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Abstract

To effectively and expeditiously address emission reduction, a comprehensive understanding 
of the current status of carbon intensity and the spatial interactions of carbon intensity in China is 
necessary. This paper utilizes GIS technology, the Moran Index, and combines traditional Markov 
chain, spatial Markov chain, and social network analysis (SNA) methods to investigate various 
features of carbon intensity at the provincial level in China. The study yields the following findings:  
(1) The center of China’s carbon intensity has shifted towards the northwest, whereas the center of 
economic development has moved towards the south. This indicates a significant spatial divergence 
in China’s low-carbon development level. (2) The distribution pattern of carbon emission intensity  
in China is dominated by the proximity of high carbon emission intensity provinces to other high 
carbon emission intensity provinces and low carbon emission intensity provinces to other low carbon 
emission intensity provinces. (3) Carbon emission intensity exhibits significant spatial spillover effects,  
with positive spillover effects being more pronounced in regions with low carbon emission intensity. 
(4) The trend toward the development of China’s overall carbon intensity is positive, but the spatial 
connectivity network of carbon intensity demonstrates a tendency to be entrenched, and leading 
provinces in low-carbon development have yet to fully realize their positive driving role.

Keywords: carbon intensity, spatial spillover effect, spatial Markov chain, SNA, spatial Durbin model 
(SDM)
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Introduction

China’s rapid economic development and expansion 
of production activities have led to an alarming surge 
in carbon dioxide emissions. In 2005, China surpassed 
the United States as the world’s largest carbon emitter, 
accounting for 29 percent of the world’s total carbon 
emissions in 2016, according to the World Bank. Coal 
and oil constitute about 80 percent of China’s primary 
energy consumption, thereby serving as the primary 
source of carbon dioxide emissions, as stated in the 
China Power Media Energy Information and Research 
Center’s China Energy Big Data Report for 2016-2020. 
However, the increasing global climate change, which 
is a result of carbon emissions, is becoming more and 
more severe, leading to severe impacts on both nature 
and humans [1]. Therefore, the reduction of carbon 
emissions has been prioritized by many countries, 
where measures are being taken to address this pressing 
issue [2, 3]. As a response, the Chinese government has 
taken several measures to reduce its carbon footprint 
and committed to reaching peak carbon emissions by 
2030 at the Paris Climate Conference [4, 5].

Research on carbon emissions has extended to 
various levels and industries. For instance, Sun et al. 
[6] utilized Theil’s index, GIS techniques, and Moran’s 
I index to explain the spatio-temporal evolution of 
carbon emissions and analyzed its influencing factors 
using the SDM in the construction industry. Their 
research revealed that factors such as size, economic 
level, technological innovation, government support, 
foreign trade, environmental regulation, and financial 
development affect China’s economic growth.

In another study, Zhao et al. [7] devised a framework 
to explore carbon emission trajectories by using a log-
mean zonal index approach to expound on the driving 
forces. They found that building size and demand 
structure are the primary drivers of the growth of China’s 
building energy efficiency index, which is significantly 
reduced by the decline in energy consumption. Jiang et 
al. [8] analyzed the decomposition of the driving effects 
of carbon emissions from the construction industry in 
Jiangsu Province by employing a logarithmic mean 
Divisia index (LMDI) model. Their research showed that 
energy intensity, population density, energy structure, 
and new building area accounted for 114.13%, 36.13%, 
26.83%, and 20.31%, respectively, while the contribution 
of new energy-efficient building area and the economic 
level of the construction industry were -5.13% and 
-92.26%, respectively.

Other researchers, such as Zheng et al. [9], used  
a super-SBM model to analyze carbon emission 
efficiency in the transportation sector. They employed 
the log-mean partitioning approach to explain the 
drivers of carbon emissions and found that population 
size and level of economic development promote carbon 
emissions, with the latter having the most significant 
effect. Energy efficiency had the greatest inhibiting 
effect on carbon emissions, but the structure of energy 

consumption played a minimal role in increasing carbon 
emissions. Liu et al. [10] designed an LSTM carbon 
emission model based on carbon emission forecasts for 
the transportation sector under low-carbon, baseline, 
and high-carbon scenarios. Their research showed that 
the peak carbon emission years for the low-carbon, 
baseline, and high-carbon scenarios were 2033, 2035, 
and 2038, respectively.

