbon emissions inven-
tory as a non-desired output into ecological efficiency 
indicator construction, aiming to enhance the ecological 
efficiency indicator system. Lastly, there is currently no 
standardized characterization of DIC in research, with 
most studies portraying DIC as a single indicator such as 
internet or broadband investment, or using ICT-related 
indicators as substitutes. This not only fails to accurately 
measure the true level of digital infrastructure construction 
but may also result in endogeneity issues with ecological 
efficiency. In this paper, we employ the “Smart City” pilot 
as an external shock policy to mitigate potential endogene-
ity in indicator construction, and policy implications are 
derived from the results.

To elucidate the relationship and mechanisms between 
the two, this study employs data from 247 Chinese cities 
from 2007 to 2021. It treats China’s “Smart City” pilot poli-
cies as a quasi-natural experiment, utilizing a multi-period 
DID (difference in differences) and SDM (spatial Durbin 
model) to assess the impact of digital infrastructure devel-
opment on urban ecological efficiency as well as the effec-
tiveness of Smart City policies. The study further examines 
the channels through which Smart City policies influence 
urban ecological efficiency, focusing on green innovation 
drivers, industrial structural upgrades, and information 
platform support. To ensure the reliability of the results, 
this research conducts a series of robustness tests, including 

The concept of ecological efficiency was initially intro-
duced by Schaltegger and Sturm [3] as the ratio of value-
added to environmentally affected value. It served as an 
indicator, bridging the domains of business and sustain-
ability. In 1992, the World Business Council for Sustainable 
Development (WBCSD) first proposed the use of eco-
logical efficiency to evaluate corporate environmental 
performance, aiming to maximize corporate value while 
minimizing resource consumption and negative environ-
mental impacts. Subsequently, ecological efficiency has 
found extensive applications in various research domains, 
including aviation, biotechnology, agricultural production, 
and urban environments [4–6]. Its core principle remains 
focused on achieving low input, low emissions, and high 
output, thereby maximizing product competitiveness while 
reducing threats to the ecological environment [7]. In recent 
years, both the Ratio Approach and Data Envelopment 
Analysis (DEA) have been commonly used to calculate 
various types of efficiencies, including ecological effi-
ciency, land efficiency, and energy efficiency, among others 
[8, 9]. The Ratio Approach defines ecological efficiency as 
the ratio between the value created and the environmental 
impact of products. However, it is susceptible to interfer-
ence from subjective factors in setting indicator weights, 
which may affect the accuracy of results [10]. On the other 
hand, DEA, as a non-parametric frontier analysis method, 
allows the incorporation of multiple indicators into a uni-
fied system and automatically assigns weights, thereby 
capturing the interactions between indicators. DEA offers 
the advantage of providing a measure of relative efficiency 
for each decision-making unit based on the linear relation-
ships between inputs and outputs for each sample rather 
than using absolute weights [11].

With the introduction of carbon peaking and carbon 
neutrality goals and the rapid growth of the digital economy, 
the construction of digital infrastructure centered around 
modern Information and Communication Technology (ICT) 
has significantly impacted China’s environmental govern-
ance approaches [12]. Leveraging digital infrastructure, 
cities have employed digital technologies to transform 
their economic development strategies and resident gov-
ernance models, providing solutions to urban challenges 
such as resource consumption, environmental degradation, 
and unregulated expansion in a cost-effective and highly 
efficient manner [13]. According to the New Infrastruc-
ture Investment Analysis Report, compared to traditional 
infrastructure, investments in digitally upgraded new in-
frastructure have resulted in carbon emissions reductions 
across 22 industries, with a significant decrease in carbon 
emissions. However, it cannot be denied that the high 
energy consumption associated with the operation of digi-
tal infrastructure contradicts the current requirements for 
transitioning towards a green economy [14] Digital infra-
structure, which relies on technologies such as the internet, 
big data, and 5G, expands from the inside out, and this 
expansion includes data centers and other internet facilities 
that intensify societal electricity use. This leads to indus-
trial spillovers and economies of scale, further increasing 
energy consumption [15, 16]. In this context, researching 
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placebo tests, variable substitutions, the elimination of oth-
er policy interferences, and the removal of cities with 
unique characteristics, building upon the baseline regres-
sion analysis. It also takes into consideration that different 
city endowments may have varying effects on empirical 
results. Therefore, heterogeneous tests are conducted on 
the sample, categorized by pilot batch, geographic loca-
tion, and whether the city is resource-intensive. Finally, 
by introducing the SDM to capture the spillover effects 
of Smart City policies, this study aims to provide insights 
and references for future urban ecological development 
and the implementation and promotion of policies.

The remaining sections of this study are arranged as fol-
lows: Section Two presents the policy background and re-
search hypotheses. Section Three describes the research 
methodology and data. Section Four contains the baseline 
regression results and robustness checks. Section Five 
conducts mechanism analysis. Section Six demonstrates 
the spatial spillover effects of the research subjects. Sec-
tion Seven discusses the research findings. Section Eight 
provides the conclusions and policy implications.

