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Abstract

This study delves into the intricacies of the county-level carbon emission spatial correlation 
network within the BTH (BTH) region, employing Social Network Analysis (SNA) and the Quadratic 
Assignment Procedure (QAP) to reveal key structural traits and influential factors. Our findings can be 
summarized as follows: The spatial correlation network of carbon emissions in the BTH region displays  
a multifaceted, multi-threaded structure. Notably, it exhibits limited overall correlations, tending towards 
loose connectivity – a state characterized by “moderate central density with western sparseness.” 
Furthermore, the carbon emissions’ spatial correlation network assumes a distinctive “segmented” 
configuration, featuring well-defined boundaries and a proclivity for “each region to operate 
autonomously with localized centers.” This network adheres to a “core-periphery” distribution model, 
with pivotal regions such as the Beijing Ring, Tianjin Ring, Shijiazhuang city center, Beijing-Tianjin 
axis, and Beijing-Guangzhou axis occupying central roles. These areas wield substantial influence over 
collaborative carbon reduction efforts in urban clusters. In contrast, regions at the periphery of the BTH, 
such as Chengde, Zhangjiakou, Qinhuangdao, Handan, and Cangzhou, exert limited impact within 
the spatial correlation network of carbon emissions. Lastly, geographical distance and population size 
differences positively correlate with the spatial correlation network of carbon emissions in the BTH 
region. Conversely, disparities in the development levels of secondary and tertiary industries, along 
with variations in technological levels, manifest negative correlations within this network. Our study 
employs SNA and QAP to unravel these complexities, offering insights vital for coordinated carbon 
reduction efforts in this crucial region.
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Introduction

In 2020, China set clear targets to peak carbon 
emissions before 2030 and achieve carbon neutrality 
by 2060. Achieving these dual carbon goals relies 
significantly on coordinated low-carbon development 
at the regional level [1]. China’s various regional 
development strategies have strengthened spatial 
interconnections within regions, transforming carbon 
emissions’ spatial relationships from simple „neighborly” 
connections into complex, multi-threaded network 
structures [2]. Thus, comprehending the morphology of 
regional carbon emission spatial correlation networks 
is essential for shaping effective regional coordinated 
carbon reduction strategies [3].

The BTH region, distinguished by its high population 
density, economic development, and substantial carbon 
emission reduction imperatives, necessitates tailored, 
finely-tuned emission reduction policies to fulfill its 
regionally coordinated carbon reduction objectives. 
This study centers on county-level administrative units, 
pivotal spatial entities for economic development and 
industrial relocation. It constructs a carbon emissions 
spatial correlation network for BTH from 2001 to 2019, 
assesses overall and individual network characteristics, 
elucidates trends in the spatial correlation network of 
carbon emissions in BTH over the past two decades, 
and identifies the roles of various counties and districts 
within the network. Additionally, this research delves 
into the factors shaping network structures. This study 
holds both theoretical and practical significance in 
establishing a coordinated carbon reduction mechanism 
in the BTH region.

Amid growing concern about climate change, 
scholars have increasingly explored various facets of 
carbon emissions, encompassing accounting practices 
across different scales and industries [4, 5], spatial 
characteristics [6, 7], peak emission predictions [8, 9], 
and emission reduction potential [10, 11]. Focusing on 
the spatial aspects, researchers broadly acknowledge 
significant spatial clustering and spillover effects in 
carbon emissions. These phenomena arise from macro-
level economic, technological, and policy linkages 
across regions, as well as micro-level factors like energy 
consumption patterns and corporate environmental 
behaviors [12, 13]. While prior studies have utilized 
spatial weight matrices to depict geographical 
relationships between sample areas, they primarily relied 
on attribute data (e.g., regional GDP and population) 
that don’t directly capture interregional associations. 
For instance, using Global and Local Moran’s I to 
explore carbon emissions patterns, researchers identified 
strong positive spatial associations and pronounced 
clustering [14, 15]. However, carbon emissions exhibit 
spillover effects, where emissions can extend to other 
regions through natural and economic mechanisms like 
atmospheric circulation, industrial shifts, and economic 
activities [16]. Consequently, the research on carbon 
emissions’ spatial characteristics has evolved from 