In the power sector, Zuo et al. [11] calculated the 
MCE of the sector and determined the carbon emission 
intensity, which provides a basis for policy formulation. 
Wang et al. [12] created an elasticity relationship-based 
carbon emission prediction model for Shanghai’s power 
and energy, as well as a carbon emission prediction 
model based on different scenarios. Their research 
showed that the model effectively assesses future 
carbon emissions from the power sector in Shanghai. 
Lv et al. [13] studied the effect of smart manufacturing 
on industrial CO2 emissions and found that smart 
manufacturing significantly reduces CO2 emissions in 
the industrial sector. Smart manufacturing achieves 
industrial emission reductions primarily by reducing the 
consumption of fossil energy in the production process 
and improving the efficiency of energy utilization. 
Additionally, Lin et al. [14] utilized structural path 
analysis to compare and analyze supply-driven and 
demand-driven chain structures. Their research revealed 
that the more optimized the industry chain structure, 
the more economic benefits are generated per unit of 
carbon dioxide emissions, resulting in higher economic 
connectivity and lower carbon emission linkages. 
It is noteworthy that researchers have accomplished 
substantial progress in studying carbon emissions across 
different industries.

In recent years, several studies have explored the 
linkages between carbon emission intensity in diverse 
regions. For instance, Zhang et al. [15] employed SNA 
and exploratory spatial data analysis to analyze the 
spatial correlation of carbon emissions sinks in the 
Beijing-Tianjin-Hebei region at the county level. Their 
research also produced a county-level zoning carbon 
balance zone, presenting a way forward for the carbon 
balance zones’ division. In another study, Li et al. [16] 
used static and dynamic SDMs to explore the spatial 
effects and mechanisms of the impact of green finance 
on carbon emissions. Their results showed that economic 
development positively influences the reduction of 
carbon emissions by green finance. They also found 
that green finance can promote industrial upgrading and 
reduce carbon emissions, but its inhibitory effect varies 
from region to region.

Other researchers, such as Li et al. [17], utilized 
various models such as kernel density estimation, 
standardized partial ellipse, and geographically and 
temporally weighted regression (GTWR) models 
to study the spatio-temporal evolution and path 
migration of carbon emission intensity in Chinese 
cities. Their research discovered that carbon-intensive 
energy consumption positively contributes to carbon 
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emission intensity while economic development, 
industrial upgrading, population agglomeration, 
foreign investment intensity, and technological research 
and development negatively inhibit it. In another 
study, Gao et al. [18] analyzed the spatial correlation 
network and formation mechanism of carbon emission 
efficiency in China’s construction industry using the 
global super-efficiency EBM model, SNA, and QAP 
model. They found that regional economic differences 
and urbanization differences positively impacted the 
formation of spatially relevant networks, while industrial 
agglomeration disparity had a negative impact.

Moreover, Wang et al. [19] estimated the carbon 
emission efficiency in China using the DDF model and 
unveiled the spatial clustering characteristics of carbon 
emission efficiency using the Moran index. Although 
some scholars have examined the factors affecting 
carbon emissions while controlling for spatial spillover 
effects, there is currently no consideration of the impact 
of geographic proximity on carbon emissions [20-25]. 
However, several studies have investigated the spatial 
correlation of carbon emission efficiency. Finally, given 
the complexity of the various spatial linkages of carbon 
emission intensity, further research in this field is 
required.

Existing research has explored the issue of the impact 
of China’s industrial transfer on carbon emissions, 
including spatial transfer, hidden carbon emissions, 
and carbon leakage, through input-output modeling. 
However, the compilation of China’s input-output table 
is a long and discontinuous process, which limits the 
currentness of this research. Furthermore, input-output 
tables assembled based on industrial sectors lead to high 
errors due to the homogenization of industries, which 
affects the study’s accuracy. Another approach is to 
use spatial measurement to examine the impact factors 
associated with carbon emissions while considering 
their spatial spillover. This approach shifts the research 
hypothesis from single geographical segregation to  
a more reasonable geographical correlation, producing 
more accurate and credible research results. However, 
most existing research studies the geographical 
heterogeneity and spillover effect of carbon emissions 
only from the perspective of geographically proximate 
regions, which doesn’t truly reflect the multidimensional 
spatial dependence of carbon emissions across different 
regions of China. Therefore, both research methods 
inadequately describe the multidimensional spatial 
correlation effect of carbon emissions and do not enable 
the effective identification of its internal mechanisms. 
Consequently, they cannot provide a scientific basis for 
decision-making in solving the issue of resource scarcity 
in the context of carbon trading in China.

To address these limitations, SNA has been 
increasingly utilized to investigate carbon emissions 
[26, 27]. SNA has been well-established in various 
fields, including sociology and economics [28]. The 
approach primarily investigates interrelationships and 
structural evolution laws among factors within a region 

[29, 30]. It is also capable of addressing the limitations 
of qualitative research, particularly the lack of objective 
quantitative indicators. Consequently, the model is 
highly advantageous in evaluating low-carbon synergies 
between regions [31].

