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Abstract

Considering the defects of the current abnormal monitoring methods for symbiosis monitoring data 
of ecological environments, a method for abnormal monitoring modeling of symbiosis monitoring data 
of ecological environments based on density clustering is proposed. A hybrid algorithm of self-adaptive 
matrix estimation and random gradient descent is introduced to filter out the dirty data. Genetic 
optimization is used to estimate the parameters of incomplete monitoring data and obtain the optimal 
data parameters. Based on the optimal parameters, Markov chain and Monte Carlo algorithm are used 
to estimate and fill the missing data. The symbiosis monitoring data set of an ecological environment is 
divided into extreme cluster, wild value cluster, and normal cluster. The abnormal possibility is given 
in different ways in each cluster, and the time sequence diagram of abnormal possibility considering 
independent variables and effect quantities is obtained. On this basis, the improved local abnormal 
coefficient algorithm is used to set up the abnormal monitoring model of symbiosis monitoring data 
of the ecological environment and complete the abnormal monitoring. The experimental results 
imply that the method in this paper has high monitoring accuracy, high monitoring efficiency, high 
detection rate, and low false detection rate. The proposed method improves the convergence speed 
and effectiveness of data cleaning and improves the estimation accuracy of missing data. Therefore, it 
can achieve the purpose of optimizing the abnormal monitoring effect of the ecological environment 
symbiosis monitoring data.
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biological populations, providing valuable information for 
understanding the stability and resilience of ecosystems. 
However, due to the complexity and variability of ecosystems, 
monitoring data often contains various abnormal signals, 
which may be manifestations of natural fluctuations or early 
warnings of ecosystem degradation or destruction. Therefore, 
conducting research on abnormal monitoring and modeling 
of ecological environment symbiosis monitoring data has 
important scientific significance and practical value for 
improving the accuracy and reliability of monitoring data 
and timely identifying potential risks of the ecosystem. 
Intended to establish effective anomaly monitoring 
models, reveal anomaly patterns in symbiotic monitoring 
data, and provide scientific basis and technical support for 
the protection and management of ecosystems. This study 
is expected to provide decision-makers and technicians 
in the field of ecological environment monitoring with 
a practical set of tools to cope with increasingly severe 
ecological environment challenges and promote harmonious 
coexistence between humans and nature. Therefore, studying 
abnormal monitoring methods for ecological environment 
symbiosis monitoring data is of great significance.

In the research [4], the sensitivity of co-dispersion to 
noise and error in ecological environment data is studied, 
and Monte Carlo simulation and real data sets are used 
to study the sensitivity of co-dispersion to four common 
pollutants in many forest data sets. A useful method for 
filling in missing spatial data is also proposed. In the research 
[5], a new energy field abnormal data mining method based 
on an improved Adaboost algorithm is proposed. After 
preprocessing the new energy field data, the algorithm is 
improved by introducing dynamic weight parameters to solve 
the shortage of the Adaboost algorithm. After calculating 
the abnormal degree of the data with the direct inference 
confidence machine, the neural network is used to reduce 
the error value of the Adaboost algorithm. Finally, the output 
of the Adaboost algorithm is used to realize abnormal data 
mining. In the research [6], abnormal data are divided 
into three types: numerical anomaly, fluctuation anomaly, 
and abnormal event. Based on the anomaly detection 
algorithm of regression residual probability distribution, 
a data preprocessing method for coastal wetland ecological 
observation is constructed by using look-up tables and multi-
index time series model and integrating the relationship 
between multiple environmental factors. Ji et al. [7] established 
the MSLSTM (multi-scales long short-term memory) model 
to predict the index data, and then established the DA 
(dual-stage attention-based) model based on the residual 
distribution of the prediction results, and determined the data 
anomaly threshold of each index. When the difference 
between the measured data and the predicted data is greater 
than the threshold value, it is determined as abnormal data. 
This method cannot accurately monitor temperature data 
and humidity data and has the problem of low monitoring 
accuracy. Ji et al. [8] used the RDU (region dual-channel 
unit-linking) algorithm to downsample the majority of class 
data and remove duplicate samples, and used the SMOTE 
(synthetic minority over-sampling technique) algorithm to 
oversample the minority of abnormal data. The imbalance 

