
Introduction

Over the past century, greenhouse gas emissions 
have led to a nearly 1°C increase in average surface 
temperatures, causing irreversible impacts on both humanity 

and ecosystems. To address the increasingly severe climate 
and environmental issues, many countries, including China, 
have formed a consensus to achieve carbon neutrality at 
specific time points. The scale and impact of international 
carbon neutrality efforts are continually expanding. 
Meanwhile, amidst the deep integration of next-generation 
information technologies like 5G, big data, and artificial 
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Abstract

Given the pivotal role of data and computational prowess in driving innovative competitiveness 
during the digital epoch, this study expands the scrutiny of environmental impacts stemming from 
digital technology. It investigates two distinct strata of national-level computing infrastructure (CI)—
namely, the National Supercomputing Centers (NSCs) and the National Big Data Centers (NBDCs)—
focusing on their influence on urban carbon emissions. Employing the synthetic control method, 
the research unveils that despite the heightened energy consumption at both the NSCs and the NBDCs 
(scale effect), these computational infrastructures exhibit disparate effects on urban carbon emissions. 
This incongruity is principally explicated as follows: the establishment of NSCs amplifies regional 
carbon emissions, while the carbon augmentation effects of the NBDCs are negligible. Furthermore, 
through examinations of technological effects and compositional effects, it is ascertained that the CI 
has not significantly improved the structure of local economic sectors, and its triggering effect on green 
innovation is only evident in NSCs. These discerning findings elucidate that high energy consumption 
is a major driver of carbon-intensive outcomes in supercomputing and data centers. Nonetheless, it 
is imperative to underscore that under favorable conditions, computing infrastructure still possesses 
the potential to significantly alleviate the adverse environmental “side effects”.
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intelligence with the real economy, digital transformation 
is rapidly advancing globally. As the infrastructure that 
powers information systems, computational infrastructure 
(CI) has become an indispensable component of economic 
and social development. While supporting technological 
advancements and productivity improvements, it also 
has implications for the energy system and the ecological 
environment [1]. In fact, the digital industry itself is a highly 
energy-consuming and carbon-intensive sector. Joppa 
and Herweijer calculated that greenhouse gas emissions 
from digital technologies increased from 2.5% in 2013 
to 4% in 2020 [2]. Jones predicts that by 2030, the ICT 
industry will account for 8–21% of the world’s electricity 
demand [3]. In 2022, the International Energy Agency’s 
report “Data Centers and Data Transmission Networks” 
reveal that although greenhouse gas emissions from data 
centers and transmission networks accounted for only about 
1% of energy-related greenhouse gas emissions, given 
the growing energy demand, governments and industries 
need to make efforts in energy efficiency, research 
and development, and decarbonizing power supply [4].

Similar to other emerging technologies, there is no 
unanimous consensus in academia regarding the impact 
of digital technology on the environment. Optimists view 
it as a solution to environmental sustainability issues 
[5–8]. Through process automation, digitization reduces 
the input of materials and energy per unit of output [6–9]. 
The diffusion of digital technology accelerates industrial 
upgrading and economic transformation, facilitating 
the transition of manufacturing to services and promoting 
low-carbon economic development [5, 6, 9]. From an 
energy perspective, digitization can lower operational 
costs and enhance energy efficiency across various sectors 
by optimizing supply systems and improving demand 
management [1, 8, 9]. Furthermore, the digital economy can 
advance green technologies, reduce the costs of renewable 
energy usage, and thereby expand its application [5, 6, 
8]. However, despite these advantages, digitization is 
also considered a potential threat to sustainability. Critics 
argue that the large-scale production and construction 
of digital devices make digital technology a significant 
consumer of materials [10, 11]. Moreover, the digital 
industry is highly energy-intensive, especially in terms 
of electricity demand. If the energy structure in a region 
remains reliant on fossil fuels, digital infrastructure may 
further exacerbate pollutant emissions [9, 12, 13]. Given 
the ongoing debate in academia about the environmental 
impact of digital infrastructure and the increasing energy 
demands of the digital industry, it is crucial to provide more 
empirical evidence to clarify the potential environmental 
impacts of digital transformation, especially in sectors with 
high energy consumption.

Since the National Development and Reform Commission 
classified data centers and intelligent computing centers as 
computational infrastructure, various regions in China have 
successively launched new types of digital infrastructure 
construction. At the same time, the rapid development 
of data centers has brought about energy consumption 
issues. According to data calculated by the Open Data 

Center Committee (ODCC), in 2020, China’s data center 
energy consumption totaled 939 billion kWh, with carbon 
emissions of 64.64 million tons. It is projected that by 2030, 
data center energy consumption will reach 3,800 billion 
kWh; if there is limited improvement in the energy structure, 
the total carbon emissions will exceed 200 million tons [14]. 
Therefore, enhancing the carbon efficiency of data centers is 
of significant importance for reducing energy consumption 
in the electricity industry and achieving “dual carbon” 
goals (carbon neutrality and carbon peaking). In 2021, 
the Ministry of Industry and Information Technology issued 
the Three-Year Action Plan for the Development of New 
Data Centers (2021–2023), which states that data centers 
should meet the requirements for being green and low 
carbon. Thus, in this context, this study focuses on two 
national-level CI – the National Supercomputing Centers 
(NSCs) and the National Big Data Centers (NBDCs) – 
examining their impact on the environment, specifically 
whether they will increase CO2 emissions.

When it comes to assessing the environmental effects 
of digitization, existing research often approaches the subject 
from economic [5, 6], financial [15], trade [16], and innovation 
[11]. Some studies focus on specific digital technologies such 
as the internet [17] or big data [18]. In the context of this 
study, the most relevant literature pertains to the assessment 
of environmental effects related to digital infrastructure. 
Some research constructs digital infrastructure indices 
using various indicators [19], while another category treats 
place-based policies as quasi-natural experiments to examine 
the environmental impacts of initiatives like “National Smart 
City” [9] and “Broadband China” [7]. In comparison with 
existing literature, this study’s main contributions lie in: (1) 
Examining the environmental impact of digital infrastructure 
from the perspective of computing power. It provides 
evidence of differentiation in the carbon emissions impact 
between NSCs and NBDCs. (2) Answering the existing 
debate on the environmental effects of digitization. Based 
on a summary of relevant pathways, this study reveals 
the carbon increment effects of CI and clarifies the dominant 
influencing mechanisms. (3) In terms of methodology, 
the multiple synthetic control estimation proposed by 
Quistorff and Galiani [20] is employed. This approach not 
only mitigates the subjectivity in selecting control groups 
inherent in difference-in-differences estimation, but also 
overcomes the limitations of the traditional synthetic control 
method, which can only assess individual entities.