examining adjacent regions [17] to investigating the 
intricate network structures that span different domains 
[18, 19, 20]. Varying in research scales, Wang et al. (2018) 
employed social network analysis to confirm the intuitive 
spatial association network structure of carbon emissions 
among China’s provinces [21]. Wang et al. (2021) 
shifted their focus to the Chengdu-Chongqing urban 
agglomeration, exploring spatial patterns and correlation 
effects in CO2 emissions [22]. In terms of different 
sectors, Cai et al. (2012) mapped a spatially linked 
network of transportation-related carbon emissions 
in China, revealing a complex web of connections 
dominated by Henan and Jiangsu, serving as key regional 
hubs for transportation carbon reduction [23]. Zhou et 
al. (2018) built a carbon emission association network 
within China’s power industry, highlighting robust inter-
provincial linkages with Shanghai, Jiangsu, Tianjin, 
Beijing, and Zhejiang positioned at the network’s core 
[24]. Moreover, precisely understanding the determinants 
of carbon emissions is fundamental for effective 
emission reduction efforts [25]. Presently, prominent 
methodologies and models employed in studying carbon 
emission factors encompass the autoregressive distributed 
lag cointegration model [26], structural decomposition 
analysis [27], LMDI [28], and STIRPATA model [29, 
30], among others. The principal factors influencing 
carbon emissions encompass economic growth [31-
33], urbanization rate [34], urban development patterns 
[35], technological advancement [36], energy mix [37], 
industrial composition [38], and more.

Overall, the above carbon emissions relevant 
research offers a wealth of insights, yet a particular 
niche deserving deeper exploration lies in the realm of 
spatial correlation networks. First, prevailing studies 
on carbon emission spatial correlations predominantly 
emphasize geographical proximity, overlooking the 
intricate multi-threaded spatial relationships within 
regions. This limitation hampers a comprehensive 
understanding of regional emissions dynamics. Second, 
earlier research tends to rely heavily on „attribute data” 
reflecting individual characteristics such as GDP and 
population, often neglecting the richer insights offered 
by „relationship data” that signify correlations between 
multiple entities. Nevertheless, analyzing regional 
carbon emission relationships gains significance within 
the context of coordinated emissions reduction. Lastly, 
current research predominantly centers on carbon 
emission spatial characteristics at broader scales, such 
as national, urban clusters, and provincial levels, leaving 
a dearth of fine-grained, small-scale investigations.

Hence, this study harnesses the power of Social 
Network Analysis (SNA) and the Quadratic Assignment 
Procedure (QAP) to explore county-level data from the 
BTH region spanning 2001 to 2019. It not only assesses 
the spatial correlation network’s characteristics but also 
elucidates correlation patterns among diverse counties. 
Furthermore, it pinpoints the network positions of these 
entities and identifies the factors shaping and evolving 
the carbon emission spatial correlation network within 
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the BTH region.

Material and Methods

Study Area

By 2019, the BTH region encompasses a total of 200 
county-level administrative units. To streamline our 
study, we amalgamated administrative units with similar 
functional orientations, exemplified by Tianjin’s Hedong, 
Heping, Hexi, Nankai, Hebei, Beichen, Xiqing, Jinnan, 
and Dongli Districts. Similar consolidation measures 
are applied to central urban areas within Beijing and 
various prefecture-level cities in Hebei Province. As a 
result, we curated 162 county-level units, which served 
as network nodes for our empirical investigation into the 
spatial correlation dynamics of carbon emissions within 
the BTH region from 2001 to 2019.

Methodology

Social Network Analysis

Social network analysis (SNA) is a vital research 
methodology within the fields of sociology and 
economics [39]. In essence, this approach centers 
on examining relationships and network structures 
established through internal connections among various 
actors. In this study, we conceptualize the entire BTH 
region as the overarching network, with each constituent 
county serving as an actor or node. Simultaneously, the 
connections between these counties are defined as edges, 
signifying the carbon emission correlation among the 
counties in BTH. These edges reflect the relationships 
between nodes within the network, offering insights 
into the carbon emission interplay across all counties 
in BTH. Consequently, we aim to quantify the nodes, 
edges, and network attributes characterizing the BTH 
carbon emissions spatial correlation network.