Introduction

With the intensification of global climate change 
and human activities, the ecological environment is facing 
unprecedented challenges. The health status of ecosystems is 
directly related to the maintenance of biodiversity, sustainable 
utilization of resources, and the guarantee of human well-
being. Therefore, effective monitoring of the ecological 
environment, timely detection, and response to abnormal 
changes have become a key task for global environmental 
protection and sustainable development. Natural resources 
provide the necessary material basis for human survival, 
so the sustainable use of natural resources is the premise 
of ensuring the sustainable development of human society. 
The change of natural resources is determined by the structure 
and functional state of the ecosystem, the operation status 
of the ecosystem process, and the effectiveness of ecosystem 
management. The purpose of studying ecosystems 
and ecological processes is to make more rational use of natural 
resources. Regarding the issue of resource utilization, 
some scholars have established an evolutionary game 
model between industrial enterprises, local governments, 
and central governments, analyzing the dynamic interaction 
between vertical decentralization, environmental regulation, 
and corporate pollution. This provides valuable insights for 
developing countries seeking to improve their governance 
capabilities throughout the entire green transformation 
process [1]. Not only that, green technology innovation is 
a key force in promoting green development, and relevant 
scholars have used the difference in differences model to 
evaluate the impact of ecological civilization construction 
on green technology innovation. Research has found 
that the construction of ecological civilization has 
significantly promoted the innovation of green technology 
in the experimental zone. Due to the positive spatial spillover 
effect of green utility model patents and the negative 
spatial spillover siphon effect of green invention patents, 
the promotion effect on green utility model patents is 
greater. The construction of ecological civilization not 
only has direct effects, but also brings about environmental 
investment and human capital. In addition, it also helps 
to strengthen industrial infrastructure and organizational 
structure, thereby improving the innovation level of green 
technology. Ecological environment symbiosis monitoring is 
the foundation of ecological environment protection and an 
important support for ecological civilization construction. 
For accurate monitoring, the data quality must be ensured. 
The collection, processing and analysis of monitoring data 
directly affect the results of ecological environment symbiosis 
monitoring. For this reason, several long-term ecosystem 
research networks have been established in the world. These 
networks have carried out various experiments, observations, 
and studies based on network-based long-term positioning 
observation, and accumulated a large amount of data 
in various formats. There are abnormal elements in these data, 
which directly affects the accuracy of ecological environment 
symbiosis monitoring [2, 3]. Symbiotic monitoring data 
not only covers the interactions between organisms 
and the environment but also the interdependence between 
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of the data set is improved by the synthesis of new abnormal 
data, and then the abnormal data monitoring model is obtained 
by training the RF (random forest) classification algorithm. 
This method requires a long time of data monitoring and has 
the problem of low monitoring efficiency. Zhang et al. [9] 
extracted the trend term of monitoring data through wavelet 
transform, and then used the isolation forest algorithm to 
identify the outliers of the remaining amount after deducting 
the trend term. This method has a low rate of detection 
and a high rate of false detection.

Ecological environment symbiosis monitoring data 
may be affected by various factors, such as instrument 
errors, improper operation, data processing errors, 
etc., which can lead to low data quality and thus affect 
the accuracy of anomaly monitoring. Moreover, the amount 
of data involved in ecological environment monitoring is 
usually very large, including monitoring data of various 
environmental factors (such as atmosphere, water, soil, 
biology, etc.), which have complex interactions and impacts, 
increasing the difficulty of anomaly monitoring. Due to 
the existence of these difficult problems, the above methods 
have problems such as large differences between monitoring 
results and reality, long average operation time, low 
detection rate, and high false detection rate in the application 
process. Therefore, through density clustering, large-
scale and complex datasets can be processed, and clusters 
and outliers in the data can be automatically identified 
without specifying the number of clusters in advance, 
thereby improving the quality of detection and monitoring. 
The existing research on density clustering algorithms 
mainly focuses on the outlier detection of power load 
data. Usually, adaptive parameters and cluster centers 
are automatically selected, and then big data outliers are 
evaluated through standardized local density and distance 
to finally find outliers. However, the selection of simple 
adaptive parameters and cluster centers is not enough to 
make up for the judgment of dataset parameters when 
data is missing, which will affect the estimation accuracy. 
Therefore, in this paper, a genetic algorithm is used to 
estimate the parameters of incomplete data, and a Markov 
chain is generated when missing data is supplemented 
to improve the convergence performance and obtain 
complete distributed data. This approach can improve 
the estimation accuracy of incomplete data parameters, 
and then optimize the monitoring effect of ecological 
environment symbiosis monitoring abnormal data. 
However, ecological environment symbiosis monitoring 
data is usually multidimensional, and density clustering-
based methods can effectively process multidimensional 
data by considering the relationships between multiple 
variables to identify anomalies. This method can reveal 
complex patterns and correlations in the data and improve 
the accuracy of anomaly monitoring.

