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Abstract 

The molecular weight is a fundamental property of dissolved organic matter (DOM) that affects 
the fate of arsenic (As) in groundwater. However, there is limited knowledge regarding the various 
molecular weights on the geochemical transformation mechanisms of DOM with respect to antimony 
(Sb) migration in groundwater. A total of 20 samples were collected from high- and low-Sb D3x

4 
waters in the world’s largest antimony mine to evaluate the effects of different molecular weights of 
DOM on Sb mobilization using a sequential ultrafiltration technique. Dissolved Sb occurred mainly 
in the <1kDa fraction, while total Fe (TFe) colloids and DOM mostly existed in <0.45-µm and  
<100-kDa fractions, respectively. A protein-like component with a higher biological index (BIX), lower 
humification index (HIX), and specific ultraviolet absorbance (SUVA254) demonstrated a higher binding 
potential to Sb. Owing to the lower values of δ13CDIC and the difference between δ13CDIC and δ13CDOC, 
the microbial degradation of DOM had a substantial contribution to Sb mobility in the D3x

4 water.  
The results obtained from this research contribute to our comprehension of the biogeochemical behavior 
of antimony in shallow groundwater.

Keywords: molecular weight, excitation-emission matrix spectroscopy, parallel factor analysis, stable 
carbon isotopes, dissolved organic matter, antimony 
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Introduction

Antimony (Sb), an element with metalloid 
properties that is toxic and carcinogenic, is commonly 
acknowledged as a major environmental contaminant 
according to both the United States and the European 
Union [1-5]. Excessive levels of Sb in groundwater 
(>5.00 μg/L) are a global environmental concern across 
different regions worldwide, such as China [5, 6], 
Australia [7], Scotland [8], France [9], Canada [10, 11], 
Italy [12], and Egypt [13]. The primary natural routes for 
the infiltration of antimony (b) into groundwater were 
through oxidation and dissolution of Sb-bearing sulfides, 
such as stibnite (Sb2S3) and Jamesonite (Pb4FeSb6S14)  
[1, 11, 14-16]. Moreover, human activities such as mining 
and the burning of fossil fuels and waste materials have 
considerably enhanced the mobility and distribution 
potential of Sb in groundwater systems [16-19].

Dissolved organic matter (DOM) encompasses 
humic acids, fulvic acids, and proteins, which play 
a crucial role in the biogeochemical mobilization of 
Sb within groundwater [17, 20-24]. The presence of 
DOM could increase higher adsorption affinity for Fe 
hydroxide surfaces and facilitate the release of Sb [17, 
25], while also forming complexes with Sb to improve 
its solubility [20, 21, 26, 27]. In addition, in the presence 
of sunlight, DOM have the potential to enhance the 
conversion of Sb(III) to Sb(V), thereby accelerating 
the movement of Sb in naturally occurring oxygenated 
environments [22, 23, 28]. The utilization of bio-reactive 
DOM had been found to enhance the autotrophic 
capabilities of microorganisms, thereby facilitating the 
oxidative dissolution of minerals containing Sb, such as 
stibnite [29, 30].

The molecular weight is widely recognized as  
a fundamental characteristic of DOM and plays a 
crucial role in influencing the interaction between 
DOM and metals [31-33]. In general, metals tend to 
exhibit a preference for DOM with varying molecular 
weights due to their distinct binding affinities [31, 33].  
In natural aquatic environments, the mobilization  
of As is facilitated by its strong affinity for medium-
molecular-weight DOM (MDOM) (1-10 kDa) and low-
molecular-weight DOM (LDOM) (below 1 kDa) [32-35].
In addition to impacting the affinity for metal binding, 
amino acids containing LDOM exhibited bioactivity and 
were readily metabolized by microorganisms [36, 37]. 

Hence, comprehending the functional and molecular 
properties of DOM is crucial in investigating its 
involvement in the mobilization of As within natural 
aquatic environments. Despite the fact that As and 
Sb possess identical configurations of outer-orbital 
electrons (s2p3), it has been commonly assumed that 
their geochemical behaviors, which are influenced by 
DOM, tend to be similar [1, 17, 38]. Moreover, molecular 
weight fractions of DOM have been confirmed to affect 
the As mobilization in groundwater [17]. However, 
the impact of various molecular weight fractions of 
DOM on Sb pollution in groundwater remains poorly 

understood, thereby enhancing our comprehension 
of differences in Sb and As enrichment mechanisms 
within groundwater systems. Therefore, it is crucial 
to gain a comprehensive understanding of the source, 
characteristics, and geochemical reactivity of DOM with 
distinct molecular properties to elucidate the enrichment 
of Sb in groundwater.