Theoretical Framework 

The Environmental Kuznets Curve 
Theory and Its Key Mechanisms

Since the 1970s, discussions regarding the relationship 
between economic growth and the environment have 
proliferated. The Club of Rome, in The Limits to Growth, 
pointed out that economic growth would eventually be 
constrained by natural resources, implying that a conscious 
effort to slow down development would be necessary. In 
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the 1990s, with the emergence of the Environmental Kuznets 
Curve (EKC) hypothesis, the possibility of development 
coexisting with environmental improvements was proposed. 
EKC reveals an inverted U-shaped relationship between 
economic growth and environmental quality, which 
suggests that in the initial stages of development, economic 
growth could be detrimental to the environment. However, 
as per capita income exceeds a certain threshold, further 
development becomes conducive to sustainability. Grossman 
and Krueger summarized three main pathways through 
which economic growth affects environmental quality: 
scale effects, composition effects, and technological effects 
[21]. Brock and Taylor also presented similar ideas [22]. 
Specifically, the entire process can be understood as follows: 
at a certain technological level, initial development requires 
increased resource inputs for production, which leads to 
higher emissions of pollutants and a decline in environmental 
quality (scale effect). As economic development progresses, 
a shift in the industrial structure towards cleaner economic 
activities may occur, mitigating the negative environmental 
impacts of growth (composition effect). Simultaneously, as 
regions transition towards knowledge-based economies, 
increased investments in research and development (R&D) 
drive technological advancements. This improves resource 
efficiency and fosters the development of green technologies, 
known as the technological effect.

Understanding the driving factors behind carbon emissions 
is of significant importance for clarifying emission reduction 
strategies. The classification of the above three major 
effects has been widely used in the assessment of carbon 
emissions across various socioeconomic activities due to its 
explainability, including studies on the relationship between 
digital technology and the environment. In the research by 
Haldar and Sethi, their hypothesis of an EKC relationship 
between ICT and CO2 is based on an analysis of scale effects 
and technological effects [23]. Although ICT increases energy 
demand by improving production efficiency and stimulating 
economic growth, it also reduces the use of energy in traditional 
sectors. Wang et al. find that a 1% increase in the digital 
economy index led to a 0.886% reduction in CO2 emissions. 
This reduction is attributed to the expansion of the scale 
in the tertiary sector, the decline in coal consumption share 
(composition effect), and the advancement of green technology 
innovation (technological effect) [5]. Research by Shi Daqian 
indicates that the smart city pilot reduced urban pollutant 
emissions by decreasing the share of the secondary industry 
(composition effect) and enhancing patent innovation levels 
(technological effect) [24]. Based on this well-established 
theoretical framework, this study analyzes the impact of CI 
on carbon emissions from the perspectives of scale effect, 
composition effect, and technological effect.

Research Hypotheses

Scale Effect – Increased Energy Demand

The scale effect can be understood as the impact 
of increasing production scale on the environment without 

changing the technology and economic structure. Existing 
research mainly uses indicators directly related to economic 
development, such as per capita GDP [21] and urbanization 
[25], to measure the scale effect. In the context of this article, 
we primarily focus on the potential impact of constructing 
and operating CI on energy input. This can be attributed to 
two types of impacts and one goal: 

Direct Impact: From a technological perspective, to 
ensure the timely and effective supply of services such as 
data processing, storage, and transmission, the hardware 
equipment within data centers needs to run continuously. 
Moreover, software applications also consume a significant 
amount of computing resources to support their operation. 
Deep learning models, for example, use GPUs to increase 
computational speed, which consumes a considerable 
amount of electricity. Additionally, the high-power 
operation of equipment generates a significant amount 
of heat. Cooling devices are typically used to maintain 
the appropriate temperature, and the operation of these 
cooling devices also requires energy support.

Indirect Impact (Environmental rebound effect): Digital 
technologies not only depend on energy and materials 
themselves, but may also further increase energy demand 
by improving energy efficiency. Although the digital 
economy has significant emission reduction potential [5, 6], 
it may also promote the rise in energy demand by reducing 
energy prices, thus creating a rebound effect and increasing 
greenhouse gas emissions [9, 26]. The CI shortens the R&D 
cycle and enhances knowledge production efficiency. 
The increase in energy demand for sectors including science, 
industry, etc., driven by high-performance computing, 
improved data service quality, and falling prices, may 
further increase energy consumption. 

Based on the above analysis, it is reasonable to propose 
the following hypotheses:

H1: Computing infrastructure has a positive impact on 
CO2 emissions, attributable to its amplification of energy 
consumption (scale effect).

Technological Effect – Advancement 
in Green Innovation

The technological effect originally referred to 
the increase in R&D expenditure as regions transitioned 
towards knowledge-based economies, thereby propelling 
technological progress, which, in turn, contributed to 
mitigating the adverse environmental impacts associated 
with development. Technology innovation has been 
recognized as a pivotal solution for addressing environmental 
concerns and achieving sustainable development [11, 27]. 
Meanwhile, the construction of CI offers diverse avenues 
for fostering technological advancement, particularly 
in green technology.

On one hand, this is manifested in the increasing demand 
for green technology. With the continuous expansion 
of supercomputer centers and data centers, a growing 
amount of data is being collected, stored, and processed. 
Meeting the processing and computational demands of data 
necessitates the ongoing development of more efficient 



Yang Haodong, Wang Gaofeng4128

and energy-saving technologies and algorithms [28]. For 
the NSCs in Jinan, a so-called “energy pool” has been 
devised, encompassing a variety of clean and renewable 
energy sources, including solar power, air, geothermal 
energy, and natural gas. The purpose of this initiative is to 
enhance the efficiency of the system’s thermal management, 
ultimately contributing to the reduction of carbon emissions, 
aligning with the “dual carbon” goals.

Furthermore, on the other hand, this is reflected 
in the provision of technical support. At the governance 
level, the NBDCs can harness big data technologies to 
gather and analyze environmental information. The data 
can subsequently be utilized to implement intelligent 
control via machine learning algorithms, thus optimizing 
the operation and management of energy systems. From 
the microeconomic level, CI has the potential to engage 
in collaborative research efforts with other organizations, 
focusing on innovative projects in areas like smart cities 
and low-carbon initiatives.

Existing literature indicates that investments 
in technology innovation, particularly the augmentation 
of green and environmentally friendly patented technologies, 
can effectively reduce regional CO2 emissions [5, 7, 11]. 
CI, encompassing areas such as energy-efficient building 
design, operational management, and energy efficiency 
enhancement, is well-positioned to elevate its level of eco-
efficiency. This covers aspects like the supply of new 
energy resources and optimization of cooling and heating 
systems. Moreover, CI plays a vital role in promoting 
green technology. This not only contributes to alleviating 
the negative environmental impacts associated with 
supercomputing centers, but also opens avenues for regional 
dissemination, consequently enhancing the strength 
of technological effects. In light of the aforementioned 
discussion, we posit the following hypothesis:

H2: Computing infrastructure can contribute to regional 
carbon reduction processes by catalyzing green innovations 
(technological effect).