Since the purpose of this study is to improve 
the monitoring accuracy and efficiency of abnormal 
monitoring data, as well as reduce the false detection rate 
of abnormal monitoring data, the assumptions made in this 
study are as follows:

(1) The monitoring data of ecological environment 
symbiosis are cleaned up by combining adaptive moment 
estimation and random gradient descent algorithm. 
Assuming that only one data is selected from the data set 
for accurate calculation during parameter optimization can 
improve the iteration speed and thus have a positive impact 
on the monitoring efficiency of abnormal data.

(2) A genetic algorithm is used to estimate the parameters 
of missing data. It is assumed that expanding the range 
of parameters to be estimated can improve the convergence 
performance when solving data parameters, so as to obtain 
a better solution, which will have a positive impact on 
the monitoring accuracy of abnormal data.

Experimental Procedures

Preprocessing of the Symbiosis Monitoring 
Data of Ecological Environment

Data Cleaning

There is a large amount of symbiosis monitoring data 
in the ecological environment. The existing “dirty data” 
and missing data will have an impact on the abnormal 
monitoring results of symbiosis monitoring data 
in the ecological environment. Therefore, it is necessary 
to clean the symbiosis monitoring data of the ecological 
environment. The modeling research method for abnormal 
monitoring of symbiosis monitoring data in the ecological 
environment based on density clustering adopts a hybrid 
algorithm combining random gradient descent and adaptive 
moment estimation to clean the ecological environment 
symbiosis monitoring data.

(1) Random gradient descent optimization algorithm
Generally speaking, the data expression ability 

increases with the increased complexity of the deep neural 
network. The training complexity of the network increases 
linearly with the complexity of the network. In order 
to find the global optimal solution in network training, 
the network parameters must converge to the optimal 
value. However, the effect of parameter optimization is 
often affected by the complex structure of deep neural 
networks. Therefore, it is necessary to propose a general 
optimization algorithm that can adapt to various network 
structures.

Random gradient descent is a network parameter 
optimization algorithm commonly used in deep learning. 
When updating parameters, only one data is selected from 
the data set for accurate calculation each time, which 
greatly speeds up the iteration speed and achieves good 
results in multiple parameter adjustment experiments. 
The stochastic gradient descent algorithm optimizes 
the parameter ϑ at time t as follows:

  (1)
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Where, β is the learning rate; ht is the initial gradient;  
p(ϑ) is the objective function, and Δϑt is the descending 
gradient.

The learning rate used by the stochastic gradient descent 
algorithm to update the parameters is single and has no 
adaptability to the parameter category. For example, 
the updating speed of infrequent parameters is accelerated, 
and the updating speed of frequently occurring parameters 
is reduced, resulting in each iteration not being able to 
be carried out in the direction of parameter optimization 
and not meeting the training requirements of high-speed 
and low memory [10–13].

(2) Adaptive moment estimation method
As an algorithm for optimizing random objective 

functions, adaptive moment estimation automatically 
obtains the appropriate learning rate for each parameter 
by estimating the first and second moments of the gradient, 
without manual control [14–16]. It is conducive to improving 
the convergence speed, accelerating the calculation 
efficiency, and reducing the memory demand. It is very 
suitable for training data sets containing large-scale data 
or parameters to meet the optimization requirements [17, 
18]. The adaptive moment estimation algorithm optimizes 
the parameter  ϑ at time t as follows:

  (2)

Where, kt is the initial gradient, q t́ and m t́ are 
weighted averages of the first-order moment estimation 
and the second-order moment estimation, respectively. qt 
and mt are weighted biased square deviations of the first-
order moment estimation and the second-order moment 
estimation, respectively. χ1 and χ2  are hyperparameters 
controlling the first-order moment estimation and the second-
order moment estimation, respectively. ϕ is the smooth top; 
Δϑ́ t is the descending gradient.