Provinces and regions are essential economic units 
in implementing carbon emission reduction in China 
and play a key role in regulating total national carbon 
emissions [32]. The carbon emission intensity of a 
province depends not only on its economic development 
and energy consumption but also on the development 
of its neighboring areas. Thus, analyzing changes in 
carbon emission intensity at the provincial level and 
uncovering the potential driving mechanisms behind 
them is crucial for achieving the national goal of “peak 
carbon” and promoting sustainable economic and social 
development. This study employs the Moran index 
to measure the spatial correlation of carbon emission 
intensity (per unit of carbon dioxide emission) at the 
provincial level. Additionally, a spatial lag term is 
included based on traditional Markov chains to examine 
the spillover effect of carbon emission intensity utilizing 
a spatial Markov chain. Most spatial econometric models 
typically consider geographic proximity, which cannot 
accurately reflect carbon emission intensity relationships 
between non-adjacent regions [33]. Therefore, this study 
applies SNA to evaluate spatial correlation between 
non-adjacent regions. Finally, the SDM is employed to 
analyze the drivers behind carbon emission intensity.

Material and Methods

Standard Deviation Ellipse

The standard deviation ellipse method is a 
classical technique utilized to evaluate the directional 
characteristics of spatial distributions. This method 
quantitatively explains the centrality, discretization, 
orientation, and overall spatial pattern of economic 
factors from both a global and spatial perspective.

Moran’s Index

The Moran index is a critical and frequently used 
metric for studying spatial autocorrelation [34, 35]. 
It comprises both global and local measures - the 
global Moran’s index assesses clustering or outliers 
in spatial data. If global autocorrelation is detected, 
local autocorrelation is then conducted to locate where 
clusters or outliers occur [36]. The correlation formula 
is as follows:
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where zi indicates the difference in carbon emission 
intensity of province i from its mean value, ωij is 
the spatial weight between provinces i and j, and n 
represents the total number of provinces, while So is the 
summation of all spatial weights.

Spatial Markov Chain 

Spatial Markov chains effectively examine 
interactions between provinces by incorporating spatial 
lag terms [37, 38]. This compensates for traditional 
Markov chains’ deficiency in accounting for spatial 
correlation effects of interregional carbon emission 
intensities. By conditioning the spatial lag type of carbon 
emission intensity in the current year at the provincial 
level in China, this study classifies it into N-type. It then 
decomposes the N×N transfer probability matrix into N 
conditional transfer probability matrices with an N×N 
size. The calculation formula is:
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where Yj stands for the carbon emission intensity of 
province j, n represents the total number of provinces, 
and Wij represents the spatial adjacency relationship 
between provinces i and j. A value of 1 denotes 
neighboring regions, while a value of 0 indicates non-
neighboring regions.

Social Network Analysis

The SNA method is primarily used to assess the 
relational structure and attributes of social networks. 
Its significance resides in accurately quantifying 
relationships, thereby providing a quantitative tool for 
constructing intermediate theories and empirically 
testing propositions. Widely applied in various 
disciplines such as management, sociology, and 
economics [39], it requires the identification of network 
relationships to facilitate their analysis. Hence, this 
study applies a gravity model suitable for cross-sectional 
data to investigate the provincial carbon intensity spatial 
correlation network’s dynamic evolution characteristics. 
The correlation formula is as follows:
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where xij represents the level of association of provinces 
i with j, and kij represents the contribution rate of 
province i to the spatial correlation of carbon emission 
intensity between provinces i and j; C, p, G, and g refer 
to carbon emission intensity, population, GDP, and GDP 
per capita, respectively; dij denotes the geographical 
distance between provinces i and j, which is measured 
using the latitude and longitude distance in this study.

Spatial Durbin Model 

In economics, spatial dependence in regional 
activities is widely observed [40]. The SDM aims to 
investigate these spatial relationships, enhancing our 
understanding of social object relationships. The specific 
model is as follows:
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where y represents carbon emission intensity and x 
represents explanatory variables; ρ and θ are spatial 
autocorrelation coefficients for carbon emission intensity 
and explanatory variables, respectively; W is a spatial 
weight matrix,  is the regression coefficient for 
explanatory variables, and ε is the random error term;  
i and j represent provinces, t represents time, and n is 
the total number of provinces.