The use of fluorescence spectroscopy has yielded 
significant knowledge regarding the nature, origin, 
and composition of DOM in groundwater [39-41]. 
Furthermore, the utilization of EEM-PARAFAC,  
a technique that combines excitation-emission matrix 
fluorescence with parallel factor analysis, has been 
extensively applied in identifying the origins and 
constituents of DOM owing to its quickness, cost-
effectiveness, and accuracy [37, 42-45]. Recently, 
successful applications of molecular weight separation 
techniques have been observed in the assessment of 
metal distributions in DOM with different molecular 
weights in groundwater [32, 33, 46]. Changes in 
fluorescence offered valuable insights into identifying 
the unique fluorescence properties linked to different 
molecular weights of DOM [23, 33, 34].

Hence, the distribution and movement of Sb in 
shallow groundwater were investigated by analyzing 
the optical properties of DOM with varying molecular 
weights. This study aimed to (1) examine the 
spectroscopic characteristics and chemical properties 
of DOM with different molecular weights at various 
Sb concentrations and (2) assess the influence of DOM 
with different molecular weights on Sb mobilization 
in shallow groundwater. The findings from this study 
enhance our understanding of the mechanisms behind 
Sb enrichment in shallow groundwater.

Materials and Methods

Study Area

As the world’s largest antimony mine, the 
Xikuangshan mine is situated in central China, 
specifically 13 km north of Lengshuijiang City.  
It spans across a vast area of 26 km2 and is located 
within mountainous terrain that runs from northeast 
to southwest, with elevations ranging between 220 
and 823.2 m. The climate is known for its high 
humidity, with an average annual precipitation of 
1381.60 mm, evaporation reaching 903.30 mm, and 
temperatures averaging 16.7ºC from 1949 to 2012.  
The primary watercourses in the mining region that 
flow into the Zijiang River include the Xuanshan River, 
Qingfeng River, Feishuiyan Stream, Tanjia Stream, 
and Batangshan Stream. The Xikuangshan mine is 
internationally recognized as “The World’s Antimony 
Capital”, earning an impressive reserve of around  
2.50 million tons of Sb [1, 17, 47, 48].

The Xikuangshan Sb mine area is situated in 
a hydrogeologically isolated region, enclosed by 
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the NE30°-oriented fault NO.75 from the east and 
west. It encompasses a lamprophyre vein spanning 
approximately 10 km. As shown in Fig. 1, the primary 
aquifers in the mining region consist of the lower 
Shetianqiao karst aquifer (referred to as D3s

2 water) 
and the upper Magunao karst aquifer (known as 
D3x

4 water), which have been extensively studied by 
Wen et al. [5] (2016) and Hao et al. [1, 6]. The Sb ore 
bodies are located at the top of the silicified limestone 
layers of the D3s

2 water, which have no hydraulic 
connection with D3x

4 water. The D3x
4 water, which 

consists of limestone and sandy limestone with an 
average thickness measuring 258 m and a hydraulic 
conductivity of 0.0092 m/d as reported by Wen et al.’s 
study conducted in 2016 and updated in 2022, plays  
a crucial role as a primary drinking water source for local 
residents. The main recharge source for the D3x

4 water 
is infiltrated precipitation and agricultural irrigation, 
while groundwater flows from southeast to northwest 
in the North Mine and from northeast to southwest in 
the South Mine, respectively. D3x

4 water discharge 
occurs through springs that crop out substantially 

and drainages associated with mining activities [4].  
The primary hydrochemical facies in unpolluted D3x

4 
water is Ca-HCO3-SO4 type, and Sb concentration is less 
than 15 mg/L [4]. Some dwellings, industrial facilities, 
waste rock, and slag are situated over the D3x

4 water [6, 
49]. Moreover, mining regions extensively cultivate rice, 
corn, and vegetables as their main agricultural produce 
[17, 49].