The objective function of the adaptive moment 
estimation algorithm in the high-dimensional space often 
has high and low fluctuations, resulting in the disappearance 
of the descending gradient and the inability to achieve 
fine-tuning. In addition, its parameter adjustment process is 
relatively simple, and it only selects the default parameters to 
optimize the problems that occurred in the training process. 
It cannot update the gradient of too large parameters, 
affecting the effect of data iteration. A long time is taken 
by the algorithm to optimize and the training efficiency is 
low [19, 20].

(3) Construction of a stack noise reduction self-encoder 
model based on adaptive moment estimation and random 
gradient descent hybrid optimization

For enabling the deep neural network model to 
converge quickly and effectively avoid the local optimal 
solution, according to the advantages and disadvantages 
of adaptive moment estimation and random gradient 
descent optimization algorithm, the combination of the two 
is applied to the stack noise reduction self-encoder model 
[21, 22] to build a stack noise reduction self-encoder model 
AS-SDAE with adaptive moment estimation and random 
gradient descent hybrid optimization. In the early stage 
of AS-SDAE model training, the adaptive moment 
estimation algorithm is used to converge to a stable trend 
quickly, and then it is automatically converted into a random 
gradient descent algorithm after a certain round of training 
for precise tuning in the later stage [23–25].

Set the parameter S to be optimized, the objective 
function l(s), the initial learning rate β, and the total number 
of iterative training ξ(ξ = ξ1 + ξ2 + … + ξt + … + ξr).

The steps of the AS-SDAE model optimization 
algorithm are as follows:

(1) The objective function gradient of the parameter s 
under the adaptive moment algorithm is calculated:

  (3)

(2) The first-order moment estimate qt and the second-
order moment estimate mt of the parameters in the adaptive 
moment algorithm are calculated:

  (4)

Where, x=0, χ1  = 0.9, x=1, χ2  = 0.99.

(3) The descent gradient Δs'
t of the current round is 

calculated:

  (5)

(4) The descent gradient Δs'
t obtained in step (3) is 

returned to step (2) and substituted into kt to calculate 
the first-order and the second-order moment estimation 
again, and the iteration of step (2) and step (3) is repeated 
to update the descent gradient, and the moving average 
value  μt of the adaptive moment algorithm after each 
iteration is calculated:
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  (6)

(5) When the difference between the biased square 
difference of the moving average and the initial learning 
rate after the iteration is updated to round ξt is less than 
the step ϕ(ϕ = 10-8), the updating of the descending gradient 
and the moving average is stopped:

  (7)

At this time, the adaptive moment algorithm has 
optimized the parameters to a stable trend and switched 
to the random gradient descent algorithm for further 
optimization.

(6) In the later ξt+1 to ξr rounds, the moving average 
value of the adaptive moment algorithm is used as 
the estimation value of the learning rate of the random 
gradient descent algorithm, and the descent gradient Δs'

t 
after the optimization of the random gradient descent 
algorithm is calculated:

  (8)

(7) When the descent gradient after the iteration is 
updated to a certain round reaches a constant value, 
completing the optimization of the random gradient descent 
algorithm, that is, the overall optimization of the parameters 
of the model is completed.

To sum up, the process of cleaning “dirty data” based on 
AS-SDAE for symbiosis monitoring data of the ecological 
environment is shown in Fig. 1.

Through the above process, the “dirty data” and missing 
data in the symbiosis monitoring data of the ecological 
environment are cleaned out, and the dirty data are deleted 
directly. The missing data is filled by the following contents.