Modified Gravity Model

The construction of an association network is the 
first step of social network analysis. The Gravity model 
proves valuable in delineating spatial interactions. 
Unlike the Moran index and the Granger causality 
test, the Gravity model not only gauges the overall 
spatial correlation within a region but also assesses 
the spatial pathways through which interactions occur 
among individuals in the area. This model facilitates a 
more precise measurement of carbon emission spatial 
correlation. In this work, nodes represent counties, and 
edges represent carbon emission connections between 
counties. Considering that the gravity model can 
comprehensively take economy, distance, and emissions 
into consideration, this work uses an improved gravity 
model to construct BTH carbon emissions spatial 
correlation. The modified gravity model is as follows:

	 	 (3)

Where i and j represent county i and county j; Rij is 
the carbon emission correlation strength between county 
i and county j, C is the carbon emission, G is the GDP 
of each county, d is the distance between two counties, 
and g is the per capita GDP. We assume the number of 
counties is k, then i = 1, 2, ..., k and j = 1, 2, ..., k.

To streamline network characterization, we binarize 
the BTH carbon emissions gravity matrix in this 
study. Recognizing that only a select few counties can 
exert substantial influence on others, we establish the 
threshold by computing the average value for each row 
within the matrix. When the gravity value surpasses the 
row’s average, it is assigned a value of 1, signifying a 
significant correlation. In this context, the counties in the 
corresponding column influence the carbon emissions of 
those in the respective row.

Network Characteristics

Following the construction of the association 
network, we utilized overall and centrality network 
characteristics to quantify the attributes of the 
BTH carbon emission correlation network. These 
characteristics encompass various sub-items, as detailed 
in Table 1. To be specific, our study employs overall 
network characteristics to investigate the collaborative 
potential for carbon emission reduction in the BTH 
region, while centrality network characteristics serve 
as indicators of counties’ roles in achieving synergistic 
carbon reduction. The Handbook of Social Network 
Analysis: A Handbook by Scott (2012) could supply 
more in-depth information [40].

Quadratic Assignment Procedure Method

The BTH carbon emission correlation network 
is influenced by various socioeconomic factors, and 
identifying these factors aids in policy decision-making. 
Factors such as geographical location, population size, 
industrial migration, and energy-saving technology 
levels, among others, have notable impacts on spatial 
carbon emission spillovers. Consequently, we have 
chosen five factors – spatial adjacency, population 
size, development levels of the secondary and tertiary 
industries, and technological progress – to elucidate 
the creation of the carbon emission spatial correlation 
network in the BTH, as outlined in Table 2.

Based on the above analysis, we can set up the model 
as follows:

N = f (D, P, IS, IT, T)

where N represents the spatial correlation matrix of BTH 
carbon emission and D represents the spatial adjacency 
matrix. The value is 1 if the counties are adjacent and 
0 if the counties are not. P represents the matrix for 
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differences in population size. Additionally, IS, IT, and T 
represent the matrices for differences in the development 
of the secondary industry, tertiary industry, and R&D 
funding per unit of GDP, respectively.

Data Sources

We sourced county-level carbon emission data 
for Beijing, Tianjin, and Hebei Province from China 
Emission Accounts and Datasets (CEADS). Additionally, 
original data for counties in BTH are extracted from 
various annual statistical yearbooks, such as the “China 
County Statistical Yearbook,” the “Beijing Statistical 
Yearbook,” the “Tianjin Statistical Yearbook,” the 
“Hebei Economic Yearbook,” and statistical yearbooks 
of different prefecture-level cities in the Hebei Province. 
Geographical distances between counties are measured 
using spherical distances.

Results and Discussion

Overall Social Network Analysis 
of BTH Carbon Emission

To visually depict the spatial correlation network 
structure of carbon emissions in the BTH region for 
2019, we created a visualization using a threshold of  
2 (Fig. 1). The figure illustrates that the spatial correlation 
network of carbon emissions in the BTH region displays 
a distinctive “dense center, sparse periphery” pattern. 
This network extends beyond traditional geographical 
proximity, indicating a complex, multi-threaded 
structure. Understanding these characteristics is crucial 
for achieving carbon emission reduction in the BTH 
urban agglomeration. Moreover, it’s essential to identify 
the roles and positions of counties within this network to 
enable effective regional cooperation.