Policy Background and Research Hypotheses

Policy Background

The term “Smart City” was first introduced in the 1990s 
with the aim of promoting urbanization in a more tech-
nological, innovative, and globalized direction [18]. 
The content of smart city development includes smart in-
frastructure, intelligent transportation, smart agriculture, 
smart education, and more, with different countries em-
phasizing various aspects of development based on their 
geographical location, ecosystems, and environmental 
resources. In 2012, when the urbanization rate in China 
first exceeded 50%, the Central Economic Work Confer-
ence formally proposed a “new type of urbanization path 
that is intensive, intelligent, green, and low-carbon.” In 
the same year, in December, the first batch of applications 
for Smart City pilot projects commenced, with a total 
of 90 cities entering the pilot list. Over the following two 
years, applications continued, resulting in a total of 277 
Smart City pilot projects. These pilot cities were required 
to undergo Smart City transformations in four major 
areas: security systems and infrastructure, intelligent con-
struction and livability, smart management and services, 
and smart industries and the economy, within a creation 
period of 3–5 years. Ultimately, the Ministry of Hous-
ing and Urban-Rural Development conducted assess-
ments and evaluations. The Smart City policy provided 
an environmental support system for the development 
of new infrastructure, utilizing information technology 
and data-driven solutions for urban governance, fostering 
a virtuous cycle for the economic and ecological sustain-
ability of cities [19]. In summary, the Smart City policy 
pilot projects have provided an excellent quasi-natural 
experiment for evaluating the development of digital 
infrastructure.

Mechanism Analysis

Based on the previous analysis, ecological efficiency 
refers to obtaining optimal green economic outputs with 
minimal input factors and environmental disruption [20]. 
Given the complexity of digital infrastructure’s impact 
on the socio-economic sphere and the dual nature of its 
ecological effects, studying the influence of digital infra-
structure on ecological efficiency requires a comprehen-
sive consideration of both environmental and economic 
aspects. The economic impact brought about by digital 
infrastructure generally manifests as economic benefits. 
Investments in digital infrastructure provide residents with 
more convenient lifestyles and greater job opportunities. 
The increase in consumer surplus resulting from this not 
only far exceeds the investment costs but also promotes 
economic benefits. Additionally, the widespread adop-
tion of information technology helps increase the num-
ber of employees engaged in research and development 
and enhances employee innovation efficiency, thereby 
further strengthening a company’s economic contribution 
to the market [21, 22]. Digitization has brought new dy-
namics and opportunities to economic development, but its 
environmental impact remains subject to debate. Network 
spillover effects of telecommunications infrastructure can 
alter consumers’ energy usage patterns, which favorably 
enhances energy efficiency, thus achieving the sustain-
ability of both the economy and the environment [23–25]. 
However, the strong dependence of ICT on electricity will 
have a long-term impact on national energy consumption 
[26]. The DIC, as a fundamental unit of urban public ser-
vices, inevitably results in significant carbon emissions due 
to its long-term and high-intensity operation. Nevertheless, 
existing research indicates that it is possible to mitigate ur-
ban carbon emissions and significantly reduce the negative 
externalities of digital infrastructure on the environment 
by improving marginal diminishing factor productivity 
and reducing the total energy input [16].

The construction of DIC exhibits different development 
patterns due to variations in factors such as the development 
status, geographical location, and resource environment 
of different cities. Given the relatively small differences 
in the developmental endowment of neighboring cities, 
a successful digital infrastructure construction model can 
provide learning opportunities for surrounding cities, driv-
ing an enhancement in the ecological efficiency levels 
of these neighboring areas. Additionally, DIC facilitates 
the free flow of factors like labor and capital among re-
gions, promoting the “trickle-down” effect from the central 
developing city to stimulate the development of peripheral 
cities and achieve regional resource sharing.

However, based on spatial economics theory, central 
cities can exert a “siphon effect” on neighboring cities 
during their development. As mentioned earlier, DIC is 
characterized by high energy consumption. Typically, ur-
ban planning layouts tend to relocate these heavily pollut-
ing industries to peripheral areas far from the city center, 
which inevitably generates negative external environmental 
impacts on neighboring cities, restraining the ecological 
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efficiency of these surrounding areas. Therefore, when both 
the “trickle-down effect” and the “siphon effect” come into 
play simultaneously, it is challenging to determine the spa-
tial spillover effects of digital infrastructure construction 
on the ecological efficiency of neighboring cities. Further 
empirical analysis is required to address this issue. Hence, 
we put forth Hypothesis 1 and Hypothesis 2.

H1: DIC has the potential to enhance UEE.
H2: DIC influences the UEE of neighboring cities 

through spatial spillover effects. However, the direction 
of this impact remains uncertain.

According to the Diffusion of Innovation (DOI) theory, 
over time, innovation spreads among social actors, and in-
formation dissemination channels are crucial in influencing 
the spread of new ideas [27]. As a vital support for social 
information dissemination, DIC primarily demonstrates its 
role in driving GI in two main aspects: the enhancement 
of innovation efficiency and the reduction of innovation 
costs. DIC, relying on modern technologies such as cloud 
computing, big data, and the internet, possesses character-
istics like openness and sharing. The flow of information 
across time and space promotes the acceleration of knowl-
edge dissemination and the efficiency of resource alloca-
tion, thereby increasing the efficiency of GI across regions. 
Particularly in the context of deep integration between big 
data and the real economy, the flow of innovation factors 
exhibits spatial spillover effects, fostering a virtuous cy-
cle of innovation interaction between regions and sectors 
further accelerating the enhancement of green innovation 
efficiency [28]. Furthermore, based on the absorptive ca-
pacity theory, enterprises, as important agents of green 
technology innovation, can enhance their ability to absorb 
external knowledge through big data. Big data helps enter-
prise managers more efficiently exercise top-down man-
agement, assisting companies in making rational decisions 
and planning, thereby improving the quality and efficiency 
of GI and achieving the sustainable development of both 
internal and external aspects [29]. The environmentally 
friendly nature of GI itself makes it an important means to 
improve UEE. The construction of DIC further enhances 
the promoting effect of this behavior on UEE.