Data Sources

This study utilizes carbon emission data from the 
Multi-resolution Emission Inventory for China, which 
has been managed and developed by Tsinghua University 
since 2010. The data sources comprise the China 
Statistical Yearbook (population, foreign investment, 
GDP per capita, and urbanization rate), the China 
Energy Statistical Yearbook (electricity consumption per 
capita), and the China Statistical Yearbook of Science 
and Technology (technology market transactions).

Results and Discussion

Analysis of Spatial Evolution  
of Carbon Emission Intensity

Based on the accessible data, this study omitted 
provinces with missing data and examined the carbon 
emission intensity of 30 provinces in China from 2004 
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rapid economic growth, the demand for energy has 
risen sharply. Ningxia, being less developed, still relies 
heavily on high-carbon industries, particularly chemical 
production, which significantly impacts economic 
development and employment in the region.

As depicted in Fig. 1, the number of provinces with 
low carbon emission intensity in China significantly 
increased from 2004 to 2020, while most provinces 
experiencing a rise in high carbon emission intensity 
are situated in the southern region. The shifting center 
position of the standard deviation ellipse indicates 
a movement of the carbon emission intensity center 
towards the northwest. However, China’s overall 
economic development center is shifting towards the 
southeast [41], indicating a misalignment between 
economic development direction and carbon emission 
intensity, consistent with the findings of Liu et al. [42].

Spatial Correlation Analysis

Global Moran’s Index Analysis

In this study, the global Moran index of China’s 
provincial carbon emission intensity from 2004 to 2020 

to 2020. To illustrate the spatial disparities in carbon 
emission intensity more effectively, ArcGIS was 
employed to visualize the data at four time points: 2004, 
2009, 2014, and 2020. The spatial migration trajectory 
of carbon emission intensity in China was delineated 
using standard deviation ellipses, as depicted in Fig. 1.

In 2004, the carbon emission intensity of eight 
provinces exceeded 40,000 tons per 100 million yuan, 
with Shanxi, Ningxia, Guizhou, and Inner Mongolia 
reaching 85,370 tons, 90,110 tons, 79,230 tons, and 
71,820 tons per 100 million yuan, respectively. By 2009, 
the carbon emission intensity of four provinces surpassed 
40,000 tons per 100 million yuan, with Ningxia at 60,540 
tons per 100 million yuan. Both in 2014 and 2020, 
Ningxia’s carbon emission intensity remained above 
40,000 tons per 100 million, reaching 50,290 and 53,640 
tons per 100 million, respectively. Overall, China’s 
carbon emission intensity has decreased steadily over 
the years, mainly due to adjustments in China’s energy 
structure and technological advancements. China has 
shifted from a coal-dominated energy structure to a more 
diverse one, fostering research and innovation in energy 
consumption. Ningxia’s high carbon emission intensity 
is attributed to its reliance on coal-based energy. With 

Fig. 1. Spatial Evolution of Carbon Emission Intensity in 2004, 2009, 2014, and 2020. 
a) In the year 2004, b) In the year 2009, c) In the year 2014, d) In the year 2020.
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was computed using the relevant formula, as presented 
in Table 1.

As observed in Table 1, the Moran index of China’s 
provincial carbon emission intensity from 2004 to 2020 
is positive, with all p-values below 0.05. This suggests 
a significant positive spatial correlation of carbon 
emission intensity. Furthermore, the global Moran 
index rose from 0.253 in 2004 to 0.412 in 2020, while 
the p-value declined from 0.016 to 0.000. These findings 
indicate an increasing spatial correlation of carbon 
emission intensity over time.

 Local Moran’s Index Analysis

To gain a clearer understanding of the spatial 
distribution of carbon emission intensity among 
provinces, this study further computed the local 
Moran’s index and presented a scatterplot to analyze 
the clustering effect of carbon emission intensity more 
intuitively.

As depicted in Fig. 2, most provinces are situated 
in the first and third quadrants. The first quadrant 
signifies that a province and its neighboring provinces 
exhibit higher carbon emission intensity, while the 
third quadrant indicates lower carbon emission 
intensity for a province and its neighboring samples. 
This phenomenon primarily arises from increased 
cooperation among major industries in neighboring 
provinces during the study period, fostering economic 
and technological exchanges and resulting in a higher 
spatial agglomeration rate of carbon emission intensity.

Several provinces are situated in the second 
quadrant, with only a few located in the fourth quadrant. 
The second quadrant signifies that a province has low 
carbon intensity on its own, while its neighboring 
provinces exhibit high carbon intensity. The fourth 
quadrant, on the other hand, indicates provinces with 
high carbon intensity and neighboring provinces with 
low carbon intensity.