Notably, carbon emission correlation relationships 
in areas surrounding Beijing, Tianjin, Tangshan, 
Shijiazhuang, and along the Beijing-Guangzhou 

Table 1. Calculation methods of social network characteristics.

Table 2. Variables and indicators.

Network characteristics Description

Overall 
network 

characteristic

Network 
density

, M is the sum of all actual network connections, and N is the number of nodes in the 
network.

The higher the density, the closer the BTH carbon emission network is and the stronger the overall 
coordination state of the network is.

Network 
reciprocity

Number of bidirectional connections as a percentage of all connections. The higher the network 
reciprocity, the more stable the BTH carbon emission correlation network is.

Centrality

Degree 
centrality

, L is the number of nodes directly associated with the node.
A county with a higher degree of centrality has more connections with other counties and is more 

likely to become the center of the network.

Betweenness 
centrality

 is the ability of node i to control
the connection between nodes j and k. 

The greater a county’s betweenness centrality, the more influential it is in the inter-county carbon 
emission interactions within BTH and the more pronounced its synergistic impact on inter-county 

carbon reduction.

Closeness 
centrality

, dij is the distance between nodes i and j.
Closeness centrality reflects the degree to which each county in the network is not controlled by the 

others.

Variable Indicators Variable description

Dependent variable BTH carbon emission correlation network (N) Spatial correlation matrix of BTH carbon emission

Independent
variables

Spatial adjacency (D) Spatial adjacency matrix

Population size (p) Population size difference matrix

Secondary industry development level (is) Secondary industry per unit of gdp difference matrix

Tertiary industry development level (it) Tertiary industry per unit of gdp difference matrix

Technological progress (t) Research and r&d funding per unit of gdp difference matrix
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Analyzing network metrics, such as network 
connectivity, network degree, network efficiency, and 
network density (Fig. 2), provides insights: (1) Network 
Connectivity is consistently held at 1, signifying robust 
connectivity within the spatial correlation network of 
carbon emissions in the BTH region. (2) Network Degree 
remains at 0.0245, indicating symmetric and reachable 
correlation relationships between counties and cities, 
albeit limited in number, suggesting a Matthew effect.  
(3) Average Network Density at 0.185 suggests a relatively 
loose network structure with room for increased spatial 
cooperation and interaction. (4) Network Efficiency 

corridor are notably stronger than in other regions. The 
economic development, infrastructure, and resource 
attraction capacity of these areas contribute to their 
higher correlation strength. However, it’s essential to 
recognize that during the study period, the number of 
carbon emission correlation relationships in the BTH 
region accounted for only 18.5% of the total possible 
correlations, indicating a relatively low spatial correlation 
density. Therefore, fostering deeper cooperation for low-
carbon development among BTH counties and cities 
while enhancing overall network connectivity is crucial 
for collaborative carbon reduction.

Fig. 1. Spatial Association Network of Carbon Emissions in BTH (Threshold = 2).

Fig. 2. Spatial association network density, efficiency, degree, and connectedness of carbon emissions in BTH.
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exhibits fluctuations but showed a general trend toward 
stabilization. Periodic trends suggest variations in inter-
county connections, influenced by factors like industrial 
transfer, economic cooperation, and transportation 
infrastructure improvements.

The increase in network density and decrease in 
network efficiency during the study period can be 
attributed to factors like industrial transfer, economic 
cooperation, and transportation infrastructure 
enhancements. The BTH region’s shift from a “single-
center radiating” transportation network to a “dual-
center network” played a role, with the total length of 
highways increasing significantly. However, in 2008, 
influenced by low-carbon policies and global financial 
crises, there were inflection points in network density 
and efficiency. China’s energy-saving and emission 
reduction policies restrained high-emission industrial 
transfers and cross-regional cooperation initially, but 
the subsequent investment plan in 2008 accelerated 
economic recovery, leading to fluctuations in spatial 
correlation network characteristics.