The improvement of regional ecological efficiency is 
a multifaceted process involving interactions among gov-
ernment, society, and businesses [30]. DIC realizes the digi-
tization and networking of public services and simultane-
ously propels the transformation of government governance 
into digital governance. The government can not only apply 
digital technology to environmental management and pre-
diction processes but can also promote environmental pro-
tection, low-carbon production, and living through media 
networks, thereby providing an excellent public service 
environment for enhancing UEE [31]. Digital technology, 
while enhancing the speed of information dissemination, 
also makes market information more open and transparent, 
compelling enterprises towards green reform. Enterprises 
either actively reduce energy consumption and pollution 
emissions using new technologies or are forced to adopt 
cleaner production methods to comply with environmen-
tal regulations [32]. In comparison to the “visible hand” 

and the “invisible hand”, public participation, as a “soft 
tool” for enhancing regional environmental governance 
and green development, possesses unique advantages. 
Due to the inherent lag in information exchange among 
governments, enterprises, and the public, governments 
sometimes cannot promptly monitor whether companies are 
in compliance with their emissions. The public, as direct 
witnesses and victims, can often play a more effective role 
in supervising corporate behavior through their complaint 
actions compared to government oversight [30]. 

The promotion of industrial structure upgrading on UEE 
is manifested in aspects of digital industrialization and in-
dustrial digitalization. On one hand, digital technology, 
with its advantages of fast transmission and broad cover-
age, has rapidly infiltrated various industries and fields, 
giving rise to a plethora of emerging industries such as 
smart healthcare, online education, and new energy vehi-
cles. It integrates digitalization into various aspects of pro-
duction, exchange, distribution, and consumption [33]. 
Digital industrialization transforms the industrial structure 
toward technology-intensive industries with high efficiency 
and low energy consumption, thereby injecting new vitality 
into improving UEE. On the other hand, industrial digitali-
zation is the process of digital technology upgrading tradi-
tional industries, leading to increased production quantity 
and efficiency [34]. The application of digital technology 
propels industries into the era of Industry 4.0, signifying 
the transformation from machine-led manufacturing to 
digital manufacturing. Digitalization automates production 
processes, optimizes resource utilization, and enhances en-
ergy efficiency and production efficiency. The construction 
of digital infrastructure provides technological support for 
industrial digitalization and, to a certain extent, alleviates 
the low UEE resulting from rapid industrialization in cities 
[35, 36]. Hence, Hypothesis 3 is proposed. Fig. 1. illustrates 
the mechanism by which  DIC on UEE.

H3: DIC enhances UEE through green innovation driv-
ing, information platform support, and industrial structure 
upgrading.

Variable Selection and Research Methods

Variables Descriptions

Urban ecological efficiency (UEE) is a key focus of this 
study. To measure UEE, this paper employs the Constant 
Returns to Scale Undesirable Super Slack-Based Measure 
(CRS-US-SBM) model based on non-expected outputs. 
Data Envelopment Analysis (DEA) is a commonly used 
method for assessing ecological efficiency. DEA provides 
a measure of relative efficiency for each decision-making 
unit, computed based on the linear relationship between 
outputs and inputs for each sample, thus mitigating the im-
pact of subjective factors on the results to some extent. 
However, DEA has limitations in accurately measuring 
the efficiency scores of decision-making units with a score 
of 1 and addressing input-output factor slackness issues. 
The non-expected output SBM model improves the DEA 
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model by addressing these issues while incorporating non-
expected outputs into the model [37]. Consequently, this 
paper chooses the CRS-US-SBM model to measure UEE, 
and the calculation formula is as follows:
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(2)

In Equation (1), where there are assumed to be  deci-
sion-making units, each unit comprises three input-output 
components: inputs (x), expected outputs (yg), and non-
expected outputs (yb). These are represented by x–, yg–, and  yb–, 
respectively, indicating the corresponding slack variables. 
The objective function value, p, represents the UEE, with 
m denoting the number of input indicators, s1 indicating 
the number of expected output indicators, and s2 repre-
senting the number of non-expected output indicators. 
Equation (2) presents the conditional constraints of Equa-
tion (1). In practical terms, inputs typically exceed their 
expected values, while the actual expected outputs often 
fall short of their expected values. Considering the situation 

of non-expected outputs, these outputs are invariably “over-
produced” in inefficient cases, so their actual values exceed 
the expected values.

Regarding the selection of UEE indicators, this study 
followed the guidance of existing literature for the selec-
tion of indicators related to inputs and expected outputs. 
Inputs are categorized into four aspects: capital, labor force, 
land, and energy. Expected outputs are measured using 
the nominal GDP at current prices for the given year. Spe-
cific metrics used for calculations are presented in Table 1. 
As for the calculation of non-expected outputs, most exist-
ing literature primarily employs carbon emissions or related 
industrial pollution emissions as measurement indicators. 
This study integrates these indicators into the measure-
ment system, with carbon emissions referring to the China 
Carbon Emissions Inventory developed by Shan et al. 
[38]. This inventory encompasses carbon emissions from 
47 economic sectors within cities, including 17 fossil fuel 
sectors and emissions from cement production. It stands 
as one of the most comprehensive methods for calculating 
carbon emissions in Chinese cities to date and is sourced 
from the China Emissions Accounts and Datasets (CEADs). 
Other indicators of ecological efficiency are derived from 
the China City Statistical Yearbook (CCSY). Fig. 2. illus-
trates the temporal and spatial distribution of ecological 
efficiency across 247 sampled cities for the years 2007, 
2015, 2018, and 2021.