Missing Data Filling

The data for ecological environment symbiosis 
monitoring often comes from multiple different sources 
and formats, and these data sources may have missing 
values in the data due to various reasons. The presence 
of missing values can disrupt the integrity of data and affect 
the reliability of subsequent analysis. Therefore, after cleaning 
and processing the ecological environment symbiosis 
monitoring data in previous section, missing data is filled in to 
ensure data quality to the greatest extent possible. This helps 
to more accurately reveal the characteristics and patterns 

Fig. 1. Flow chart of symbiosis monitoring data cleaning of the ecological environment.
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of the ecological environment, and improve the accuracy 
and credibility of the analysis results. The research method 
for abnormal monitoring modeling of symbiosis monitoring 
data in the ecological environment based on density 
clustering uses the Markov chain Monte Carlo method [26, 
27] to supplement the missing data of symbiosis monitoring 
data in the ecological environment. This method is based 
on incomplete data sets and parameters of incomplete data, 
and performs iterative estimation on missing data. Because 
the parameters of the data set cannot be determined due to 
the missing data, the parameters of the entire incomplete data 
need to be estimated before filling the missing data. Moreover, 
the closer the estimated parameters are to the actual values, 
the closer the estimated missing data are to the real values [28, 
29]. In order to improve the effectiveness of the parameters, 
the proposed method uses a genetic algorithm to estimate 
the parameters. The main reason is that when dealing with 
missing data, due to the incompleteness of the dataset, it is 
not possible to directly determine the key parameters that 
affect the data-filling effect. In order to improve the accuracy 
and reliability of filling data, it is necessary to estimate 
these parameters. A genetic algorithm has become an ideal 
choice for estimating these parameters due to its global 
search ability, strong adaptability, parallelism, robustness, 
and adaptability. A genetic algorithm can perform global 
search in complex parameter space, find the optimal or 
approximately optimal parameter configuration, and it does 
not require high specific form requirements for the problem, 
and can adapt to various types of problems. In addition, 

the parallelism and adaptability of genetic algorithms 
help improve search efficiency and cope with noisy data. 
Therefore, using genetic algorithms for parameter estimation 
can effectively improve the quality of missing data filling.

(1) Estimated data mean and covariance matrix
In the symbiosis monitoring data of the ecological 

environment, the data distribution is mainly divided 
into two categories: normal distribution and power-law 
distribution. When estimating the parameters of incomplete 
data, the proposed method uses the log-likelihood 
function of the data as the objective function to establish 
the estimation model, where the mean and variance matrix 
are the parameters [30–32].

The objective function is taken as the log-likelihood 
function by the method in this paper, and it obtains 
corresponding constraint conditions of the parameters 
through the existing samples. The objective function, along 
with the constraint conditions, constitute the estimation 
model. Secondly, estimating the parameter value through 
an iterative process, and the accuracy of the parameter 
estimation value, is determined by the objective function. 
The larger the objective function is, the more accurate 
the estimated parameters are. Therefore, the optimal 
parameters are determined according to the parameters 
corresponding to the maximum value of the objective 
function. From this, the frame diagram of the estimated 
data mean and covariance matrix can be obtained, as shown 
in Fig. 2.

Fig. 2. Flow chart of data parameter estimation.
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It is assumed that the data set U contains k variables of U1, 
U2,…, Uk and satisfies the k-dimensional normal distribution. 
The data set U contains missing data, recorded as U = (Uobs, 
Umis), Uobs is the data set with observed values, and Umis is 
the missing data set. For estimating parameters of the data set U, 
the proposed method uses a genetic algorithm. The parameters 
to be estimated are the mean and covariance matrix of the data. 
The upper limits and lower limits of the variable U1, U2,…, 
Uk are obtained from the data set Uobs, and are respectively 
recorded as [mini, maxi], i = 1, 2, …, k.

The log-likelihood function containing the mean 
and covariance matrix to be estimated is:

  (9)

Where, ν = (ν1, ν2,…, νk) is the mean vector, 
representing the mean value of each variable; Σ = (ξpa) 
is the covariance matrix of the variable U1, U2,…, Uk; 
The initial values of ν and Σ are generally determined by 
the data set Uobs; ul  represents the vector of the variable 
corresponding to the data record i = (1, 2, …, n), where n 
is the number of data records.

The accuracy of the estimated parameters is based on 
the size of the log-likelihood function. The problem is 
transformed into a single objective optimization problem 
to satisfy the g maximization of ν and Σ corresponding to 
all constraints. Its mathematical model is:

  (10)

Where, mini, and maxi respectively mean the lower 
limits and upper limits of the i th variable. The constraint 
condition restricts that the estimated mean value 
of the variable must be between the maximum value 
and the minimum value of the variable. If the estimated 
mean value exceeds the range, it means that the estimated 
value is wrong and needs to be re-estimated.