Local Network Analysis of BTH  
Carbon Emission

Using the CONCOR iterative method, we categorize 
subgroups based on their incoming or outgoing 
relationships, as well as their internal or external 

relationships. Our convergence criterion is set at 0.2, 
and we establish a maximum splitting level of 3.  
This process results in dividing the sample region 
into 8 blocks (Fig. 3 and Table 3), from which we 
obtain density matrices and image matrices (Table 
4). In total, there are 4,817 relationships within these  
8 blocks, comprising 2,491 relationships between blocks 
and 2,326 relationships within blocks. This clearly 
demonstrates the spillover effect of carbon emissions 
within the BTH region, alongside significant carbon 
emission correlations within the blocks themselves.

Overall, the internal density of each block exceeds 
the external density, indicating a degree of closure 
within the spatial correlation network of carbon 
emissions in the BTH region. This leads to a distinct 
“strip-block division” concerning spatial boundaries, 
somewhat limiting future collaborative low-carbon 
governance within the BTH region.

When examining individual block internal densities, 
we observe that Block 6 and Block 8, centered 
around Handan and Hengshui in the southern BTH 
region, display high internal densities of 0.8 and 0.88, 
respectively. These findings indicate strong carbon 
emission correlations within these blocks, signaling 
potential for future internal cooperation in low-
carbon development. Conversely, Block 2, comprising 
Xiongan New Area, Bazhou City, and Cangzhou City 
in southwestern Tianjin, exhibits the lowest internal 

Fig. 3. Division of spatially related subgroups of carbon emissions in BTH.



Spatial Carbon Emission Network... 7

density of 0.584, possibly influenced by its economic 
development. This block displays fewer internal carbon 
emission correlation relationships and requires further 
development.

Regarding inter-block relationships, we find that 
carbon emissions spillover between blocks exhibits 
geographical proximity characteristics. Notably, there is 
a trend of mutual carbon emission correlations north of 
the boundary line formed by Block 1 and the southern 
part of Block 2 (Laiyuan County-Mancheng District-
Baoding-Gaoyang County-Hejian-Cang County-Nanpi 
County). North of this boundary line, carbon emissions 
are interconnected, mirroring a similar pattern south of 
the boundary line. Interaction between the north and 
south is limited, as evidenced by the density matrix. 
The core carbon emission absorption area north of 
the boundary line includes Block 3, encompassing 
Beijing and Tianjin city centers, while the core carbon 
emission absorption area south of the boundary line 
features Block 5, comprising Shijiazhuang city center, 
Anguo City, and Dingzhou City. This trend suggests 
a “north-south isolation with distinct local centers” 
concerning economic transactions, industrial transfers, 
and population mobility within the BTH urban 
agglomeration. Consequently, inter-block relationships 
enhance local collaborative low-carbon development 
while diminishing cooperation with counties and cities 
outside the blocks, affecting overall collaborative low-
carbon development in the BTH region.

 

Individual Network Analysis  
of BTH Carbon Emission

To evaluate the roles of various counties and districts 
within the BTH carbon emission spatial correlation 
network, we are calculating their centrality in terms of 
carbon emissions for the 162 counties and districts, and 
the results are displayed in Fig. 4.

Regarding degree centrality, the top ten counties and 
districts include Beijing, Tianjin, Shijiazhuang, Binhai 
New Area, Baoding, Tongzhou, Shunyi, Langfang, 
Xinji, and Renqiu. These regions exhibit a higher 
degree of correlation with other BTH regions in the 
carbon emission spatial correlation network, placing 
them at central positions. This prominence is attributed 
to their location in economically developed areas like 
the Beijing metropolitan area, the Tianjin metropolitan 
area, the Beijing-Tianjin corridor, and the central area 
of Shijiazhuang. These regions possess substantial 
industrial influence, population concentration, and 
well-established transportation networks, which are 
the primary factors driving their pivotal roles in the 
network. Conversely, counties and districts with lower 
degree centrality, such as Mengcun Hui Autonomous 
County, Ci County, Yanshan County, Dachang Hui 
Autonomous County, Lulong County, Linzhang County, 
Cang County, Changli County, Guangping County, 
and Wei County, display fewer correlations with other 
regions, locating them at the periphery of the correlation 
network. Their marginal geographical positions and 
smaller economic scales make it challenging for them to 

Table 4. Subgroup Density Matrix and Image Matrix.