Digital Infrastructure Construction (DIC) is integral to 
this study. The policy pilot cities for smart cities provide 
an ideal quasi-natural experiment for assessing the impact 
of DIC on UEE. The implementation of smart city policies 
occurred in three phases. Certain cities with substantial 
missing data were excluded from the sample. Ultimately, 

Fig. 1. The theoretical mechanism for the effect of DIC on UEE.
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93 cities from the three policy phases were selected as 
the experimental group, while the remaining 154 cities 
were considered the control group. Furthermore, the policy 
announcements for the first and third phases were made 
in 2012 and 2014, but the list of cities was officially pub-
lished in January 2013 and April 2015, respectively. Taking 
into account the time lag associated with policy implemen-
tation, this empirical research considers a one-year delay 

in the policy pilot dates, which corresponds to the years 
2013, 2014, and 2015.

Based on relevant studies regarding DI and UEE, 
this study incorporates the following variables as control 
variables:1. Financial development level. Represented by 
the proportion of year-end RMB loans held by financial 
institutions to regional GDP. 2. Level of openness to foreign 
direct investment. Measured by the ratio of the actual use 

Table 1. Input-output indexes of UEE.

Indexes Variable Measurement Units Source

Input

Capital Total investment in fixed assets (excluding farmers) 104yuan CCSY

Labor Urban employees people CCSY

Land Administrative area land area Km2 CCSY

Energy
Electricity consumption 104 kWh CCSY

Water supply 104 tons CCSY

Out

Desirable output Nominal GDP 104yuan CCSY

Undesirable output

industrial wastewater 104t CCSY

industrial sulfur dioxide t CCSY

industrial fumes t CCSY

carbon emissions 106t CEADs

Fig. 2. Spatiotemporal distribution of UEE in 4 years.
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of foreign direct investment in a given year to regional GDP. 
3. Population density. Represented by the ratio of the year-
end population to the land area of the administrative region. 
4. Government intervention level. Indicated by general 
budget expenditure as a proportion of regional GDP. 5. 
Social consumption level. Measured by the proportion 
of total retail sales of social consumer goods in the city 
to regional GDP. 6. Human resource reserve. Represented 
by the number of students currently enrolled in ordinary 
secondary schools. 

Mediating Variables: 1. Green Innovation Drive (GID). 
Represented by the number of green patent applications. 
Following the calculation method of Shiwei et al. [39], this 
variable aggregates the number of green patent applica-
tions at the city level using the green patent list provided 
by the National Intellectual Property Office and the World 
Intellectual Property Organization (WIPO). The data is 
subsequently logarithmically transformed. 2. Information 
Platform Support (IPS). Measured by the number of broad-
band internet access users per 100 people. 3. Industrial 
Structure Upgrading (ISU). Indicated by the proportion 
of the value-added by the tertiary industry to GDP.

Research Models

This study focuses on the Smart City Policy pilot policy 
and analyzes the impact of DIC on UEE. Given the tempo-
ral and regional variations in pilot policies, we designate 
the Smart City pilot cities as the experimental group, while 
the remaining cities serve as the control group. To examine 
the effects, we employ the multi-period difference-in-differ-
ence (DID) method. The model is constructed as follows:

	 UEEit = α0 + α1DIDit + α2CONTROLSit + δit + εit	 (3)

In the equation above, UEEit denotes the UEE index for 
cityin year. DIDit is a binary dummy variable representing 
the smart city policy pilot. It takes the value of 1 if cityis 
designated as a smart city pilot in year, and 0 otherwise. 
CONTROLSit includes a series of control variables that vary 
with changes in i and t. δit represents the city and time with 
interactive fixed effects. Following the method proposed 
by Bai [40], interactive fixed effects not only incorporate 
individual fixed effects but are more stringent, as they 
can control for factors at both the regional and temporal 
dimensions that may influence the dependent variable, 
thus mitigating omitted variable bias. εit represents the ran-
dom disturbance term, and standard errors are clustered 
at the city level. α1 is the coefficient of primary interest 
in this study. If the coefficient is significantly positive, it 
demonstrates that DIC has a promoting effect on UEE.

To further identify the mechanisms through which ISU, 
GID, and IPS influence UEE in the context of DIC, we 
constructed and tested the mediation effect model:

	 Midit = β0 + β1DIDit + β2CONTROLSit + δit + εit	 (4)

In the equation above, Midit represents the mediating 
variable. First, observe the coefficient of α1 in the baseline 

regression in equation (3). If it is statistically significant, it 
demonstrates a significant effect of DIC on UEE. Next, use 
equation (4) to perform a regression test of the significance 
of β1. If it is statistically significant and positive, it indi-
cates a positive mediating effect of the mediating variable 
in the influence of DIC on UEE, and vice versa.

To investigate the potential spatial spillover effects 
of DIC on UEE, we construct a spatial econometric model 
based on Lesage and Pace [41]:

UEEit = α0 + ρÂN
j≠i ωijUEEit + α1DIDit + α2CONTROLSit 

+ υ1Â
N
j≠i ωijDIDit + υ2Â

N
j≠i ωijCONTROLSit + δit + εit

 (5)

In the equation, ωij represents the spatial weight matrix, 
ρ stands for the spatial lag autoregressive coefficient, and υ1 
and υ2 denote the regression coefficients for the spatial 
interaction terms of the explanatory and control variables. 
To account for the effects resulting from both geographical 
distance and economic distance, this study opts for the spa-
tial inverse distance matrix for estimation.

The data for this study was sourced from the China 
City Statistical Yearbook (CCSY), the China Carbon Ac-
counting Database (CEADs), various provincial statistical 
yearbooks, and national economic and social development 
statistical bulletins. Samples with severe missing data were 
removed, and interpolation was applied to supplement some 
missing data. Descriptive statistics for each variable are 
provided in Table 2.