Sample Collection

Based on the previous studies conducted on 
hydrogeology and geochemistry, a total of 20 springs 
were selected for sampling D3x

4 water in February 2023 
(Fig. 1a). Prior to collection, the brown plastic sampling 
bottles underwent sequential rinsing with distilled 
water and D3x

4 water samples. All water samples were 
collected in the field and ultrafiltered sequentially 
through MilliPore filters (high-density polyethylene 
(HDPE)) with sequential pore sizes of 0.45-μm, 100-
kDa, and 1-kDa by a cross-flow ultrafiltration system 
(CFUS, Sartorius Vivaflow®.200) [50].

Fig. 1. Location of the study area and distribution of the D3x
4 water sampling sites from the Xikuangshan mine. 
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Each of the filtered samples was separated into three 
categories: high-molecular-weight DOM (HDOM) D3x

4 
water (fraction<0.45 μm), middle-molecular-weight 
DOM (MDOM) D3x

4 water (fraction<100 kDa), and 
low-molecular-weight DOM (LDOM) (fraction<1 kDa). 
A total of 60 D3x

4 water samples were obtained during 
the process of ultrafiltration. The experiment involved 
utilizing a polymer-enhanced ultrafiltration system 
with a capacity of 300 mL by pressurizing and filtering 
with N2 gas. The ultrafiltration process was previously 
documented by Dundar et al. [51] and Li et al. [33]. 
To facilitate the analysis, the collected samples for the 
major cation and Sb analyses were treated with ultrapure 
HNO3 at a ratio of 1:1 (v/v) until reached a pH<2.0, after 
which they were promptly stored at a temperature of  
4ºC in darkness. To prepare samples for stable organic 
carbon isotope analysis (δ13CDOC), they were acidified 
using 85% H3PO4 until the pH was less than 2. For stable 
inorganic carbon isotope analysis(δ13CDIC) was sterilized 
with HgCl2 and then collected in HDPE brown glass 
bottles with 100 mL.

Sample Analysis 

The pH and total dissolved solids (TDS) were 
measured on-site at a sampling location using  
a portable pH meter (HANNA H18424, Italy) and  
a portable conductivity meter (HANNA H1833, Italy), 
respectively. The concentrations of bicarbonate ions 
(HCO3

-) were determined by acid-base titration during 
field measurements with an analytical precision of 
1.0 mg/L. Sb concentrations were determined using  
a hydride generation atomic fluorescence spectrometer 
(Qingdao) with a relative standard deviation of ±5%  
and an analytical precision of 0.10 µg/L [17, 28]. Total Fe 
(TFe) levels were determined using spectrophotometry 
(DR2800, HACH, USA) and the phenanthroline method 
with an analytical precision of 0.01 µg/L [17, 28, 52]. 
δ13CDOC and δ13CDIC in all samples were determined 
using isotope ratio mass spectrometry (Trace GC 
Ultra, Thermo Fisher Scientific, USA) coupled with 
an online high-precision gas headspace sampler,  
GasBench (Thermo Fisher Scientific), following the 
methods of Yu et al. [53] and Zhou et al. [54] with 
precisions<0.2‰.

The level of DOM was assessed utilizing a TOC-
5000 total organic carbon analyzer from Japan and 
represented as dissolved organic carbon (DOC), with 
an analytical accuracy of 0.01 mg/L. The UV-visible 
spectrophotometer (Hach DR-5000, USA) and the 
three-dimensional fluorescence spectrophotometer 
(F7000, Japan) were utilized to perform measurements 
of ultraviolet-visible and fluorescence in a 10-mm 
quartz cuvette. Both devices were equipped with  
a 150-W xenon lamp that does not emit ozone and 
operated at a consistent temperature of 20ºC. The 
emission wavelength (EM) was scanned from 220 to  
550 nm while the excitation wavelength (EX) ranged 
from 200 to 400 nm, with sampling intervals of 5 nm 

during the excitation emission matrices (EEMs) analysis. 
The fluorescence measurements were conducted with  
an excitation wavelength step size of 5 nm and an 
emission wavelength step size of 2 nm. The scan rate 
was set at 2400 nm/min, the slit width was adjusted to  
5 nm, and the amplification voltage used was 700 V. 

The spectral overlap was determined by employing 
PARAFAC modeling with the assistance of fluorescence 
components from the DOMFluor database [55, 56].  
All mean fluorescence intensities are calculated  
based on three repeated analyses, with subsequent 
subtraction of blank values and final normalization 
to Raman units (R.U.). The split half analysis and 
residual analysis were used to verify the reliability of 
the three-component model [33]. Residual intensities, 
were obtained by subtracting the PARAFAC-modeled 
EEM from the measured EEM maximum deviation of 
10% compared to the measured EEM intensities across  
all samples. 