1 2 3 4 5 6 7 8

Density Matrix

1 0.636 0.23 0.402 0.032 0.142 0.043 0 0

2 0.23 0.584 0.177 0.063 0.063 0.294 0 0

3 0.305 0.068 0.692 0.342 0.007 0 0 0

4 0.044 0.04 0.438 0.772 0 0 0 0

5 0.079 0.078 0.043 0 0.757 0.247 0.207 0.011

6 0.051 0.412 0.094 0.018 0.353 0.8 0.178 0.034

7 0 0.012 0.023 0 0.415 0.212 0.737 0.5

8 0 0 0.008 0 0.089 0.039 0.404 0.88

mage Matrix

1 1 1 1 0 0 0 0 0

2 1 1 0 0 0 1 0 0

3 1 0 1 1 0 0 0 0

4 0 0 1 1 0 0 0 0

5 0 0 0 0 1 1 1 0

6 0 1 0 0 1 1 0 0

7 0 0 0 0 1 1 1 1

8 0 0 0 0 0 0 1 1
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establish significant carbon emission spatial correlation 
relationships with other counties and districts.

In terms of betweenness centrality, the top ten 
counties and districts are Beijing, Tianjin, Shijiazhuang, 
Hejian, Hengshui, Renqiu, Ningjin County, Baoding, 
Binhai New Area, and Xinji. These regions assume 
intermediary roles in the BTH carbon emission spatial 
correlation network, wielding substantial influence 
over carbon emission correlations between other 
counties and districts. They hold pivotal positions 
and are critical areas for consideration in regional 
collaborative carbon reduction governance. Conversely, 
the bottom ten counties and districts include Lulong 
County, Guangping County, Changli County, Shangyi 
County, Linzhang County, Leting County, Dachang Hui 
Autonomous County, Ci County, Cangzhou, and Cang 
County. These regions experience more constraints 
in the carbon emission spatial correlation network, 
resulting in weaker control and influence over other 
regions.

In terms of closeness centrality, the top ten counties 
and districts encompass Beijing, Tianjin, Shijiazhuang, 
Baoding, Xinji, Renqiu, Ningjin County, Dingzhou, 
Gaocheng District, and Hengshui. These regions occupy 
central roles in the network, with their carbon emissions 
being less susceptible to control by other regions. The 
bottom ten counties and districts, including Lincheng 
County, Baixiang County, Qiu County, Gaoyi County, 
Feixiang County, Cheng’an County, Wei County, 
Linzhang County, Ci County, and Guangping County, 
are primarily situated in the southern part of the BTH 
region. This indicates a weaker spatial correlation of 
carbon emissions with other regions, placing them in 
the position of “peripheral actors” in the county-level 
carbon emission spatial correlation network. This can 
be attributed to their relatively marginal geographical 
locations and smaller economic scales, which hinder 
their significant impact on carbon emissions in other 
regions.

In summary, economically developed areas within 
the BTH urban agglomeration, such as the surrounding 
counties and districts of Beijing, the surrounding 
counties and districts of Tianjin, the Shijiazhuang city 
center, the Beijing-Tianjin corridor, and the Beijing-
Guangzhou corridor, demonstrate prominent indicators 
across various aspects and occupy central positions in 

the network. They exert a controlling role over the carbon 
emissions of other regions, making them a primary 
focus for future urban collaborative carbon reduction 
efforts. Specifically, the “Beijing-Tianjin corridor,” 
“Tongwu corridor,” and “Tianjin-Binhai twin cities” 
all assume central positions within the BTH county-
level carbon emission spatial correlation network and 
possess significant controlling influence over the overall 
network. Conversely, counties and districts located at 
the periphery of the BTH urban agglomeration, such 
as Chengde, Zhangjiakou, Qinhuangdao, Handan, 
and Cangzhou, generally exhibit lower indicators 
and are situated at the periphery of the correlation 
network. This is primarily due to their geographical 
marginalization and smaller economic scales, resulting 
in weaker influence in the collaborative carbon reduction 
governance of the urban agglomeration.