Results and Discussion
Benchmark Regression Results

Table 3 presents the empirical results of the impact 
of DIC on UEE. We employ a progressive regression 
approach, categorizing control variables into economic 
and non-economic factors and conducting stepwise regres-
sions. Observing columns (1) to (4) of Table 3, it can be 
noted that the inclusion or exclusion of control variables 
does not affect the significance of the regression coef-
ficients significantly. The minor changes in coefficients 
suggest that smart city pilot policies, as a quasi-natural 
experiment, exhibit strong exogeneity, with minimal po-
tential influence from selected economic factors and other 
unobservable variables. Regarding economic significance1, 
the implementation of smart city pilot policies results in an 
average increase of 1.06% in urban ecological efficiency. 
The estimated coefficients for smart cities are statistically 
significant in different models, indicating that, compared to 
cities that have not implemented smart city pilot projects, 
DIC in pilot cities more effectively promotes the enhance-
ment of UEE. Thus, Hypothesis 1 is supported.

1	 The formula to calculate economic significance is: (Regres-
sion coefficient of the independent variable * Standard de-
viation) / Mean of the dependent variable.
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Endogeneity Test2

There may be endogeneity issues between the digi-
tal economy and urban ecological efficiency, suggesting 
the need to select appropriate instrumental variables for test-
ing. Following the approach of Huang et al. [42], this study 
uses the number of fixed telephones in each city in 1984 as an 
instrumental variable. On the one hand, the quantity of fixed 
telephones in the 1980s significantly represents the his-
torical development of telecommunications infrastructure 
in a given locality, and it has had a substantial influence on 
the subsequent application of internet technology from both 
a technological and lifestyle perspective. On the other hand, 
as the level of economic development increases, the impor-
tance of fixed telephones gradually decreases with a decrease 
in their frequency of use, satisfying the exogeneity require-
ments of instrumental variables. To construct panel data that 
meets the research needs, the number of fixed telephones 
in each city in 1984 interacted with the previous year’s 
national internet users and the year-end mobile phone users 
to create instrumental variables I and II. Additionally, fol-
lowing the study by Xun et al. [43], the spherical distance 
from each city to Hangzhou is chosen as the third instru-
mental variable for DIC. These three instrumental variables 
are then incorporated into the regression model. Table 4 
demonstrates that, under the premise of weak identification 
and overidentification tests, the effect of digital infrastruc-
ture development on improving UEE remains valid and is 
significant at the 1% level.

2	 We conducted robustness checks, including parallel trend 
tests, placebo tests, replacing the dependent variable, con-
trolling for other policy interferences, and removing samples 
with weak endogeneity. Due to space limitations, these re-
sults are not presented in the main text but can be provided if 
you need.

Heterogeneity Analysis

Batch Effects Analysis

Given that the smart city pilot policy was imple-
mented in three different batches, it is essential to inves-
tigate whether the policy’s impact on UEE varies across 
these different implementation phases. To achieve this, 
three dummy variables, namely DID2013it, DID2014it, 
and DID2015it, were introduced in regression analyses 
to assess the differential effects of policy implementa-
tion in different years on UEE. The results are presented 
in Table 5. The first four columns of Table 5 report 
the regression results for the initial two years of policy 
implementation. It can be observed that the second batch 
of pilot cities had a significantly lower positive impact 
on UEE compared to the first batch. This divergence 
in outcomes may be attributed to various factors. Firstly, 
the initial pilot cities bear the responsibility of setting an 
example, and governments invest substantial resources 
to build smart cities, hoping they will serve as dem-
onstrations for broader implementation in other cities. 
Secondly, after the success of the first batch, the second 
batch of cities might tend to replicate the development 
models without innovation, which might not be con-
ducive to their own urban development [44]. The last 
two columns of Table 5 present the results for the third 
batch of pilot cities. The estimated coefficients for this 
batch show a slight increase in comparison to the second 
batch. One possible explanation for this increase is that, 
with the introduction of the big data strategy, smart city 
policies could leverage more advanced technological 
capabilities in pilot cities, leading to a more pronounced 
enhancement of UEE.

Table 2. Descriptive Statistics.

Variable
full sample experimental group control group

Obs Mean Std.Dev Obs Mean Std.Dev Obs Mean Std.Dev

UEE 3705 0.791 0.068 757 0.799 0.065 2948 0.789 0.068

DID 3705 0.204 0.403 757 1 0 2948 0 0

ISU 3705 0.992 0.559 2948 0.954 0.530 757 1.141 0.637

IPS 3705 11.925 0.912 2948 11.776 0.923 757 12.507 0.574

GID 3705 4.855 1.803 2948 4.627 1.784 757 5.742 1.592

Finance 3705 14.381 1.289 2948 14.259 1.181 757 14.856 1.555

FDI 3705 21.967 2.134 2948 21.912 2.061 757 22.179 2.384

PD 3705 5.859 0.841 2948 5.854 0.831 757 5.876 0.879

Gov 3705 1.181 0.091 2948 1.177 0.091 757 1.197 0.087

Consume 3705 1.368 0.110 2948 1.364 0.107 757 1.385 0.116

HR 3705 1.022 0.021 2948 1.023 0.023 757 1.017 0.011
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Regional Heterogeneity Analysis

Taking into account the vast geographical expanse 
of China and the differences in the endowment of produc-
tion factors across regions, the overall sample was divided 
into four sub-samples representing the Eastern, Central, 
Western, and Northeastern regions of China, respectively, 
to estimate the varied effects of DIC development on these 
different economic zones. Table 6 presents the regres-
sion results, where the estimated coefficient of smart city 
policies is significantly positive in the Eastern and Western 
regions. This suggests that the promotion of UEE through 
DIC development is more pronounced in both the Eastern 
and Western regions. This is because, compared to other 
regions, the Eastern region has better economic founda-
tions, locational advantages, and policy environments, 
which can easily synergize with DIC development, thus 
enhancing UEE. In the Western region, there is a notable 
gap in infrastructure development compared to the East-
ern region, and the implementation of smart city policies 
significantly raises the local level of DIC, resulting in a no-
ticeable improvement in UEE.