To distinguish DOM sources, the fluorescence index 
(FI) was determined by dividing the measurement 
at an emission wavelength of 450 nm by that at 500 
nm, after being excited at 370 nm, providing a metric 
for distinguishing DOM derived from terrestrial 
and microbial sources [32, 43, 57]. Furthermore, the 
biological index (BIX), which serves as a measure 
of indigenous biological activity in aquatics, was 
determined by dividing the emission intensities at 
wavelengths of 380 nm and 430 nm under a consistent 
excitation at 310 nm [58, 59]. In addition, the ratio 
of the emission scan at 435-480 nm to the emission 
scan at 300–345 nm with an excitation at 254 nm was 
utilized for evaluating the humification index (HIX), 
which serves as an indicator of DOM humification 
[60-62]. The calculation of the specific ultraviolet 
absorbance (SUVA254), which is linked to the aromatic 
nature of organic substances, involved normalizing the 
UV absorbance at 254 nm with respect to the DOC 
concentration [36, 59].

To enhance further characterization, the DOM was 
segregated into two categories. Initially, protein:humic 
ratios were computed by determining the proportion 
of protein-like DOM constituents in relation to the 
total sum of humic-like DOM components. Secondly, 
the microbial:terrestrial ratios were determined by 
calculating the proportion of DOM components derived 
from microorganisms compared to that of terrestrially 
derived DOM components.

Statistical Analysis

The statistical analysis software, Origin 2021, was 
employed to establish correlations among all findings. 
The PARAFAC analysis was performed using the 
DOM Fluor v.1.7 toolbox in MATLAB (Natick, MA, 
USA). Descriptive data can be found in Table 1, while 
Table 2 provides information on the spectroscopic 
characteristics of DOM components.
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A decrease in DOM concentration was noted in 
LDOM and MDOM D3x

4 waters compared to HDOM 
D3x

4 water (Fig. 2c), suggesting that the HDOM D3x
4 

water exhibited the highest level of DOM content.  
The majority of TFe detected in the extracts was 
observed in the HDOM D3x

4 water (Fig. 2b), which 
experienced a significant decrease in both MDOM 
and LDOM D3x

4 waters. This suggested that TFe 
predominantly existed as large colloids within the 
HDOM D3x

4 water [33, 35, 50, 63, 64]. The consistent 
trends between DOM and TFe indicate that TFe may 
have a higher affinity for binding with HDOM in the 
D3x

4 water [35]. Earlier research had established that 
substances found in HDOM, such as humic-like and 
fulvic acids, exhibited a preference for forming DOM-
Fe complexes with Fe hydroxides in groundwater 
[17, 35, 65, 66]. Therefore, it can be deduced that TFe 
predominantly exists as colloidal particles attached to 
HDOM in the D3x

4 water [40]. However, the distribution 
of Sb in the D3x

4 water with varying pore sizes exhibited 
distinct variations compared to the distributions of 
TFe and DOC as depicted in Fig. 2(a-c), indicating 
that HDOM was not a crucial factor for promoting Sb 
enrichment in the D3x

4 water.

Fluorescence Characteristics of DOM 
with Different Molecular Weights

Fig. 3 showed the six main EEM peaks: Ex 266 
(336)/Em 435 (Peak A, representing the C1 component) 

Results

General Hydrochemistry Characterization  
of D3x

4 Waters with Different Molecular Weights

According to the geogenic values without pollution 
[5, 6], the D3x

4 water samples were categorized into 
two groups: low-Sb groundwater (<15.00 µg/L) and 
high-Sb groundwater (>15.00 µg/L). pH values ranging 
from 7.14 to 9.74 with a mean of 8.03 were observed 
(Table 1), indicating a weakly alkaline environment 
in all D3x

4 waters. The phenomenon indicated that H+ 
produced from stibnite oxidation had been immediately 
neutralized by carbonate minerals in D3x

4 waters.  
The TDS concentrations in the high-Sb D3x

4 water 
ranged from 121 to 1515 mg/L, with an average of  
542 mg/L, surpassing those found in the low-Sb D3x

4 
water samples (ranging from 254 to 331 mg/L, with an 
average of 300 mg/L).