Composition Effect: Upgrading Industrial Structure

The composition effect refers to the structural changes 
in economic sectors, leading to alterations in the impact 
of economic growth on the environment. If the share 
of low-pollution economic activities increases, this change 
helps harmonize the relationship between development 
and environmental. CI may also act on the environment 
by altering economic structure. Firstly, CI can facilitate 
the aggregation of knowledge elements. As one 
of the fundamental infrastructures of modern information 
technology, CI is characterized by high knowledge 
and technology intensity. Its construction and operation 
require a substantial number of professional technical talents 
and related support services, which can bring new driving 
forces for innovation to the region, promoting the upgrading 
of the industrial structure. Take Tianjin, for example. Under 
the influence of the NSC, Tianhe Science and Technology 
Park and the Industrial Big Data Application Innovation 
Center have been successively established with the aim 

of building an integrated industrial innovation system that 
combines production, education, research, and application. 
This fosters local talent development and international 
cooperation, establishing an information technology 
entrepreneurship base and an emerging industry cluster.

Secondly, when the concentration of digital innovation 
reaches a certain level, it will further accelerate the regional 
digitization of industries. The efficient, clean, low-cost, 
and replicable nature of data overcomes the deficiencies 
of traditional production factors, effectively addressing 
issues such as diminishing returns in the industrial economy 
[29]. By stimulating the development of data services, 
software, and other third industries, digital industrialization 
becomes a new driving force leading to the upgrading 
of the industrial structure [30].

Finally, the CI could drive the spread of knowledge, 
technology, and experience in related fields. The spillover 
effect encourages traditional enterprises to introduce 
intelligent production equipment, accelerate innovative 
production modes, and ultimately achieve a green 
transformation. If this trend reaches a certain scale, it 
will further promote the transformation of the industrial 
structure from high-pollution, high-emission industries to 
low-energy consumption and low-pollution green and clean 
industries.

In Jinan, the city’s industrial structure was primarily 
based on manufacturing in its early stages. Since 
receiving approval for the construction of the NSC 
in 2011, the share of high-tech industry output in the total 
output value of Jinan’s industrial scale has increased 
from 39.6% in 2012 to 54.7% in 2021. Thus, through 
the formation of digital industrialization resulting from 
innovation aggregation and industry digitalization due to 
knowledge spillover, the construction of CI may promote 
the upgrading of the industrial structure, reduce the share 
of development’s negative impact on the environment, 
and increase the proportion of the clean economy.

Based on the above analysis, we propose the following 
hypothesis:

H3: Computing infrastructure can mitigate CO2 
emissions by improving urban industrial structures 
(Composition effect).
Based on the above, a framework is constructed as 
shown in Fig.1.

Institutional Background

From the Twelfth Five-Year Plan for the Development 
of the Communications Industry, which emphasized 
accelerating the development of national information 
infrastructure, to the Fourteenth Five-Year Plan, which 
emphasized the construction of an integrated big data 
center system and building a multi-level CI system. Under 
the backdrop of policy support, the scale and quantity 
of CI and data centers have significantly increased over 
the past decade. In 2023, the Overall Layout Plan for 
Building Digital China further emphasizes optimizing 
the layout of CI, encouraging regions to develop 
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general data centers and supercomputing centers. From 
a perspective of necessity, both technological development 
and societal production require the support of new digital 
technologies (large scientific facilities) represented by 
supercomputers. Under the guidance of policy objectives, 
the development trend of CI sets the tone for the increase 
in energy demand across the digital industry. Based on 
this premise, in the following sections, we will introduce 
two types of computational infrastructure.

“South Gui, North Wu” National Big Data Bases

Since 2013, the three major telecom operators in China 
- China Telecom, China Mobile, and China Unicom - have 
established data centers in the “Guian New Area”, which 
has significantly contributed to the development of the big 
data industry in Guizhou. In February 2015, the “Guian Big 
Data Industry Development Agglomeration Area” became 
the first national-level pilot demonstration zone for big 
data in China. In September of the same year, the State 
Council issued the “Action Plan for Promoting Big Data 
Development”, which clearly stated that Guizhou should 
promote the construction of comprehensive pilot zones for 
big data. The following year, the National Development 

and Reform Commission approved Guizhou’s proposal 
to establish a national comprehensive pilot zone for 
big data (Guizhou), making Guizhou the first national-
level comprehensive pilot zone for big data. As of 2022, 
the digital economy accounts for 44% of the regional GDP 
in Guiyang. The revenue of the software and information 
technology service industry has grown by 87.6%.

Due to its abundant resources and favorable climate, 
the Inner Mongolia Autonomous Region was approved as 
a comprehensive experimental zone for the coordinated 
development of national big data infrastructure in 2016. In 
2020, the “Inner Mongolia Government Cloud Big Data 
Disaster Recovery Center” project was put into operation 
in Ulanqab (Wulanchabu). As of now, more than ten data 
center projects, including Apple, Huawei, and Alibaba, have 
been initiated in the region. Ulanqab has gradually become 
a major hub for the big data industry in northern China. 
Hence, it shares the moniker of “Southern Gui and Northern 
Wu” with Guizhou.

National Supercomputing Centers

The NSC is a data computing institution approved by 
the Ministry of Science and Technology in China. Since 

Fig. 1. Research mechanism framework.
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2009, they have been set up in various cities, including 
Tianjin, Shenzhen, Changsha, etc. While supporting 
scientific research, these centers also empower local 
industrial development. The NSCs mainly rely on various 
supercomputers, including: (1) The “Tianhe” series 
supercomputers at Tianjin, Guangzhou, and Changsha. 
The “Tianhe-1” and “Tianhe-2” supercomputers have 
claimed top positions in the TOP500 from 2010 to 2015. 
(2) The “Dawning” series supercomputers at Shenzhen, 
developed by the Chinese Academy of Sciences. In 2010, 
“Dawning Nebulae” ranked second in the TOP500, marking 
the best performance of this series. (3) The “Sunway” 
series supercomputers developed by the National Research 
Center of Parallel Computer Engineering & Technology are 
primarily used in Jinan and Wuxi. In June 2016, the “Sunway 
Taihu Light” supercomputer topped the TOP500 [https://
www.top500.org].

Research Design

Methodology

While some studies have employed instrumental 
variable estimation methods to identify the impacts of digital 
technologies on the environment, the precise and unbiased 
estimation results require careful selection of instrumental 
variables. In order to investigate the association between 
CI and urban carbon emissions, this study utilizes a causal 
inference theory based on the treatment effect framework, 
comparing the performance of the intervened subjects 
before and after the intervention. Studies adhering to this 
methodology often employ the difference-in-differences 
(DID) approach to assess the environmental effects 
of digital infrastructure [7, 9, 24]. However, it is also 
susceptible to sample self-selection biases and demands 
strict data structures.

This study employs the synthetic control method 
proposed by Abadie, which is suitable for evaluating 
the effects of exogenous shocks in cases with relatively few 
groups [31, 32]. Through a weighted average of synthetic 
cities, this method constructs a control group, circumventing 
issues of “natural assignment” in the DID estimation.