Table 3. Baseline estimation results.

Variable
(1) (2) (3) (4)

UEE UEE UEE UEE

DID
0.032*** 0.026*** 0.021*** 0.021***

(0.004) (0.006) (0.005) (0.005)

Finance
0.013* 0.008

(0.007) (0.006)

FDI
-0.001 -0.001

(0.001) (0.001)

Consume
-0.045** -0.052***

(0.018) (0.016)

PD
0.013 0.012

(0.021) (0.021)

Gov
0.194*** 0.144**

(0.052) (0.066)

HR
-0.201* -0.185*

(0.113) (0.107)

City×Year FE YES YES YES YES

N 3705 3705 3705 3705

R2 0.997 0.997 0.997 0.997

Note: robust standard errors in parentheses; City×Year FE refers to city and year fixed effects; *p < 0.1, **p < 0.05, and ***p < 0.01.

Table 4. Endogeneity test.

Variable
First stage  
regression

Second stage  
regression

DID IV

DID
0.160***

(0.028)

IV Ⅰ
0.000***

(0.000)

IV Ⅱ
-0.000***

(0.000)

IV Ⅲ
-0.053***

(0.007)

Kleibergen-Paap rk 
LM statistic

31.83 31.83

[0.000] [0.000]

Kleibergen-Paap Wald 
rk F statistic

136.71 136.712

[34.44] [34.441]

City×Year FE
YES YES

YES YES

N 2983 1170

Note: robust standard errors in parentheses; City×Year FE refers to city 
and year fixed effects; *p < 0.1, **p < 0.05, and ***p < 0.01.
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Resource Endowment Heterogeneity Analysis

The resource endowment of cities plays a significant 
role in influencing UEE. This study classifies cities into 
resource-based and non-resource-based categories for re-
gression analysis3. The results, as presented in Table 7, 
columns (1) and (2), show that the estimated coefficients 
for smart cities are significantly positive in both categories. 
However, the estimated coefficient for resource-based cities 
is larger. This is mainly because smart city policies in re-
source-based cities can generate more substantial energy-
saving and emission reduction effects, thereby promoting 
improvements in UEE. Additionally, the “Notice” further 
classifies resource-based cities into four types: growth, 
mature, declining, and regenerative, based on their resource 
security and sustainable development capabilities. This 
study matches these classifications with the sample cities 
for regression analysis, as shown in the last four columns 
of Table 7. Only mature and regenerative cities pass the sig-
nificance test at the 10% level, indicating that smart city 

3	 Criteria for classification can be found at: https://www.gov.
cn/zwgk/2013-12/03/content_2540070.htm

policies have a more significant impact on improving UEE 
in these two city types.

Mechanism Analysis

Based on the theoretical analysis presented in Section 
3.2, within the context of DIC, green innovation driv-
ing, information platform support, and industrial structure 
upgrading can promote UEE. This section examines how 
these three mechanisms play a role in the impact of DIC 
on UEE. Building upon the previous analysis, this mecha-
nism test does not incorporate the mediation variables 
as control variables into the baseline regression model. 
There are two reasons for this: firstly, a review of previous 
literature establishes that the selected mediation variables 
have a positive impact on the dependent variable; secondly, 
including them in the base model may introduce potential 
endogeneity. Hence, in this section, Equations (3) and (4) 
are used to regress the three mechanisms to examine their 
operative pathways.

Table 8, column (1), presents the baseline regression 
results, while column (2) depicts the regression results 
of green innovation driving smart cities. The significant 
positive estimate for smart cities suggests that DIC can 

Table 5. Heterogeneity analysis based on different batches.

Variable (1) (2) (3) (4) (5) (6)

DID2013it

0.037*** 0.025***

(0.007) (0.008)

DID2014it

0.022*** 0.007**

(0.007) (0.008)

DID2015it

0.042*** 0.028***

(0.008) (0.009)

CONTROLS YES YES YES YES YES YES

City×Year FE YES YES YES YES YES YES

N 3705 3705 3705 3705 3705 3705

R2 0.997 0.997 0.997 0.997 0.997 0.997

Note: robust standard errors in parentheses; City×Year FE refers to city and year fixed effects; *p < 0.1, **p < 0.05, and ***p < 0.01.

Table 6. Heterogeneity analysis is based on different areas.

Variable Eastern Central Western Northeast

DID
0.013* 0.012 0.016* -0.007

(0.007) (0.009) (0.010) (0.012)

CONTROLS YES YES YES YES

City×Year FE YES YES YES YES

N 1230 1095 960 420

R2 0.998 0.997 0.997 0.997

Note: robust standard errors in parentheses; City×Year FE refers to city and year fixed effects; *p < 0.1, **p < 0.05, and ***p < 0.01.
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enhance a city’s green innovation capability. Moreover, 
green technological innovation is considered one of the so-
lutions to global climate change and energy consumption 
[45], and its inherent environmentally friendly charac-
teristics are also crucial for improving UEE. Column (3) 
demonstrates the results of information platform support for 
smart cities. The estimate of 0.603, along with its passing 
of the 1% significance test, signifies that DIC promotes 
the development of information platforms. Additionally, 
information platforms support the multi-stakeholder gov-
ernance structure of government-society-enterprise in envi-
ronmental governance, leading to reduced pollution emis-
sions, resource consumption, and other non-desired outputs, 
thereby enhancing UEE. Column (4) reveals that smart 
cities also significantly promote urban industrial structure 
upgrading. Industrial structure upgrading can positively 
impact urban economic development and environmental 
governance through digital industrialization and industrial 
digitization. As a result, it contributes to the enhance-
ment of urban ecological efficiency. Thus, Hypothesis 3 
is supported.