The concentration of Sb showed no significant 
differences among HDOM, MDOM, and LDOM in 
the low-Sb D3x

4 water (Fig. 2a). There was a slight 
decrease during sequential ultrafiltration in the high-Sb 
D3x4 water, and a slight decrease was observed during 
sequential ultrafiltration in the high-Sb D3x

4 water, 
suggesting that Sb predominantly existed as a truly 
dissolved form in the LDOM D3x

4 water. These findings 
align with the research conducted by Zhang et al. [63] 
and Jia et al. [50] on Sb migration as well as the study 
by Li et al. [33] on As presence in shallow groundwater.

Table 1. Geochemistry data for the D3x4 water of the Xikuangshan mine area.

Type
Sb TFe

pH
TDS HCO3

- DOC δ13CDOC δ13CDIC

µg/L mg/L ‰

HDOM samples (n = 20)

Max 20600.00 560.00 8.74 1515 304 10.88 -21.90 -2.30

Min 1.00 0.00 7.14 121 9 2.24 -26.97 -17.04

Mean 3640.74 83.53 8.03 494 173 5.75 -24.41 -9.46

SD 5200.22 135.95 0.34 351 85 2.35 1.51 3.81

MDOM samples (n = 20)

Max 20800.00 230.00 / / 149 9.63 -19.00 -2.30

Min 1.00 0.00 / / 1 1.26 -26.26 -17.84

Mean 3646.61 26.59 / / 37 3.51 -21.99 -9.21

SD 5225.14 68.35 / / 115 2.17 2.06 4.24

LDOM samples (n = 20)

Max 20800.00 30.00 / / 226 7.74 -16.78 -3.08

Min 1.00 0.00 / / 1 1.09 -24.70 -16.36

Mean 3619.64 2.59 / / 71 2.98 -20.76 -9.36

SD 5249.69 7.84 / / 125 1.64 2.21 2.66

Note: Values below the LOD are set to zero for statistical purposes.
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for the terrestrial humic-like component [37, 67, 68], 
Ex 278/Em 336 (Peak T, reflecting the C2 component) 
for the tryptophan-like substance [39, 69], Ex 306/Em 
385 (Peak M, C3 component) for the microbial humic-
like component [70, 71], Ex 266/Em 296 (Peak B, C4 
component) for the carboxylic and phenolic groups 
component [32, 72], Ex 266/Em 507 (Peak C, C5 
component) for the marine humic acid-like component 
[73, 74], and Ex 400/Em 464 (Peak D, C6 component) 
for the fulvic acid component [34, 64]. 

SUVA254, BIX, FI, and HIX of DOM with different 
molecular weights were shown in Fig. 4. During the 
process of sequential ultrafiltration, there was a slight 
increase observed in BIX, SUVA254, and HIX for low-
Sb D3x

4 waters (Fig. 4a–d), while a significant decrease 
was observed for high- Sb D3x

4 waters. Significantly, 

the HDOM exhibited mean values of SUVA254 and HIX 
that were 2.65 and 1.27 times higher in the HDOM D3x

4 
water than those observed in the LDOM D3x

4 water, 
respectively, suggesting a more pronounced presence 
of macromolecular aromatic substances in the HDOM 
D3x

4 water. The rate of increase in BIX was found to be 
higher in the low-Sb D3x

4 water compared to the high-Sb 
D3x

4 water during the sequential ultrafiltration process 
(Fig. 4b), indicating the presence of biological and 
aquatic bacterial sources of DOM played a significant 
role in enriching Sb levels in the low-Sb D3x

4 water 
[17, 27]. The FI values of both low- and high-Sb D3x

4 
water samples exhibited a wide range from 1.40 to 1.90, 
indicating the presence of terrestrial and microbial 
contributions (Fig. 4c). This suggests that the main 
sources of DOM in the D3x

4 water are likely dominantly 

Fig. 2. Box-whisker plots of Sb a), TFe b), and DOC c) for different size fractions of DOM in D3x
4 water.