In a more specific context, we assume that the carbon 
emissions of (N+1) cities within the period t ∈ [1, T] 
are known. The i-th city commences the construction 
and operation of a NSC or a NBDCs (treatment group) 
starting at T0 (1 ≤ T0 ≤ T), while the other N cities have not 
initiated national-level CI (synthetic group). YI

it represents 
the carbon emissions for city i influenced by the CI at time 
t, and YK

it is the carbon emissions for city i unaffected by it. 
The treatment effect ait can be expressed as YI

it – YK
it, where  

YI
it represents the known carbon emissions of the city after 

the influence of CI. For YN
it, Abadie et al.’s factor model 

[32] can be used to estimate it:

 YN
it = δt + θtZi + λtμi + εit (1)

In equation (2), δt represents time-fixed effects, μi 
denotes unobservable (F×1) dimensional individual fixed 
effects, Zi represents (R×1) dimensional covariates, θt is 
an unknown (1×R) dimensional parameter vector, and λt 
signifies unobservable (1×F) dimensional common factor 
vector. εit denotes unpredictable short-term shocks with 
a mean of 0.

As per Abadie et al.’s research, it has been demonstrated 
that if there is a sufficiently long pre-shock observation 
period, we can use ω*

tYit�N+1

N=2
 as an unbiased estimate for 

YK
it [32]. Here, ω*

t represents the weight contribution from 
the synthetic control group; k is the individual index for 
the control group. Consequently, we obtain an estimate for 
the environmental effect of CI construction, denoted as ait:

 ω*
tYita^1t = Y1t –�N+1

N=2
 (2)

Furthermore, to overcome the limitations on the number 
of treated units imposed by traditional synthetic control 
methods, this study employs the “synth_runner” program 
developed by Quistorff and Galiani in Stata. This program 
allows for the inclusion of multiple treated units affected at 
different times and directly provides P-values for statistical 
inference, facilitating the statistical inference of treatment 
effects through placebo tests [20].

Variable Selection

(1) Dependent variable: This study employs CO2 
emissions as the dependent variable, sourced from the China 
Emission Accounts and Datasets (CEADs). This database 
encompasses energy inventories, CO2 emission inventories, 
industrial process carbon emission inventories, emission 
factors, input-output tables, etc. It provides measurements 
of carbon emissions across various dimensions, including 
provinces, cities, and counties in China [33, 34].

(2) Mechanism variables: Based on the analysis in Section 
Research Hypotheses, we have identified three categories 
of mechanism variables. Firstly, energy consumption. 
Given that electricity consumption represents a significant 
portion of the energy use in data center infrastructure, this 
study selects urban industrial electricity consumption as 
a proxy for the energy consumption scale [35]. Secondly, 
green innovation. City-level green innovation is measured 
by the granted green patents [5, 7]. Data for this variable is 
sourced from the Green Patent Research Database within 
the China Research Data Service Platform (CNRDS). 
This database classifies patents based on the green patent 
classification standards published by the World Intellectual 
Property Organization (WIPO). Thirdly, industrial structure. 
The study uses the ratio of the third industry to GDP as 
a proxy for industrial structure [5].

(3) Predictive variables: Based on the primary 
mechanisms outlined in the EKC theory, the study selects 
per capita GDP [7, 19, 36], year-end total population [37], 
and the percentage of the secondary industry in GDP 
[37] as predictive variables. Per capita GDP and year-end 
total population represent economic scale, the percentage 
of the secondary industry represents the industrial 
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sector structure (distinct from mechanism variables), 
and technological factors are measured by the proportion 
of city financial S&T expenditures in GDP [7]. Additionally, 
following Abadie et al. [32], the study includes the values 
of the dependent variable (CO2 emissions) for specific 
years before the event as predictive variables. Specifically, 
for the estimation of NSCs, carbon emission values for 
the years 2003, 2005, and 2007 are selected. For NBDCs, 
the years 2003, 2005, 2007, 2009, 2011, and 2013 are 
considered.

Variable Processing and Sample 

(1) Estimation process: This study assesses the carbon 
emission effects of both NSCs and NBDCs separately 
to form a comparison. (2) Selection of treatment group: 
To ensure the fitting effect before the construction 
of NSC, this study excludes cities with relatively later 
construction times. Excluded cities include Wuxi (2016) 
and Zhengzhou (2019), while cities with more concentrated 
construction periods, like Tianjin (2009), Shenzhen (2009), 
Changsha (2010), Guangzhou (2010), and Jinan (2011), 
are retained. (3) Selection of control group: To enhance 
comparability between the treatment and control groups, 
35 large and medium-sized cities are chosen as the control 
group [38]. Interference from infrastructure construction 
in other cities is eliminated (for instance, when evaluating 

the environmental effects of supercomputing centers, big 
data center cities are excluded from the synthetic group, 
and vice versa). Furthermore, samples from Beijing 
and Chengdu are omitted. The former serves as a NBDC, 
while the latter received approval for NSC in 2020. 
(4) Sample period: Given data availability and to meet 
the requirements of the synthetic control method for 
data structure, the research sample includes data from 
cities in China from 2003 to 2020. (5) Data processing 
and sources: Per capita GDP and year-end total population 
are logarithmically transformed. Missing values for some 
predictive variables are handled using interpolation or 
replaced with averages. Apart from carbon emissions 
and green patents, data for other variables are sourced from 
the China City Statistical Yearbook. Based on the above, 
the descriptive statistics of the variables are presented 
in Table 1, and the basic research process is illustrated 
in Fig. 2.

Research Results

Benchmark Tests

As depicted in Fig. 3, the first column represents 
the results for NSCs. The solid line indicates the actual 
carbon emissions for cities with NSCs, while the dashed 

Table 1. Descriptive statistics of variables.

Variable Variable Description
NSC (Panel A) NBDC (Panel B)

Mean SD Min Max Mean SD Min Max

Outcome Variables

Carbon emis-
sion

CO2 emissions
(million tons) 38.918 33.539 1.253 230.712 36.771 31.903 1.253 230.712

Mechanism Variables

Energy Con-
sumption

Industrial electricity 
consumption

(10,000 kilowatt-
hours)

125.193 149.429 1.340 805.760 112.987 140.043 0.975 805.760

Industrial 
Structure_A

Percentage 
of the tertiary sector 45.802 10.497 24.920 89.090 45.117 10.423 24.920 89.090

Green Innova-
tion

Number of green 
patents granted 150.729 314.761 0.000 2481.000 119.723 275.889 0.000 2481.000

Predictor Variables

Economy Per capita GDP
(ten thousand yuan) 9.874 0.972 7.262 12.788 9.804 0.952 7.262 12.389

Population
End-of-year resident 

population (ten 
thousand people)

6.222 0.629 3.920 8.138 6.190 0.632 3.920 8.138

Industrial 
Structure_B

Percentage 
of the secondary 

sector
45.132 8.964 15.050 66.330 45.229 8.940 15.050 66.330

S&T Input Fiscal S&T 
expenditure 0.003 0.003 0.000 0.025 0.003 0.003 0.000 0.025
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line represents the control group obtained from a weighted 
combination of cities in the synthetic group. The vertical 
dashed line signifies the year when the construction 

of the NSC commenced, with the carbon emissions trend 
for supercomputing cities to the left of the dashed line 
reflecting emissions before the intervention. It’s evident 

Fig. 2. Research process diagram.