Spatial Spillover Regression Results

The above analysis is based on the DID model, which 
conducted baseline regression, robustness tests, heteroge-
neity analysis, and mechanism testing on the relationship 

between smart city policies and UEE. In this section, a spa-
tial econometric model will be used to examine the spa-
tial spillover effects of smart city policies. Additionally, 
based on the regression results, we will determine whether 
the dominant effect in the spatial spillover process is the “si-
phoning effect” or the “trickle-down effect.” This will pro-
vide empirical evidence for future policy implementation. 
Before the regression, the Global Moran’s I test was applied 
to assess the spatial correlation between the explanatory 
variable and the dependent variable. Table 9 indicates that 
over the fifteen years from 2007 to 2021, UEE’s Moran’s 
I was significantly greater than 0, implying a significant 
positive spatial autocorrelation in UEE. Since the smart 
city pilot policies began in 2013, the table reports Moran’s 
I only after 2013, which also exhibits significant positive 
spatial autocorrelation. This suggests that the smart city 
pilot policies not only influence the UEE of the host city 
but also affect neighboring cities, necessitating the con-
struction of an appropriate spatial econometric model to 
examine policy effects.

The test results in Table 10 show that the LM statistic is 
significant at the 1% level, indicating the appropriateness 
of selecting a spatial econometric model. The LR test statis-
tic and the Wald test statistic are also significant at the 1% 
level, indicating that the Spatial Durbin Model (SDM) is 
superior to the Spatial Error Model (SER) and the Spatial 
Lag Model (SAR). The LR test for spatiotemporal effects 

Table 7. Heterogeneity analysis is based on different resources.

Variable
(1) (2) (3) (4) (5) (6)

Non-resource Resource-based Growing Mature Declining Regenerative

DID
0.017** 0.024*** 0.017 0.016* 0.023 0.044*

(0.007) (0.008) (0.038) (0.008) (0.016) (0.023)

CONTROLS YES YES YES YES YES YES

City×Year FE YES YES YES YES YES YES

N 2385 1320 135 690 315 180

R2 0.997 0.997 0.996 0.997 0.997 0.998

Note: robust standard errors in parentheses; City×Year FE refers to city and year fixed effects; *p < 0.1, **p < 0.05, and ***p < 0.01.

Table 8. Results of the mechanism test.

Variable
(1) (2) (3) (4)

UEE GID IPS ISU

DID
0.021*** 0.901*** 0.603*** 0.171***

(0.005) (0.092) (0.072) (0.037)

CONTROLS YES YES YES YES

City×Year FE YES YES YES YES

N 3705 3705 3705 3705

R2 0.997 0.978 0.998 0.948

Note: robust standard errors in parentheses; City×Year FE refers to city and year fixed effects; *p < 0.1, **p < 0.05, and ***p < 0.01.
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is significant at the 1% level, suggesting that when choos-
ing the SDM model, a spatiotemporal fixed-effects model 
is more effective. Based on this, we select the SDM model 
with spatiotemporal fixed effects for our analysis.

Table 11 presents the regression results of the spatial 
econometric models. The first three columns represent 
the regressions using three different models. Based on 
the R-squared statistic and the significance of the explana-
tory variables, the Spatial Durbin Model (SDM) is the rela-
tively optimal choice. The coefficient for smart cities is 
-0.007 and is significant at the 1% level, indicating a nega-
tive spatial spillover effect of smart cities on urban ecologi-
cal efficiency, with the predominant role of the “siphon ef-
fect.” The following three columns break down the spillover 
effects within the SDM model: The direct effect represents 
the impact of smart city policies on local ecological ef-
ficiency, with a coefficient sign opposite to the baseline 
regression due to the consideration of variable spatial lags 
in the spatial econometric model. The indirect effect reflects 
the influence of smart city policies on the UEE of neighbor-
ing areas, which is the spatial spillover effect of particular 
interest in this chapter. The estimated coefficient for smart 
city policies is -0.138, signifying, at a 1% confidence level, 
that DIC has an inhibitory effect on the UEE of surround-
ing cities. This result aligns with the “pollution haven” 
hypothesis, suggesting that industries with severe pollution 
tend to relocate from areas with stringent environmental 

regulations to regions with weaker regulations [46]. Cities 
implementing smart city initiatives are likely to enhance lo-
cal environmental regulations, potentially leading to a pol-
lution refuge effect between regions, which, in turn, causes 
the siphon effect of pilot cities on adjacent cities, resulting 
in decreased UEE. The total effect is the sum of the direct 
and indirect effects, further demonstrating that, in the spatial 
econometric model, DIC has a negative spillover effect on 
the UEE of surrounding cities.