Fig. 3. Spectral properties of the six fluorophores identified by the PARAFAC analysis.
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derived from terrestrial and microorganism origins [37, 
43]. During the sequential ultrafiltration process, there 
was a slight transition in the FI values from terrestrially 
and microbially derived zones to microbially derived 
zones in high-Sb D3x

4 water (Fig. 4c), suggesting a 
greater contribution from microbial sources in LDOM 
D3x

4 water.
As indicated in Table 2 and Fig. 5a), the PARAFAC 

components of DOM were dominated by humic-like 
and fulvic acid components (the combined percentages 
of C1, C3, C5, and C6), followed by protein-like 
components (the sum percentages of C2 and C4)  
in HDOM and MDOM D3x

4 waters, whereas the 
contents of protein-like components considerably 
increased and became predominant in the LDOM D3x

4 
water. The observation provided additional evidence 
that the protein-like constituents exhibited a progressive 
increase in dominance and promotion in the LDOM D3x

4 
water, whereas humic-like and fulvic acid components 
were predominantly present in HDOM D3x

4 water 
throughout the sequential ultrafiltration process [17, 
75]. Previous studies have established that the majority  
of humic-like and fulvic acid components are present  
in the colloidal fraction, which can be effectively 
captured through ultrafiltration utilizing membranes 
with a molecular weight cut-off of 1 kDa [35].

In Fig. 5b), the percentages of C2 and C4 
significantly increased with the decrease in ultrafilter 
pore size, while the abundances of C1, C3, C5, and C6 

declined during the sequential ultrafiltration process. 
For the given samples, there was a significant increase 
in the proportion of C4, accompanied by notable 
decreases in abundances of C1 and C3, when compared 
to the relative proportions of other components in the 
LDOM D3x4 water. This indicated that the LDOM D3x

4 
water contained a higher proportion of the tyrosine-
like component, while the HDOM and MDOM D3x

4 
water favored the presence of humic-like components 
as large colloids [3, 40, 64]. The observed variations in 
the relative of the humic-like and fulvic acids, as well 
as protein-like components, were attributed to changes 
occurring during the sequential ultrafiltration process 
in Fig. 5a) and Table 2. As depicted in Figure 5c, the 
proportions of protein:humic and microbial:terrestrial 
progressively rose with the reduction in ultrafilter pore 
size, providing confirmation that the LDOM D3x

4 water 
primarily contained a protein-like component derived 
from microorganisms.

In general, the HDOM D3x
4 water exhibited higher 

levels of HIX, SUVA254, and percentages of C1 and C3, 
while lower levels of BIX, FI, and percentages of C2 and 
C4 were observed compared to the LDOM D3x

4 water. 
This suggests that HDOM exhibited elevated levels of 
humification and aromaticity levels whereas LDOM 
was influenced by the microbial origin of DOM [33].  
A similar outcome was observed in the high-As shallow 
groundwater with varying molecular weights in the 
Hetao Basin [33, 76], demonstrating that the chemical 

Fig. 4. Box-whisker plots of SUVA254 a), BIX b), FI c), and HIX d) for different size fractions of DOM in D3x
4 water.
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characteristics of DOM with distinct molecular weights 
may have similar effects on the fates of As and Sb.

Discussion

DOMs with Different Molecular Weights 
as a Complexing Agent for Sb

As depicted in Fig. 2a) and b), the majority of TFe 
was observed as Fe hydroxides in the HDOM D3x

4 water, 
while Sb was predominantly present in the LDOM 
D3x

4 water. Meanwhile, there were slight correlations 
between Sb, DOC, and TFe in the HDOM D3x

4 water 
(Fig. 6a) and a significant positive correlation (R2 = 0.48) 
was found between Sb and DOC in the LDOM D3x

4 
water (Fig.6b), suggesting that the presence of enriched 

TFe hydroxides had minimal impact on the migration 
of Sb within the LDOM and MDOM D3x

4 water. This 
contrasted with the findings of Li et al. [33] in their 
study on a high As groundwater from the Hetao basin, 
where they observed that higher binding capacity for As 
was demonstrated by larger Fe colloids (>10 kDa) during 
the sequential ultrafiltration process. The phenomenon 
implied that As exhibited a tendency to form stronger 
associations with Fe complexes compared to Sb, owing 
to DOM with different molecular properties.

Compared to low-Sb D3x
4 water samples, TFe mean 

concentrations in high-Sb D3x
4 water samples were 

found 3.14 times higher, indicating that Sb was likely 
associated with TFe hydroxides and complexes formed 
by DOM in high-Sb D3x

4 water samples. Humic-like 
components could form DOM-Fe-Sb complexes by 
complexing with Fe hydroxides and Sb [17, 23, 63, 77]. 

Fig. 5. Box-whisker plots of CX percentages for different size fractions of DOM in D3x
4 water.