Fig. 3. Benchmark tests.
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that before the shock, the changes in carbon emissions for 
the control group closely aligned with those in the actual 
supercomputing cities. However, from the second year 
of NSCs construction, the treatment group exhibited 
significantly higher carbon emissions compared to 
the control group. In the lower part of this column, 
the carbon emissions difference between the treatment group 
and control group is further illustrated, which progressively 
increases over time and reaches a peak of approximately 
15 million tons by the end of the sample period.

The second column presents the results for the NBDCs. 
Similarly, the solid line represents the actual carbon 
emissions for cities with NBDCs, while the dashed 
line represents the carbon emissions obtained from 
a weighted combination of cities in the synthetic group. 
To the left of the vertical dashed line, the trends of the solid 
and dashed lines mirror each other, which indicates that 
before the intervention, the synthesized cities provided 
a good fit for the carbon emissions changes. However, 
unlike the NSCs, the treatment group does not show 
higher carbon emissions compared to the control group, 
even after undergoing the intervention. The lower part 
of this column illustrates the specific variations in carbon 
emissions differences between them. It’s observable that, 
in comparison to before the intervention, the former even 
exhibits lower carbon emissions than the latter.

The foregoing findings elucidate that, in comparison to 
NBDCs, NSCs exhibit a more pronounced carbon emission 
effect. The latent underpinnings of this discrepancy can be 
attributed to two facets:

(1) NSCs are more energy-intensive than NBDCs. 
Supercomputing centers are primarily dedicated to 
high-performance computation, entailing continuous 
data transmission and processing, thus necessitating 
a substantial supply of electricity to maintain their high-
speed operation. In contrast, data centers predominantly 
serve the role of data storage and management, resulting 
in comparatively diminished electrical consumption. 

Stevens et al. unearthed that the processing of data by 
supercomputers is the primary contributor to the carbon 
footprint of Australian astronomers [13]. Jahnke et al. 
discerned that within the carbon emissions generated 
by the power consumption of the Max Planck Institute, 
supercomputing constitutes 75-90% [39]. In alignment 
with these findings, Bianchini et al., based on research 
utilizing European urban data, underscored the augmenting 
impact of digital technology on carbon emissions, with 
the influence of computing entities being particularly 
conspicuous [11].

(2) NBDCs benefit from a more abundant supply 
of clean energy in their power distribution systems. 
Compared to cities hosting NSCs, regions like Guiyang 
and Ulanqab, situated in the central and western areas 
of China, enjoy an opulent reservoir of renewable energy 
sources. Guiyang, for instance, draws on hydropower 
sources, while Ulanqab relies on wind energy. As elucidated 
by Allen, the environmental costs of supercomputing are 
significantly contingent upon the provenance of the energy 
that propels the devices [28]. Taking the Dutch National 
Supercomputer as well as the Max Planck Institute 
in Germany as exemplars, these organizations have 
adroitly harnessed wind and solar energy, thereby achieving 
a notably diminished carbon footprint in contrast to their 
fossil fuel-utilizing counterparts [39, 40].

Robustness Test

(1) The placebo test
In this study, we conducted robustness checks following 

the approach of Abadie et al. to verify the evaluation results 
[32]. This method assumes that other cities in the synthetic 
group implemented CI at the same time as the cities 
in the treatment group. We used the SCM to construct 
control groups for each city and calculate the differences 
in carbon emissions. It’s important to note that the placebo 
test requires a good fit between the synthetic group and its 

Table 2. Statistical Inference (Placebo Test).

NSC NBDC

Post-Intervention 
Sample Period treatment effect P value SD Post-Intervention 

Sample Period treatment effect P value SD

0 0.853 0.470 0.389 0 1.222 0.402 0.533

1 3.796* 0.076 0.006 1 0.140 0.943 0.822

2 6.773** 0.028 0.005 2 -1.171 0.641 0.924

3 7.761** 0.042 0.019 3 -2.481 0.537 0.826

4 10.676** 0.016 0.034 4 -3.792 0.494 0.789

5 10.678** 0.017 0.046

6 10.036** 0.037 0.076

7 10.974* 0.052 0.098

8 13.204* 0.054 0.131

9 15.434* 0.057 0.167
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synthetic objects. For this purpose, we establish a threshold 
by multiplying each type of CI’s root mean square prediction 
error (RMSPE) values by 10. Cities with RMSPE values 
exceeding this threshold were excluded, and the remaining 
areas were used for the ranking test. As shown in Table 2, for 
cities with NSCs, the treatment effect has been significantly 
positive since the second year of construction (significantly 
positive at the 5% level in the 2–6 years). However, for 
cities with NBDCs, the treatment effects for all periods 
are not statistically significant. The changes in p-values for 
the treatment effects of CI are shown in Fig. 4.

In summary, the results indicate that the increase 
in carbon emissions in cities with NSCs is not coincidental, 
while the environmental impact of NBDCs construction is 
not statistically significant.

(2) Changing the synthetic group
The treatment effect may be significantly influenced 

by the selection of the synthetic group. To address this, 
the synthetic group is expanded to 70 major cities. 
The list of such cities is obtained from the official website 
of the National Bureau of Statistics of China (http://
www.stats.gov.cn/sj/). Subsequent estimations, as shown 
in the “Change synthetic group” in Table 3, consistently 
demonstrate that the treatment effect of the NSCs is 
statistically significant. The treatment effect of the NBDCs 
remains statistically non-significant.

(3) Considering other policy interferences
The previous estimations might be influenced by 

other policies enacted during the same period. Two 

potential policy interferences are examined: Low-
carbon city policy: Since 2010, China has initiated three 
batches of low-carbon city pilots. After removing all 
samples from cities participating in low-carbon city 
pilot programs from the synthetic group, estimations are 
performed again. The results, as shown in “Consider other 
policy interference (Low-carbon city policy)” in Table 
3, align with the baseline estimation results. Big Data 
Comprehensive Experimental Zones: Apart from Guizhou 
and Inner Mongolia, NBDCs also encompass two cross-
regional comprehensive experimental zones in the Beijing-
Tianjin-Hebei and the Pearl River Delta areas, and four 
regional demonstration-type comprehensive experimental 
zones in Shanghai, Henan, Chongqing, and Shenyang. 
Further estimations are conducted after removing all 
samples belonging to these cities except for the treatment 
group. The results, as presented in “Consider other policy 
interference (Big Data Comprehensive Experimental 
Zones)” in Table 3, indicate that the treatment effect 
remains unchanged.

(4) Winsorizing and altering RMSPE threshold
Does the baseline estimation result suffer from 

the influence of outliers, and does the treatment effect exhibit 
sensitivity due to varying RMSPE thresholds? To answer these 
questions, on the one hand, a 1% trimming of the dependent 
variable is applied, as evidenced by “Winsorizing” in Table 
3, where the characteristics remain consistent with the earlier 
findings. While NBDC is significantly positive at a 5% 
confidence level, which gradually diminishes thereafter. 
On the other hand, the RMSPE threshold in the placebo 

Fig. 4. The evolution of P-values for treatment effects.