Factors Affecting the BTH Carbon Emission 
Spatial Correlations Network

QAP Correlation Analysis

We have calculated the correlations between various 
influencing factors and the spatial correlation network 
structure of carbon emissions in the BTH region using 
the QAP method (Table 5). The results demonstrate 
that five categories of factors, including geographical 
distance, population size, variations in secondary 
industry development levels among counties, disparities 
in tertiary industry development levels among counties, 
and discrepancies in technological input, all withstand 
the significance test, indicating a substantial correlation 
with the formation of the carbon emission correlation 
network in the BTH region. Specifically, the correlation 
coefficients between the geographical adjacency matrix 
and the population size difference matrix are positive. 
In contrast, the correlation coefficients for the other 
factors are negative. This implies that geographic 
distance and population size differences exhibit  
a positive correlation with the carbon emission 
correlation network, while differences in secondary and 
tertiary industry development levels among counties, 
along with disparities in technological input, manifest  
a negative correlation with the carbon emission 
correlation network.

Table 5. Results of the QAP correlation analysis of the matrix N and influencing factors.

Coefficient Significance Average Std Dev Minimum Maximum P≥0 P≤0

D 0.369*** 0.000 -0.000 0.008 -0.025 0.030 0.000 1.000

P 0.114*** 0.000 -0.000 0.016 -0.042 0.083 0.000 1.000

IS -0.021*** 0.008 0.000 0.008 -0.040 0.024 0.993 0.008

IT -0.052*** 0.000 0.000 0.008 -0.035 0.028 1.000 0.000

T -0.03** 0.001 0.000 0.009 -0.038 0.036 0.999 0.001

***, **, and * indicate significance at 1%, 5%, and 10% confidence levels, respectively.
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QAP Regression Analysis

We conducted a QAP regression analysis on the 
influencing factors of the spatial correlation network 
of carbon emissions in the BTH region (Table 6). The 
results reveal that the coefficients of the geographic 
adjacency matrix and population size difference matrix 
are positive, signifying that close geographic proximity 
and smaller population differences play a significant role 
in promoting the formation of the spatial correlation 
network. This phenomenon arises because closer 
geographic proximity between counties facilitates more 
frequent resource transport and population mobility, 
consequently enhancing spatial connections. Conversely, 
the coefficients for differences in the development levels 
of the secondary and tertiary industries among counties, 
as well as differences in technological input, are negative. 
This implies that smaller disparities in the development 
of the secondary and tertiary industries among counties 
are more conducive to the establishment of the spatial 
correlation network of carbon emissions. Moreover, 
regions with similar technological levels exhibit stronger 
carbon emission relationships, indicating that areas with 
fewer technological differences find it easier to engage 
in production exchanges, economic interactions, and 
industrial cooperation. This results in a denser carbon 
emission correlation network, laying the foundation for 
interregional cooperation in emission reduction.

Conclusions and Suggestions

Conclusions

(1) Overall Network Characteristics: The spatial 
correlation network of carbon emissions in the BTH 
region during the study period transcends geographical 
constraints, revealing a complex, multi-threaded 
pattern. However, it falls short in terms of the overall 
number of correlations, and the network’s correlation 
density remains relatively low. Notably, carbon emission 
correlation relationships exhibit a Matthew effect, 
whereby the strong become stronger and the weak 
become weaker. In essence, the correlations follow 
a “central-dense-west-sparse” pattern. To progress 
towards low-carbon development in the BTH region, 

it’s imperative to enhance network density and diminish 
network hierarchy.

(2) Local Network Characteristics: The spatial 
correlation network of carbon emissions in the BTH 
region displays a degree of closure at the local level. 
This limited low-carbon cooperation and interaction 
among regions result in a distinctive spatial pattern 
characterized by “strip-block segmentation.” 
Furthermore, carbon emission overflow between regions 
reflects geographical proximity, with a spatial trend of 
“each to their own in the north and south, with clear 
local centers.” In essence, the restricted carbon emission 
correlations among regions may impede further 
advancements in low-carbon collaborative development 
in the BTH region.

(3) Individual Network Characteristics: Certain 
counties and cities, primarily those within the Beijing 
Ring, Tianjin Ring, along the Beijing-Tianjin axis, and 
the central area of Shijiazhuang, assume pivotal roles 
in the spatial correlation network of carbon emissions 
in the BTH region. These regions wield substantial 
control and influence over the requisite resource 
elements for collaborative carbon reduction in urban 
clusters. Conversely, counties and cities within the 
areas of Chengde, Zhangjiakou, Qinhuangdao, Handan, 
and Cangzhou, situated on the outskirts of the BTH 
urban cluster, occupy peripheral positions in the spatial 
correlation network of carbon emissions. Consequently, 
they have a weaker impact on collaborative carbon 
reduction governance in the urban cluster.