Fig. 6. a) Sb versus TFe concentration in the HDOM D3x
4 water and b) Sb versus DOC concentration in the LDOM D3x

4 water.
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This finding aligns with the observed higher values of 
HIX and SUVA254, as well as lower values of BIX and 
protein:humic ratio in the HDOM D3x

4 water sample 
(Fig. 4a, b, d, and Fig. 5a). Complexes between Sb and 
humic-like substances of DOM are typically formed 
via the presence of positively charged amino groups 
in the DOM or metal cation bridges [20, 26, 40]. The 
interaction strength and durability of the binding 
between DOM and Sb were notably increased in 
groundwater through ligand substitution, the creation 
of negatively charged complexes, and the presence of 
bound hydrogen bridges [63, 78, 79].

In addition, the Sb concentration in the LDOM D3x
4 

water showed weak (R2 = 0.14) and moderate (R2 = 0.32) 
positive correlations with the percentages of C2 and C4, 
respectively in Fig.7a and b. This suggested that protein-
like component substances of DOM with lower HIX 
and SUVA254 and higher percentages of C2 and C4 may 
contribute to an increase in Sb levels in the LDOM D3x

4 
water. These protein-like substances are known for their 
strong affinity, such as copper and cadmium [20, 36, 
80, 81]. Furthermore, the stable Sb(III) could be rapidly 
oxidized to an easily mobile Sb(V) in the presence of the 
quinone groups in neutral and alkaline waters, resulting 
in Sb concentration enrichment in the LDOM D3x

4 water 
[23, 78, 82].

The changes in fluorescent intensity for the six 
PARAFAC-derived components during the increase 
in Sb concentration were illustrated in Fig. 7c), 
specifically focusing on the LDOM D3x

4 water. The 
quenching curves exhibited a significant correlation 
with the origins of DOM sources. The initial decrease 
in fluorescent intensities of C4 and C2 was followed by  
a gradual decrease and stabilization as the concentration 
of Sb increased. Conversely, there was a slight increase 
in the fluorescent intensities of C3 and an increase 
in Sb concentration, which could be attributed to the 
combination of Sb with DOM [19, 83]. Weak quenching 
effects were observed for C1 and C6. These results 

suggested that the protein-like substances had more 
significant quenching effects than the humic-like 
materials in the LDOM D3x

4 water. 
In addition, the quenching levels of C4 were 

pronounced compared to those of C2, suggesting 
that the carboxylic and phenolic groups exhibited a 
stronger affinity for Sb in the LDOM D3x

4 water [58, 
81, 83]. Generally, the abundant presence of carboxylic 
and phenolic groups in DOM led to its high binding 
affinity towards heavy metals [58, 84], indicating the C4 
component in the LDOM D3x

4 water may be attributed 
to higher carboxylic and phenolic groups than other 
components. Moreover, the presence of carboxylic and 
phenolic groups on the C4 component may potentially 
hinder the adsorption onto TFe hydroxide surfaces, 
leading to the liberation of previously adsorbed Sb into 
the D3x

4 water [17, 85].  

Bioreactivity of LDOM and Microorganism Roles

Previous studies had proved the substances 
resembling proteins, characterized by a high BIX and 
low HIX and SUVA254 values, along with significant 
bioreactivity, were found to enhance the Sb mobility in 
groundwater systems by facilitating electron transfer 
and energy acquisition for microbial degradation and 
activities [30]. Generally, microbial degradation of 
organic matter causes a lower δ13CDIC and higher δ13CDOC 
in groundwater, reflecting an active microbial process 
[54, 86, 87]. 

As depicted in Fig. 8a), the <1 kDa fractions 
exhibited elevated δ13CDOC values and almost unchanged 
δ13CDIC values during the sequential ultrafiltration 
process, suggesting a more pronounced microbial 
influence on DOM within the LDOM D3x

4 water.  
The observed fluctuations in δ13CDOC may be ascribed 
to the surface-driven microbial oxidation of organic 
substances occurring within the shallow groundwater. 
Extensive regions of rice, corn, and vegetables were 

Fig. 7. a) Percentage of C2, b) percentage of C2, and c) fluorescence intensity versus Sb concentration in the LDOM D3x
4 water.
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allocated within the upper weathering zone of the 
D3x

4 water. The input of DOM from precipitation may 
stimulate microbial respiration, resulting in an increase 
in δ13CDOC levels [88]. On the other hand, Sb with 
different valence states served as substrates for electron 
transfer and energy acquisition by autotrophic species 
in the oligotrophic groundwater environment [2, 30, 
89]. The TFe levels in the LDOM D3x

4 water varied 
from undetectable to 30.00 µg/L (with an average of 
2.59 µg/L), creating favorable conditions for microbial 
degradation through its interaction with Fe oxides and 
DOM [33, 89]. Furthermore, oxidative stibnite, serving 
as the primary mineral containing antimony, could 
have potentially acted as a significant energy provider 
for autotrophic communities through the discharge of 
antimony and sulfur compounds into the D3x

4 water 
environment [2, 30].