For instance, Beijing, being the capital city, was 
bordering the second and third quadrants in 2004. 

In 2009, 2014, and 2020, it remained in the second 
quadrant. The principal reason for this is the city’s 
strong “siphon effect,” drawing in talent and investment 
from neighboring provinces and beyond. Consequently, 
Beijing ranks first in nationwide comprehensive science 
and technology innovation and provides strong support 
for green research and development technologies. 
Beijing also exports carbon emission sources and 
gradually relocates heavily polluting and high-emission 
enterprises out of the city. For instance, the Shougang 
Group relocated from Shougang Park in Beijing to 
Tangshan City in Hebei Province successfully within 
five years.

Analysis of Spillover Effects

According to the Moran index analysis, there is  
a significant positive spatial correlation and clustering 
phenomenon in provincial carbon emission intensity 
across China. This study uses panel data analysis 
with Markov and spatial Markov chains to explore the 
spatial evolution patterns of provincial carbon emission 
intensity and the interactions between neighboring 
provinces. Carbon emission intensity is classified into 
four categories: very low (VL), low (L), medium (M), 
and high (H). The findings are summarized in Tables 2 
and 3.

The main diagonal values in Table 2 are all above 
0.808, indicating at least an 80.8% probability of 
maintaining the original carbon intensity. The highest 
value on the main diagonal is 0.994 for the VL state, 
suggesting its high stability. Other values indicate the 
probability of transitioning to a different state in the next 
period. The transition probabilities from the L state to 
the VL and M states are 12.4% and 1.7%, respectively. 
Transitions from the M state to the L and H states occur 
at rates of 16.3% and 2.7%, respectively, suggesting 
a downward trend in carbon emission intensity and a 
positive overall trend in China’s carbon emissions.

With the inclusion of the spatial lag term, the 
transition probabilities between different carbon 

Table 1. Global Moran’s Index of provincial carbon emission intensity in China from 2004 to 2020.

Year I Sd(I) z P-value* Year I Sd(I) z P-value*

2004 0.253 0.119 2.411 0.016 2013 0.309 0.116 2.958 0.003

2005 0.257 0.119 2.443 0.015 2014 0.327 0.117 3.100 0.002

2006 0.219 0.119 2.142 0.032 2015 0.351 0.117 3.296 0.001

2007 0.253 0.118 2.434 0.015 2016 0.384 0.120 3.495 0.000

2008 0.313 0.120 2.894 0.004 2017 0.360 0.115 3.422 0.001

2009 0.297 0.120 2.759 0.006 2018 0.365 0.116 3.434 0.001

2010 0.328 0.119 3.045 0.002 2019 0.406 0.115 3.827 0.000

2011 0.303 0.113 2.995 0.003 2020 0.412 0.114 3.904 0.000

2012 0.329 0.116 3.136 0.002



Research on the Spatial Heterogeneity... 4055

intensity states change significantly. The VL state 
region maintains its original state at 99.4%, and when 
surrounded by VL, L, or M states, the probabilities are 
100%, 98.3%, and 100%, respectively. This stability is 
attributed to the high economic and technological levels 
and comprehensive low-carbon development models 
in VL state regions, making them less susceptible 
to neighboring influences. This also explains the 
occurrence of low-high agglomeration. In M-state 
regions, the probability of evolution is 16.4% and 
regression is 2.7%. When surrounded by VL, L, M, and 
H states, the evolution probabilities are 100%, 8.3%, 
23.1%, and 20%, while the regression probabilities are 
0%, 2.8%, 3.8%, and 0%. This suggests that regions 

with lower carbon emission intensity experience more 
pronounced positive spillover effects from neighboring 
regions.

Spatial Network Analysis of Carbon 
Emission Intensity

This paper employs the SNA method to examine the 
spatial correlation network of provincial carbon emission 
intensity in China, owing to the difficulty in representing 
the multidirectional spatial dependence between regional 
carbon emissions using spatial indicators [43]. To this 
end, a square gravity matrix of order 30 based on the 
gravity formula was established. A threshold value,  

Fig. 2. Local Moran scatter plot for the years 2004, 2009, 2014, and 2020.
a) In the year 2004, b) In the year 2009, c) In the year 2014, d) In the year 2020.

Table 2. Traditional Markov transition probability matrix.