Conclusions

Compared to traditional infrastructure such as transpor-
tation and postal services, DIC has improved public service 
quality and enhanced resource allocation efficiency through 
digitization, thereby increasing a city’s ecological effi-
ciency. Treating smart city pilot policies as a quasi-natural 
experiment in DIC, the study found that cities implementing 
pilot policies showed an improvement in UEE relative to 
cities that did not implement these policies. This conclusion 
aligns with the findings of Ghimire and Johnston [47]rain 
gardens, porous pavements, and green roofs are emerging as 
viable strategies for climate change adaptation. The modi-
fied framework includes 4 economic, 11 environmental, 
and 3 social indicators. Using 6 indicators from the frame-
work, at least 1 from each dimension of sustainability, we 

Table 9. Moran’s I (2007–2021).

Year
UEE DID

Year
UEE DID

Moran’s I Moran’s I Moran’s I Moran’s I

2007 0.0190 2015 0.0167 0.0134

2008 0.0121 2016 0.0215 0.0134

2009 0.0234 2017 0.0105 0.0134

2010 0.0171 2018 0.0119 0.0134

2011 0.0195 2019 0.0222 0.0134

2012 0.0166 2020 0.0166 0.0134

2013 0.0131 0.0110 2021 0.0135 0.0134

2014 0.0091 0.0083

Table 10. Results of the spatial panel model selection test.

testing method statistics testing method statistics

LM-Error 206.039*** LR-both/ind 59.58***

Robust- LM-Error 4476.219*** LR- both/time 3745.92***

LM-Lag 75.128*** Wald-SDM/SEM 20.34***

Robust- LM-Lag 20.393*** Wald-SDM/SAR 23.43***

Hausman 190.66***

Note: *p < 0.1, **p < 0.05, and ***p < 0.01.
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demonstrate the methodology to analyze RWH designs. 
We use life cycle assessment and life cycle cost assessment 
to calculate the sustainability indicators of 20 design con-
figurations as Decision Management Objectives (DMOs. 
When examining the mechanisms through which DIC af-
fects UEE, the study found that the estimated coefficient 
for smart city policies’ impact on green innovation was 
the largest. This suggests the importance of technological 
innovation for a city’s sustainable development, consistent 
with the results of Ahmad et al. [48]. Additionally, the influ-
ence of DIC on UEE exhibits resource heterogeneity, with 
a more pronounced promoting effect of DIC on resource-
based cities. This finding differs from the study by Guo et 
al. [49], who analyzed the impact of smart city pilot projects 
on energy and environmental performance, suggesting that 
non-resource-based cities have more diversified industrial 
structures, reducing their reliance on energy. The divergent 
performance of the two types of cities in this study may 
offer insights for future research directions and policy im-
plementation. However, this study has certain limitations. 
First, while it employed smart city pilot policies as a quasi-
natural experiment for DIC and regressed virtual variables 
against UEE, as DIC becomes more comprehensive, its 
evaluation system and measurement indicators will be 
more diverse. Future research can consider standardizing 
DIC variable indicators for more precise regression results. 
Second, the spatiotemporal analysis of UEE should be more 
comprehensive. Due to space limitations, the paper did not 
extensively analyze the spatiotemporal distribution of UEE. 
Based on the results presented in Fig. 2, future research 
could explore the combination of ecological efficiency with 
the Hu Huanyong Line.

This study, based on panel data from 247 cities in China 
from 2007 to 2021, employs multiple-period DID, CRS-
US-SBM, Arc-GIS spatial analysis, and SDM to empiri-
cally investigate the relationship between DIC and UEE. 
The study yields the following findings: (1) DIC has 

a significant positive impact on UEE. This conclusion 
remains valid even after the introduction of instrumental 
variables and a series of robustness checks. (2) The eco-
logical efficiency improvement effect of DIC exhibits dis-
tinct variations based on batches, regions, and resource 
heterogeneity. In eastern and western regions and among 
resource-based cities implementing the first and last batches 
of pilot policies, DIC has a more pronounced positive 
impact on UEE. (3) In the current development stage, 
DIC primarily affects UEE through three channels: green 
innovation, information platform support, and industrial 
structure upgrading. Among these, the influence of green 
innovation is the most substantial. (4) DIC has a negative 
spatial spillover effect on the UEE of neighboring cities. 
This is mainly due to the predominant role of the suction 
effect in its impact process.

Based on these conclusions, the study offers the following 
recommendations: First and foremost, focus on the technical 
integration and environmental enhancement effects of DIC to 
enhance urban ecological efficiency. Additionally, addresses 
the issue of the uneven impacts of DIC on UEE by actively 
promoting resource coordination and experience sharing 
among different regions and various batches of pilot cities, 
thereby reducing regional disparities. Finally, mitigate DIC’s 
negative impacts on neighboring cities’ ecological efficiency 
by establishing an effective regulatory system to monitor 
and reduce environmental pollution from urban develop-
ment. Furthermore, cities can engage in regional cooperation 
mechanisms to collaboratively address the ecological effects 
of DIC and implement environmental protection measures. 
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Table 11. The spatial econometric regression results.

Variable
(1) (2) (3) (4) (5) (6)

SAR SEM SDM Direct effect Spillover effect Total effect

DID
0.002 -0.003 -0.007*** -0.007*** -0.138** -0.146***

(0.002) (0.002) (0.003) (0.003) (0.055) (0.055)

rho/ lambda 0.919*** 0.928*** 0.432***

(0.016) (0.013) (0.103)

sigma2_e 0.001*** 0.001*** 0.003***

(0.000) (0.000) (0.000)

CONTROLS YES YES YES YES YES YES

City×Year FE YES YES YES YES YES YES

N 3705 3705 3705 3705 3705 3705

R2 0.012 0.002 0.012 0.012 0.012 0.012

Note: robust standard errors in parentheses; City×Year FE refers to city and year fixed effects; *p < 0.1, **p < 0.05, and ***p < 0.01.
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