In Fig. 8b), a noticeable decline in the difference 
between δ13CDIC and δ13CDOC was observed in the LDOM 

D3x
4 water as the Sb content increased (R2 = 0.72), 

suggesting Sb mobilization was related to the degree 
of microbial degradation of DOM [54, 90]. The lower 
difference between δ13CDIC and δ13CDOC suggests a higher 
level of microbial degradation of DOM, even though the 
isotopic variation in organic carbon is minimal and can 
be disregarded during microbial degradation processes 
[54, 91, 92]. The correlation between δ13CDIC and the 
difference between δ13CDIC and δ13CDOC was found to 
be significantly positive, indicating that the oxidative 
decomposition of organic carbon played an important 
role in the reduction in δ13CDIC. In the process of microbial 
degradation of DOM, microorganisms exhibited a 
preference for lighter carbon isotopes (12C), leading to 
decreased δ13CDIC levels and increased concentrations of 
HCO3- in groundwater [80, 93]. Compared to the low-Sb 
D3x

4 water, the high-Sb D3x
4 water exhibited lower and 

more negative δ13CDIC subtracted by δ13CDOC, indicating 
that the microbial degradation of DOM played a crucial 

Fig. 9. The sequential ultrafiltration process of DOM with different molecular weights for Sb migration in D3x
4 water.

Fig. 8. a) Box-whisker plots of CX percentages for different size fractions of DOM, b) relationship between δ13CDIC - δ
13CDOC and Sb 

concentration, and c) relationship between δ13CDIC - δ
13CDOC and δ13CDIC in the LDOM D3x

4 water.
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role in the mobilization and enrichment of Sb in the 
LDOM D3x

4 water [2, 17, 30].
Therefore, our results suggested that Sb was 

primarily bound to protein-like substances with 
biological activity and is influenced by microbial 
degradation in the LDOM D3x

4 water. As a result, 
the changes in Sb concentration were not found to be 
significant throughout the sequential ultrafiltration 
process (Fig.9). However, the impact of TFe was 
not ignored, which could play a role in facilitating  
the combination of Sb and DOM. This combination 
forms a Fe bridge, thereby promoting the accumulation 
of Sb in HDOM and MDOM D3x

4 waters.

Conclusions

In this investigation, the majority of Sb was detected 
in the LDOM D3x

4 water, while TFe colloids and DOC 
were mostly present in the HDOM and MDOM D3x

4 

water, respectively. The findings suggested that the 
presence of large Fe colloids or HDOM did not play 
a significant role in the enrichment of Sb in the D3x

4 
water. The LDOM D3x

4 water, exhibiting elevated BIX 
and higher proportions of C2 and C4, and reduced HIX, 
percentages of C1 and C3 with a pronounced presence 
of protein-like substances, demonstrated compatibility 
for the formation of complexes with Sb. The quenching 
levels of C4 constituents generally surpassed those of C2, 
which showed that the carboxylic and phenolic groups 
exhibited an affinity for Sb in the LDOM D3x

4 water.
 During the sequential ultrafiltration process, higher 

δ13CDOC and lower δ13CDIC values were observed in the 
<1 kDa fractions. Additionally, in the high-Sb D3x

4 
water, there was a decrease in both δ13CDIC subtracted by 
δ13CDOC and δ13CDIC values. This suggests that microbial 
degradation of DOM played a significant role in 
influencing the mobility of Sb in the D3x

4 water. 
Despite molecular weight fractions of DOM may 

provide insights into its roles on Sb mobility, our 
findings are limited, and the molecular characteristics 
and mechanisms of DOM on Sb enrichment remain 
unclear. Overall, these discoveries will enhance 
comprehension of the biogeochemical actions of Sb and 
offer valuable perspectives for effectively managing 
shallow groundwater environments and ensuring the 
safety of drinking water within the study area. 
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