VL L M H

VL 0.994444444 0.005555556 0 0

L 0.124293785 0.858757062 0.016949153 0

M 0 0.164383562 0.808219178 0.02739726

H 0 0 0.16 0.84
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as the average value of each row in the gravity matrix, was 
set, according to previous research [44]. A value greater 
than or equal to the threshold is defined as 1 denoting 
spatial correlation between the corresponding regions in 
terms of carbon emission intensity. Conversely, a value 
less than the threshold is defined as 0, indicating no 
such correlation exists. Ultimately, a spatial correlation 
network matrix on carbon emission intensity is created, 
and the corresponding network diagram is presented in 
Fig. 3.

In Fig. 3, the carbon emission intensity of each 
province is not only correlated with neighboring 
provinces but also exhibits spatial correlation with  
non-neighboring provinces, surpassing the limitations  
of geographic proximity. Shandong, Guangdong, 
Jiangsu, Shanghai, Henan, and Hebei are provinces 
with a strong spatial correlation of carbon emission 
intensity. Among them, Shandong, Guangdong, Jiangsu, 
and Shanghai are all situated in the coastal region, 
characterized by robust economic and technological 
levels, favorable geographic locations, and relatively 
mature green development models. Consequently, they 
exhibit stronger correlations with other provinces. 
However, although Henan and Hebei are active in the 
spatial correlation network, this does not necessarily 
imply that the green development of these provinces 
is at a high level. The main reason is that they are 
recipients of carbon emissions. For instance, Henan’s 
incomes in 2004, 2009, 2014, and 2020 are 11, 10, 14, 
and 12 respectively, and its outgoings are 4, 3, 2, and 3, 
respectively.

To further explore the spatial correlation network of 
carbon emission intensity in China, this study calculates 
four statistical metrics: edge counts, graph density, 
average degree, and average clustering coefficient, 
with the results reported in Fig. 4. Edges signify 
the connections between provinces, while the graph 
density is the ratio of the maximum potential edges to 
the actual ones. Meanwhile, the average degree is the 
proportion of the sum of outgoing and incoming degrees 
and the number of nodes, and the average clustering 
coefficient indicates the degree of interaction between 
the provinces regarding the carbon intensity correlation 
network. As evident in Fig. 4, the number of edges in the 
spatial correlation network reduces from 118 in 2004 to 
99 in 2020, and the average degree of edges decreases 
from 3.933 to 3, implying that the spatial connectivity 
among provinces in carbon emission intensity has 
declined. The figure density indicates that the growth 
of the spatially correlated network of carbon emission 
intensities between provinces is unsatisfactory, with 
many expected connections yet to occur. Out of four 
statistical measures, the only one displaying an overall 
increase is the average clustering coefficient, which rises 
from 0.518 to 0.538. This suggests that nodes form more 
triangles with neighboring nodes, indicating higher 
correlation and aggregation. A trend toward coagulation 
of spatial connections of carbon emission intensity 
between regions in China is inferred from the changes in 
the four statistical indicators. Nonetheless, disparities in 
green development levels exist among regions, with the 
majority of southern regions, the southeastern coastal 

Table 3. Spatial Markov transition probability matrix.

Space lag VL L M H

VL

VL 1 0 0 0

L 0.2 0.8 0 0

M 0 1 0 0

H 0 0 0 0

L

VL 0.982758621 0.017241379 0 0

L 0.163636364 0.836363636 0 0

M 0 0.083333333 0.888888889 0.027777778

H 0 0 0.125 0.875

M

VL 1 0 0 0

L 0.023255814 0.930232558 0.046511628 0

M 0 0.230769231 0.730769231 0.038461538

H 0 0 0.2 0.8

H

VL 0 0 0 0

L 0 0.8889 0.1111 0

M 0 0.2000 0.8000 0

H 0 0 0.1429 0.8571
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region, and the Beijing-Tianjin region displaying higher 
green development levels compared to other areas.

Analysis of Driving Factors  
for Carbon Emission Intensity

Selection of Spatial Econometric Model

To explore the drivers of carbon emission intensity 
at the provincial level in China, this study employs the 
SDM to investigate the effects of economy, technology, 
foreign exchange, and energy consumption on carbon 
emission intensity. The independent variables include 
population (X1), GDP per capita (X2), urbanization 
rate (X3), technology market transactions (X4), foreign 
investment (X5), and electricity consumption per 
capita (X6), while the dependent variable is the carbon 
emission intensity of each province. Various tests were 
conducted on this data.

Both the LM test and Robust-LM test statistics 
exceed 0, and the p-value is less than 0.05, indicating 

significant results. Therefore, the SDM model is deemed 
appropriate. The Wald test, Hausmann test, and LR test 
were also conducted. The statistics for all three tests 
exceed 0, and the p-values are less than 0.05, indicating 
significant results. Consequently, based on the Wald 
test, the SDM model does not degenerate into the SLM 
model or the SEM model. According to the Hausman 
test, the SDM model should use fixed effects. The LR 
test suggests the utilization of double fixed effects.