(4) QAP Analysis Results: The outcomes of the 
QAP analysis reveal that geographical proximity and 
diminishing differences in population size significantly 
foster the formation of the spatial correlation network of 
carbon emissions in the BTH region. Smaller disparities 
in the development levels of secondary and tertiary 
industries, as well as technological levels, contribute to 
a denser spatial correlation network of carbon emissions 
among counties and cities.

Suggestions

(1) Integrated Carbon Emission Management: 
Regional governments in the BTH area should shift 
from isolated carbon emission management to a focus 
on the spatial correlation of carbon emissions among 

Table 6. Results of the QAP correlation analysis for each influencing factor.

Standardized coefficient Significance P≥0 P≤0

D 0.366431 0.000 0.000 1.000

P 0.121169 0.000 0.000 1.000

IS -0.012112 0.068 0.933 0.068

IT -0.042457 0.000 1.000 0.000

T -0.020768 0.013 0.988 0.013

***, **, and * indicate significance at 1%, 5%, and 10% confidence levels, respectively.
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counties and cities, fostering cross-regional collaborative 
governance. Firstly, establish a dedicated institution to 
oversee comprehensive carbon emission governance 
in the BTH region, harmonizing management efforts 
across regions. Develop specific laws and regulations 
delineating the roles and collaboration mechanisms 
of these institutions and departments. Secondly, 
institute an assessment and accountability system for 
collaborative carbon emission control. Periodically 
evaluate the effectiveness of regional collaborative 
governance, rewarding high-performing regions and 
penalizing those with inadequate cooperation or 
benefiting from the efforts of others. Lastly, promote the 
exchange and cooperation of low-carbon technologies 
and talent resources, particularly in peripheral areas, to 
expand carbon emission correlation channels. This will 
increase network density, enhance the stability of the 
carbon emission spatial network, and reduce hierarchical 
disparities.

(2) Strengthening Low-Carbon Resource Synergy: 
Enhance the interconnectedness of low-carbon 
development resources across various blocks in the 
spatial correlation network of carbon emissions in 
the BTH region. Place special emphasis on fostering 
low-carbon cooperation and exchanges between 
northern and southern regions, dismantling clear 
boundaries and segmented patterns among blocks. 
This lays the groundwork for comprehensive low-
carbon collaborative development in the BTH region. 
Simultaneously, regions such as Block 3 and Block 
5, primarily responsible for carbon absorption with 
Beijing, Tianjin, and Shijiazhuang city centers as their 
cores, should vigorously develop new energy and green 
manufacturing industries. Implement stringent entry 
criteria for highly polluting industries while extending 
technical and financial support to other regions, 
expediting their successful transformation.

(3) Prioritized Collaborative Carbon Emission 
Control: Tailor collaborative carbon emission control 
priorities to the specific circumstances of each county 
and region. In the collaborative governance process, 
concentrate efforts on key areas such as the Beijing 
Ring, Tianjin Ring, Shijiazhuang city center, Beijing-
Tianjin axis, and Beijing-Guangzhou axis, all of 
which wield significant influence in the network. 
Concurrently, implement proactive measures to reduce 
carbon emissions in counties and districts situated at 
the network’s periphery. Strengthen the interconnection 
of low-carbon resource elements between core and 
peripheral counties and districts, facilitating balanced 
and coordinated low-carbon development.

(4) Focused Approach Based on Contributing 
Factors: Pay heed to influential factors like geographical 
distance, population size, economic dynamics, and 
technological factors that contribute to the formation of 
the spatial correlation network of carbon emissions in 
the BTH region. Direct collaborative carbon reduction 
efforts toward counties and districts with shorter 
geographical distances, smaller population disparities, 

fewer economic development disparities, and relatively 
similar energy-saving technology levels. This will 
foster an overarching reduction in carbon emissions 
throughout the BTH region.
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