The Impact of Computational Power... 4135
Ta

bl
e 

3.
 R

ob
us

tn
es

s t
es

ts.

Po
st-

In
te

rv
en

-
tio

n 
sa

m
pl

e 
pe

rio
d

N
SC

 (P
an

el
 A

)

C
ha

ng
e 

sy
nt

he
tic

 g
ro

up
C

on
sid

er
 o

th
er

 p
ol

ic
y 

 
in

te
rfe

re
nc

e
(L

ow
-c

ar
bo

n 
C

ity
 p

ol
ic

y)

C
on

sid
er

 o
th

er
 p

ol
ic

y 
 

in
te

rfe
re

nc
e

(B
ig

 D
at

a 
C

om
pr

eh
en

siv
e 

Ex
-

pe
rim

en
ta

l Z
on

es
)

W
in

so
riz

in
g

C
ha

ng
in

g 
R

M
SP

E 
Th

re
sh

ol
d

tre
at

m
en

t e
ffe

ct
P 

Va
lu

e
tre

at
m

en
t e

ffe
ct

P 
Va

lu
e

tre
at

m
en

t e
ffe

ct
P 

Va
lu

e
tre

at
m

en
t e

ffe
ct

P 
Va

lu
e

tre
at

m
en

t e
ffe

ct
P 

Va
lu

e

0
0.

75
4 

0.
39

0 
3.

97
6*

* 
0.

02
9 

1.
11

0 
0.

21
9 

3.
23

2*
* 

0.
04

4 
0.

75
4 

0.
39

2 

1
3.

32
9*

 
0.

05
6 

4.
41

2*
* 

0.
03

1 
4.

33
6*

**
 

0.
00

8 
6.

32
5*

**
 

0.
00

7 
3.

32
9*

 
0.

05
8 

2
6.

31
4*

* 
0.

01
4 

4.
86

7*
* 

0.
03

7 
7.

58
3*

**
 

0.
00

1 
8.

57
9*

**
 

0.
00

4 
6.

31
4*

* 
0.

01
5 

3
6.

99
6*

* 
0.

02
4 

5.
66

0*
* 

0.
03

1 
8.

69
4*

**
 

0.
00

2 
9.

53
5*

**
 

0.
00

4 
6.

99
6*

* 
0.

02
5 

4
10

.1
10

**
* 

0.
00

5 
6.

14
2*

* 
0.

02
9 

11
.9

51
**

* 
0.

00
0 

10
.7

78
**

* 
0.

00
2 

10
.1

10
**

* 
0.

00
6 

5
10

.1
68

**
* 

0.
00

4 
6.

07
9*

* 
0.

03
0 

11
.9

04
**

* 
0.

00
0 

10
.8

22
**

* 
0.

00
1 

10
.1

68
**

* 
0.

00
4 

6
9.

52
4*

**
 

0.
00

9 
4.

76
2*

* 
0.

03
5 

11
.1

41
**

* 
0.

00
2 

9.
15

9*
**

 
0.

00
6 

9.
52

4*
**

 
0.

00
9 

7
10

.5
23

**
 

0.
01

4 
5.

25
3*

* 
0.

04
4 

12
.0

30
**

* 
0.

00
5 

10
.3

10
**

 
0.

01
1 

10
.5

23
**

 
0.

01
4 

8
13

.1
54

**
 

0.
01

3 
7.

70
3*

* 
0.

02
6 

14
.5

16
**

* 
0.

00
7 

12
.2

80
**

 
0.

01
4 

13
.1

54
**

 
0.

01
3 

9
15

.7
85

**
 

0.
01

3 
10

.1
53

**
 

0.
02

1 
17

.0
02

**
* 

0.
00

8 
14

.4
47

**
 

0.
01

6 
15

.7
85

**
 

0.
01

3 

Po
st-

In
te

rv
en

-
tio

n 
sa

m
pl

e 
pe

rio
d

N
B

D
C

 (P
an

el
 B

)

C
ha

ng
e 

sy
nt

he
tic

 g
ro

up
C

on
sid

er
 o

th
er

 p
ol

ic
y 

 in
te

rfe
re

nc
e

(L
ow

-c
ar

bo
n 

ci
ty

 p
ol

ic
y)

C
on

sid
er

 o
th

er
 p

ol
ic

y 
 

in
te

rfe
re

nc
e

(B
ig

 D
at

a 
C

om
pr

eh
en

siv
e 

Ex
-

pe
rim

en
ta

l Z
on

es
)

W
in

so
riz

in
g

C
ha

ng
in

g 
R

M
SP

E 
Th

re
sh

ol
d

tre
at

m
en

t e
ffe

ct
P 

Va
lu

e
tre

at
m

en
t e

ffe
ct

P 
Va

lu
e

tre
at

m
en

t e
ffe

ct
P 

Va
lu

e
tre

at
m

en
t e

ffe
ct

P 
Va

lu
e

tre
at

m
en

t e
ffe

ct
P 

Va
lu

e

0
0.

56
7 

0.
67

2 
0.

22
1 

0.
86

5 
2.

24
2 

0.
18

6 
3.

39
9*

* 
0.

04
8 

0.
56

7 
0.

68
9 

1
-1

.1
13

 
0.

49
7 

-1
.0

94
 

0.
55

7 
1.

03
8 

0.
58

0 
3.

06
2 

0.
10

2 
-1

.1
13

 
0.

51
9 

2
-3

.1
58

 
0.

17
8 

-2
.1

55
 

0.
40

0 
-0

.0
77

 
0.

97
3 

2.
67

2 
0.

22
4 

-3
.1

58
 

0.
20

7 

3
-5

.2
04

 
0.

12
7 

-3
.2

17
 

0.
35

3 
-1

.1
92

 
0.

71
1 

2.
28

7 
0.

43
1 

-5
.2

04
 

0.
16

6 

4
-7

.2
50

 
0.

12
0 

-4
.2

79
 

0.
34

3 
-2

.3
07

 
0.

58
6 

1.
90

4 
0.

61
0 

-7
.2

50
 

0.
16

3 



Yang Haodong, Wang Gaofeng4136

test is extended from 10 times to 20 times, as depicted by 
“Changing RMSPE Threshold” in Table 3, and the results 
align with the baseline results.

Mechanism Tests

In order to delve into the mechanisms by which 
CI impacts CO2 emissions, this study, grounded 
in the theoretical analysis outlined in Section 1.2, employs 
two distinct approaches to scrutinize the mechanisms 
from the perspectives of scale effect, technological effect, 
and composition effects. 

On the one hand, we treat the mechanism variables 
as dependent variables and employ the synthetic control 
method to test the impact of NSC on each mechanism 
variable. As demonstrated in Table 4, it is evident that, be 
it the NSC or NBDC, the treatment effects within the scale 
effect tests are significantly positive at different levels. 
This affirms that the CI has stimulated the escalation 
of local industrial electricity consumption. Contemplating 
the starkly different carbon emission effects of the NSC 
and NBDC, along with the two potential causes delineated 
in Section 3.1, we can infer the following results:

(1) The NSC, by augmenting energy consumption, 
exacerbates carbon emissions. (2) The escalation of energy 
consumption does not necessarily lead to an increase 
in carbon emissions (as in the case of the NBDC). This 
indirectly validates the crucial role of energy structure 
(abundant renewable energy resources in Guiyang 
and Ulanqab) in the impact of CI on carbon emissions.