Result Analysis 

In this study, the double fixed-effects SDM is 
employed to investigate the determinants of changes 
in carbon emission intensity at the provincial level 
in China. Table 4 presents the outcomes of the effect 
decomposition.

The SDM dissects the influencers of carbon 
emission intensity into direct, indirect, and total effects.  
The direct effect delineates the impact of explanatory 
variables within a region on the carbon emission 

Fig. 3. Spatial Correlation Networks of Carbon Emission Intensity in 2004, 2009, 2014, and 2020.
a) In the year 2004, b) In the year 2009, c) In the year 2014, d) In the year 2020.
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Fig. 4. Statistical Measures of Spatial Correlation Network.

y Coefficient Std.err. z P>|z|

LR_Direct

X1 0.0004282 0.0001067 4.01 0.000

X2 -0.0311374 0.0294429 -1.06 0.290

X3 -0.033163 0.0091285 -3.63 0.000

X4 2..48e-08 6.55e-09 3.79 0.000

X5 -0.0000123 0.0000137 -0.90 0.367

X6 0.3182505 0.2030169 1.57 0.117

LR_Indirect

X1 0.0003068 0.0001688 1.82 0.069

X2 -0.2077138 0.0534768 -3.88 0.000

X3 -0.0763069 0.0154265 -4.95 0.000

X4 4.46e-08 1.30e-08 3.44 0.001

X5 0.0000249 0.0000303 0.82 0.411

X6 1.328678 0.4355616 3.05 0.002

LR_Total

X1 0.0007349 0.0002233 3.29 0.001

X2 -0.2388513 0.0516022 -4.63 0.000

X3 -0.1094700 0.0124531 -8.79 0.000

X4 6.94e-08 1.57e-08 4.43 0.000

X5 0.0000126 0.0000326 0.39 0.700

X6 1.6469290 0.4631061 3.56 0.000

Table 4. Decomposition results of driving factors of carbon emission intensity changes.
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intensity within the same region. Meanwhile, the 
indirect effect comprises two facets: the influence of 
explanatory variables within neighboring regions on 
the carbon emission intensity within the focal region, 
and the impact of explanatory variables within the 
focal region on its own carbon emission intensity via a 
network of feedback loops.

As indicated in Table 4, the p-values associated 
with GDP per capita, foreign direct investment, and 
electricity consumption per capita – direct determinants 
of carbon emission intensity – are all above 0.05, 
indicating insignificance. Furthermore, both the 
direct and indirect effects of population, urbanization 
rate, and technology market turnover rate on carbon 
emission intensity exhibit similar patterns of change, 
demonstrating facilitating, inhibiting, and facilitating 
effects, respectively.

Population growth stimulates various energy 
demands, such as those arising from the expansion of 
the construction sector, where numerous buildings 
consume substantial energy and materials, consequently 
resulting in increased carbon emissions. Additionally, 
rapid population growth fosters population mobility, 
which in turn influences carbon emissions in adjacent 
regions [45].

Early stages of urbanization were characterized by 
heightened energy consumption and carbon emissions. 
Nevertheless, with the progression of urbanization, there 
emerges a rationalization of technological and industrial 
structures, leading to more efficient resource utilization 
and diminished carbon emissions. Consequently, the 
nation’s level of urbanization has experienced significant 
growth.

The rapid advancement of science and technology is 
anticipated to trigger an upsurge in energy utilization. 
Technological innovations can enhance energy efficiency, 
optimize the energy mix, and propel the adoption of 
green energy, thereby mitigating carbon emissions. 
However, improvements in energy efficiency may 
inadvertently result in increased energy consumption, 
consequently leading to higher carbon dioxide emissions.

GDP per capita exhibits no significant direct 
impact but exerts a moderating influence on carbon 
emissions through indirect effects. This phenomenon 
is primarily attributed to the dual impact of economic 
growth on carbon emission intensity. On one hand, it 
enhances consumption quality, thereby reducing carbon 
emissions; on the other hand, it stimulates consumption, 
leading to increased carbon emissions. Consequently, 
the effect of GDP per capita on carbon emission intensity 
remains uncertain. Previous studies have revealed an 
“N”-shaped relationship between GDP per capita and 
per capita carbon dioxide emissions, with the strength 
of these effects contingent upon the stage of economic 
development.

The relationship between foreign direct investment 
(FDI) and per capita electricity consumption on 
carbon intensity is not characterized by a simple linear 
association. While FDI fosters economic growth,  

it may also introduce carbon emission sources from 
abroad into China. Moreover, the correlation between 
per capita electricity consumption and carbon emission 
intensity is influenced by the level of economic and 
technological advancement. Some regions exhibit 
high per capita electricity consumption coupled with 
low energy utilization efficiency, resulting in elevated 
carbon emission intensity, whereas others demonstrate 
high per capita electricity consumption alongside high 
energy utilization efficiency, leading to reduced carbon 
emission intensity.

In conclusion, based on the findings derived from 
the SDM model, it can be inferred that, at China’s 
current developmental stage, the overall impacts 
of population, GDP per capita, urbanization rate, 
technology market transactions, total FDI, and per capita 
electricity consumption on carbon emission intensity 
are facilitating, inhibiting, mitigating, facilitating, 
facilitating, and promoting, respectively. However, 
the influence of FDI was found to be statistically 
insignificant.

Conclusion

This study utilizes GIS technology and the Moran 
index to explore the spatial dynamics and aggregation 
effect of carbon emission intensity in China. It integrates 
traditional Markov chain, spatial Markov chain, and 
SNA methods to examine the spatial interaction of 
carbon emission intensity between adjoining and non-
adjoining provinces. Additionally, the factors driving 
carbon emission intensity were analyzed using the 
SDM. Based on the findings, the following conclusions 
can be drawn:

(1) The shifting of China’s carbon emission intensity 
towards the northwest while the economic center 
is moving southwards indicates noticeable spatial 
disparities in the level of low-carbon development 
across China. This phenomenon can be attributed to 
factors such as regional economic development, energy 
resource distribution, policy support, technological 
innovation capacity, geographic environment, and 
climatic conditions. 

(2) China’s carbon emission intensity distribution is 
predominantly characterized by high carbon emission 
intensity regions adjacent to other high carbon emission 
intensity regions and low carbon emission intensity 
provinces adjacent to other low carbon emission 
intensity provinces. Carbon emission intensity exhibits 
evident spatial spillover effects, with the positive 
spillover effects being more pronounced in regions with 
low carbon emission intensity. Regions with higher 
levels of low-carbon development can foster low-carbon 
development in surrounding areas through technological, 
policy, capital, and market influences. Similarly,  
regions with lower levels of low-carbon development 
can gradually close the low-carbon development gap 
and attain comprehensive low-carbon transformation 
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by learning, referencing, and engaging in win-win 
cooperation. 

(3) While the overall trend for China’s carbon 
intensity development is positive, the spatial 
connectivity network of carbon intensity is embedded, 
and the leading provinces in low-carbon development 
have not fully utilized their positive driving role. The 
lack of effective cooperation mechanisms between the 
leading provinces and the surrounding regions leads 
to poor information-sharing and difficulty in policy 
coordination, impeding the formation of good synergies 
and restricting the overall advancement of low-carbon 
development. While the leading provinces may lead 
in low-carbon technology research and development, 
the spillover of technology to the surrounding areas 
is limited, thus restraining the driving effect of low-
carbon development. Furthermore, while the leading 
provinces may have attracted ample resources and 
talents, the surrounding areas may face inadequate and 
unappealing resource allocation, insufficient incentives 
for low-carbon development, and the inability to form a 
desirable development pattern. 

(4) At China’s current level of development, 
population, GDP per capita, urbanization rate, technology 
market turnover, total foreign investment, and per capita 
consumption of electric energy cumulatively facilitate, 
inhibit, inhibit, facilitate, facilitate, and facilitate carbon 
emission intensity, respectively. The impact of foreign 
investment has no significant effect. 

Based on the above-mentioned conclusions, this 
paper proposes several recommendations. Under the 
prevailing conditions of carbon emission intensity and 
economic development imbalance, the positive spillover 
effect of highly developed low-carbon regions on 
neighboring regions needs to be further utilized. Carbon 
exchanges between non-neighboring regions must be 
promoted. The government should leverage regulatory 
tools to direct low-carbon technology exchange between 
advanced and relatively backward regions, encourage 
low-carbon technology circulation, and minimize carbon 
emissions in economically less-developed regions. 
Investment in environmental protection should be 
augmented, and capital investment in areas such as clean 
energy, pollution reduction, and carbon emissions should 
be enhanced at the national level. A well-developed 
carbon market mechanism or carbon emissions trading 
system should be established to prompt regions and 
enterprises to independently diminish carbon emissions 
and guide enterprises through economic incentives to 
reduce carbon emissions.
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