Using the same approach, this study also examines 
technological effect and composition effect. For the former, 
it is discernible that in comparison to the NBDC, 
the technological effects of the NSC are more pronounced. 
The NSC exhibits a more pronounced carbon emission 
effect, leading to higher green demand. Furthermore, high-
performance computing services can offer direct technical 
support for green innovation. The examination results for 
composition effects are presented in the right two columns 
of Table 4. In contrast to the scale effect and technological 
effect, CI has not significantly affected the industrial 
structure, which means its knowledge agglomeration 
and spillover effects require further enhancement.

On the other hand, we employ the “multi-step method” 
based on the difference-in-difference model to conduct 
the mediation effect test [41-43]. The following results are 

Table 4. Results of mechanism tests.

Scale effect Technological effect Composition effect

NSC

Post-Intervention 
sample period treatment effect P Value treatment effect P Value treatment effect P Value

0 9.695 0.243 50.636** 0.048 0.799 0.725 

1 16.305 0.141 56.342** 0.046 1.711 0.488 

2 14.392 0.229 64.166* 0.081 2.208 0.400 

3 25.897* 0.085 151.240*** 0.004 2.103 0.445 

4 35.307* 0.069 139.741*** 0.010 0.458 0.873 

5 64.405** 0.016 183.603*** 0.006 -0.030 0.992 

6 55.095* 0.064 223.667** 0.013 0.624 0.848 

7 79.496** 0.030 295.979*** 0.008 1.547 0.650 

8 -0.978 0.980 315.846*** 0.004 -1.391 0.676 

9 -1.892 0.965 281.383*** 0.008 0.927 0.736 

10 9.695 0.243 50.636** 0.048 0.799 0.725 

NBDC

Post-Intervention 
sample period treatment effect P Value treatment effect P Value treatment effect P Value

0 3.061 0.844 -0.865 0.965 -0.865 0.965 

1 180.178*** 0.007 9.539 0.694 9.539 0.694 

2 192.806*** 0.004 4.404 0.880 4.404 0.880 

3 214.181*** 0.004 3.029 0.912 3.029 0.912 

4 201.759*** 0.007 -0.130 0.995 -0.130 0.995 
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grounded in considerations of individual characteristics 
that remain constant over time (city fixed effect), time-
related features (time fixed effect), and a range of control 
variables mentioned earlier that could influence carbon 
emission factors. The data used in this section consists 
of panel data comprising information from 283 cities 
in China spanning from 2003 to 2020. Given the regional 
correlations, adhering to Elhorst’s (2014) selection 
rules and guided by the premise of the significant 
Moran Index, we conduct LM tests and Wald tests [44]. 
The ultimate decision is to adopt the spatial Durbin model 
as the baseline regression (using the spatial proximity 
matrix). As shown in Table 5 below. (A1) serves as 
the baseline test for the DID model, reflecting a positive 
correlation between NSC construction and urban 
carbon emissions. In column (A2), it is noteworthy 
that the estimated coefficient of NSC (treatment effect 
variable) is significantly positive at the 1% level (64.612), 
indicating a discernible increase in the regional scale 
of energy consumption due to the establishment of NSCs. 
When simultaneously integrating NSC and Energy 
Consumption into the equation, with Carbon Emissions 
as the dependent variable, the results in column (A3) 
reveal a significantly positive estimated coefficient 
of the mechanism variable at the 1% level (0.030). 
Additionally, the absolute value of the NSC estimated 
coefficient experiences a reduction. Meanwhile, it remains 
significantly positive at the 1% level, which suggests 
that NSC contributes to an augmented regional carbon 
emission by amplifying energy consumption. Similar 
results are observed in the tests for the technological 

effect in columns (B1) and (B2). The construction of NSC 
demonstrates its capability to boost green innovation, 
consequently leading to a reduction in regional carbon 
emissions. The results in column (C) indicate that 
NSC does not exert a statistically significant influence 
on the regional industrial structure. In summary, these 
findings align with the results obtained from the SCM 
test in our study.

Heterogeneity Test

The preceding research results indicate that the NSCs 
have promoted an increase in local CO2 emissions. 
However, it is pertinent to investigate whether this impact 
varies among different cities. To answer this question, this 
study estimates the carbon emission effects of the NSC, 
respectively. Based on the outcomes, these cities can be 
classified into two major categories:

(1) Cities with carbon emission effects:
This category includes Tianjin and Changsha, with their 

corresponding estimations displayed in Table 6. The results 
demonstrate that from the first year of the construction 
of the NSCs, the treatment effect becomes evident. 
Furthermore, in comparison to Changsha, NSC in Tianjin 
exhibits a higher scale (magnitude) and significance in its 
treatment effect.

(2) Cities with no significant impact:
The estimations for Guangzhou, Jinan, and Shenzhen 

indicate that the NSCs in these cities do not significantly 

Table 5. Mechanism testing based on the DID model.

(A1) (A2) (A3) (B1) (B2) (C)

Baseline-DID Scale effect Technological effect Composition 
effect

Variables Carbon emis-
sion

Energy Con-
sumption

Carbon emis-
sion Patent_G Carbon emis-

sion
Industrial 

Structure_A

NSC 12.579***
(1.031)

64.612***
(9.909)

10.902***
(0.995)

0.399***
(0.033)

12.856***
(1.049)

-3.990
(11.219)

Energy Consumption 0.030***
(0.001)

Green Innovation -1.321***
(0.436)

ρ 0.814***
(0.041)

0.828***
(0.038)

0.810***
(0.041)

0.177
(0.147)

0.815***
(0.040)

-0.284***
(0.120)

LM-Lag 32.727*** 140.362*** 64.208*** 36.233*** 38.614*** /

Robust LM-Lag 144.240*** 52.426*** 167.546*** 161.453*** 120.699*** /

LM-Error 1199.548*** 2345.419*** 1719.215*** 64.770*** 1069.800*** /

Robust LM-Error 1311.061*** 2257.483*** 1822.553*** 189.990*** 1151.885*** /

Wald (sar) 126.43*** 197.07*** 124.12*** 36.53*** 53.95*** /

Wald (error) 148.21*** 232.47*** 128.17*** 35.88*** 54.05*** /
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increase carbon emissions. Although the differences 
between real and synthetic cities’ emissions increase 
to varying degrees after the intervention, the P-values 
of the treatment effects all exceed 0.05.

From these results, it becomes evident that the carbon 
emission effect of the NSCs is primarily driven by the cities 
of Tianjin and Changsha. Additionally, this study assesses 
the carbon emission effects of the NBDCs in Guiyang 
and Ulanqab. The results reveal no statistically significant 
causal relationship between NBDCs and carbon emissions, 
further confirming the robustness of the baseline fitting 
results.

Conclusion and Policy Implications

Discussion and Conclusion

In the digital era, while computing infrastructure 
accelerates technological advancement and enhances 
productivity, it may also exert pressure on energy systems 
and ecological environments. This study employs 
the synthetic control method to examine the impact 
of two types of national-level CI in China on urban carbon 
emissions. Specific research findings include:

(1) The National Supercomputing Center has increased 
CO2 emissions in urban areas, while the carbon emissions 
effect in the National Big Data Center is not statistically 
supported. Existing research has shed light on the positive 
aspects of digital economics on carbon emissions 
reduction from various perspectives. Kou and Xu found 
that the construction of internet infrastructure significantly 
improves carbon total factor productivity and suppresses 

the increase in carbon emissions intensity [18]. Wu et 
al. identified negative effects on carbon emissions from 
smart city development [9]. Wang found that an increase 
in the digital index is associated with a reduction in CO2 
emissions and a decrease in carbon emissions intensity 
[5]. Our research findings align with the exacerbation 
viewpoint, elucidating the detrimental implications 
of the digitalization process on environmental sustainability 
[9-11, 35]. Furthermore, from a computational perspective, 
this study furnishes empirical evidence regarding the carbon 
emissions attributable to digital infrastructure development. 
This assertion resonates with the conclusions drawn by 
Bianchini et al., who, based on European data analysis, 
determined that digital technologies amplify greenhouse 
gas emissions, with the influence of CI being particularly 
pronounced [11].

(2) The significant energy consumption remains 
a pivotal factor contributing to the carbon intensification 
of computing infrastructure. However, under favorable 
conditions, it is feasible to substantially mitigate 
the adverse environmental repercussions. The results 
of the scale effect mechanism test in this study reveal 
that high energy consumption is a significant pathway 
for carbon emissions increase due to CI. Arshad et al. 
found that energy consumption is one of the main reasons 
for the impact of ICT on carbon emissions in Southeast 
Asian countries [35]. Similar results or statements can 
also be found in studies by Sadorsky, Van Heddeghem, 
and Guo et al. [10, 45, 46]. Some literature on large-scale 
computing infrastructure carbon emissions assessments 
has also emphasized the impact of supercomputing use on 
energy systems [28,39,40]. On the other hand, although 
NBDCs exhibit significant scale effects, they have not 

Table 6. The carbon emissions effects of the NSCs in Tianjin and Changsha.

The NSC in Tianjin The NSC in Changsha

Post-Intervention sample 
period treatment effect Post-Intervention sample  

period treatment effect

0 2.934*** 0 2.401* 

1 6.168*** 1 8.168* 

2 19.634*** 2 9.148* 

3 20.270*** 3 13.482** 

4 33.860*** 4 14.437** 

5 35.158*** 5 12.525** 

6 30.400*** 6 13.586** 

7 30.849*** 7 18.654** 

8 42.362*** 8 23.722** 

9 53.875*** 9 28.790** 

10 65.387*** 10 33.858** 

11 76.900*** 
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manifested a carbon-intensive impact comparable to that 
of NSCs. This indirectly underscores the crucial role 
of energy structure. For institutions like the Netherlands 
National Supercomputer Center and the Max Planck 
Institute in Germany, their adoption of clean energy sources 
such as wind and solar power has resulted in lower carbon 
emissions compared to research organizations in Australia 
[40, 46]. Through a comparative research approach, 
the scope of the study subjects related to the CI carbon 
emissions effects has been expanded [47]. Simultaneously, 
it also leads us to acknowledge that the escalation in energy 
consumption is a necessary but not sufficient condition for 
the increase in carbon emissions.

(3) The inducement effect of CI on green innovation 
is only manifested in NSCs, and both types of CI have no 
significant impact on the structural composition of local 
economic sectors (the proportion of the tertiary industry). 
In the research context of promoting green development 
through digitization, technological innovation, and industrial 
structure are two crucial pathways [5-9, 18, 24]. In contrast 
to such literature, this study only captures significant 
technological effects in the assessment of supercomputing 
centers, while weaker technological and compositional 
effects also constitute important reasons for the carbon 
increase (rather than reduction) in CI. Overall, our 
research reveals the roles played by various mechanisms 
in the main effects. The results also indicate that it is 
particularly necessary to conduct environmental impact 
assessments for different types of digital technologies. 
General ICT technologies may have crossed the turning 
point of the Environmental Kuznets Curve [48, 49], while 
for some large-scale computing infrastructures, their impact 
on the environment is still in the negative phase. Therefore, 
it is essential for future assessments to dynamically analyze 
through different mechanisms. In addition, the results 
of heterogeneity tests show that the carbon increase effects 
of Tianjin and Changsha, the two major supercomputing 
centers, are the most significant. Whether this can be 
attributed to the common adoption of the “Tianhe” series 
supercomputers awaits further investigation.

Policy Implications

Firstly, the research findings of this study indicate that 
the construction of NSCs significantly increases urban 
carbon emissions. High energy consumption (scale effect) 
is a crucial factor contributing to the carbon emissions 
of supercomputing centers. Therefore, in the future, 
a comprehensive evaluation of indicators related to energy 
efficiency, power supply and distribution systems, and cooling 
and heating systems of supercomputing centers is necessary. 
Inefficient equipment should be updated or replaced. 
Managing the health of critical equipment and improving 
data center operation and maintenance efficiency can also 
help reduce energy consumption and carbon emissions. 
Moreover, more efficient coding, targeted data storage, 
and improved energy-to-computer conversion efficiency 
in supercomputing centers are feasible strategies to reduce 
energy consumption and carbon emissions.

Secondly, while scale effects (increased energy 
consumption with scale) play a significant role in the carbon 
emissions of NSCs, they do not always lead to increased 
carbon emissions. Given that this research indirectly 
proves the significant role of energy structure (abundant 
renewable energy in Guizhou and Ulanqab) in the impact 
of CI on carbon emissions, optimizing the energy structure 
further on the supply side is a potential strategy. Increasing 
the supply of solar and wind energy generation, such as 
the mixed energy pool at the Jinan supercomputing center, 
or optimizing the spatial distribution of computing power to 
channel eastern computing demand to the western regions 
(East to West Computing Project) could be beneficial. 
Promoting intensive construction following the principle 
of efficient construction and encouraging projects in areas 
rich in wind and solar resources can help minimize 
environmental impacts.

Finally, as the technological and compositional 
effects of CI need further enhancement, it is necessary 
to strengthen the technical support provided by national 
computing infrastructure for green innovation. Deepening 
cooperation between supercomputing and data centers 
and various organizations to promote the development 
of green innovation and low-carbon projects is essential. 
Additionally, leveraging national-level CI to enhance 
regional innovation aggregation is crucial. Based on the local 
industrial base, a collaborative industrial innovation system 
that integrates production, learning, and research should 
be developed around CI to facilitate knowledge spillover 
and technology diffusion in related fields. This can expand 
the spillover effect and provide support for industrial structure 
upgrading and energy structure optimization, ultimately 
achieving the coordinated development of digitalization 
and greenization.
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