(2) Population size setting and population iteration 
process

After determining the parameters to be estimated 
and the parameter estimation model, the parameter 
population should be randomly generated within 
the constraint conditions. The size of the population can 
be determined according to the data missing rate. In order 
to speed up the speed of obtaining the optimal solution, 

the first-generation population needs to include the mean 
and covariance matrix corresponding to the data set Uobs. 
After the initialization of an individual in the population, 
an adaptation function is needed to calculate the fitness 
of parameter individuals in the population to determine 
the degree of superiority and inferiority of the individual. 
The proposed method takes the objective function g(ν, Σ) 
as an adaptation function. When the value of the function 
is larger, the parameter is closer to the real value.

The population iteration process simulates the natural 
evolution law. According to the calculated individual 
fitness, some individuals with high fitness are reserved 
[33, 34]; at the same time, it can use crossover and mutation 
measures to evolve parameter individuals to achieve 
better parameter individuals. In the process of crossover 
and mutation, the two probability values corresponding to 
crossover probability Pc and mutation probability Pm will 
directly affect the evolutionary speed of the population, 
and are generally obtained through experience.

Where the cross evolution process is as follows: let Pc 
be the cross probability, the value range is (0, 1), and it 
is recommended to take 0.8. The parameter population 
contains n parameter individuals, and nPc parameter 
individuals are selected from the parameter population 
for cross-operation. Assuming that θ1, θ2, …, θn represents 
the parent of the parametric population, the two randomly 
selected parameters θr and θs form a cross pair, denoted 
as (θr, θs), r, s ∈ (1, 2, …, n) and i ≠ j. The crossover pair 
(θr, θs) is taken as an example to illustrate the process 
of crossover operation. A random number e is generated 
from the interval (0, 1), and ν is randomly selected from 
the set (1, 2, …, k). The crossover operation is performed 
on νrv and νsv in (θrv, θsv) to generate two descendants ν'

rv 
and ν'

rv , and new parameters θ'
rv and θ'

sv are obtained.

  (11)

The evolution process of variation is as follows: let Pm 
be the variation probability, and the value range is (0, 1), 
and it is suggested to take 0.06. The parameter population 
contains n parameter individuals, and nPm  parameter 
individuals are selected from the parameter population for 
cross-operation. Let θh be an individual in the parametric 
population, and the mean value contained in θh is (νh1, 
…, νhk). The random value γ within the range of (1, 2, …, 
k) is taken and mutated according to the above formula, 
then the mean value after mutation is (νi1, …, νiγ, …, νhk), 
and the parameter after mutation can be recorded as θh:

  (12)

Where, random(∙) is a random function that generates 
a uniform distribution and generates a random number; 
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Δ(z, x) = x[1 – ι(1–z/Z)χ]; ι ∈ [0, 1] is a random number, Z is 
the maximum variation algebra, z is the current variation 
algebra, and χ is the parameter that determines the degree 
of inconsistency.

The iteration termination condition of the parameter 
estimation of the proposed method is that the change range 
of the fitness function value corresponding to the optimal 
parameter is less than a small value β, i.e., |g*

i – g*
i–1| 

< β. Where,g*
i is the value of the objective function 

corresponding to the optimal parameter while the iteration 
cycle is i  times. Terminating the iteration and obtaining 
the optimal estimates the termination condition is satisfied. 
If satisfied, terminate the iteration to obtain the optimal 
estimation; If not, return to continue iterative optimization. 
It should be noted that the value range of β is (10-5, 10-

3), and it is suggested that β is 10-4. Because the value 
of β is too small, the number of iterations will increase 
significantly, increasing the system overhead and iteration 
time, but the change of the objective function value is small. 
The value of β is too large, and the error of determined 
parameters is large, so the purpose of finding the optimal 
parameter individual is not realized.

Compared with the EM algorithm, a genetic algorithm 
is used to estimate the parameters of incomplete data, 
which expands the range of parameters to be estimated. In 
solving the data parameter problem, jumping out of local 
convergence and getting a better solution are easy, with 
better convergence ability and convergence speed.

(3) Missing data filling process
To improve the accuracy of the estimation, the proposed 

method uses the MCMC method to estimate missing data 
iteratively. The filling process is as follows:

1) Based on the mean vector, covariance matrix and data 
set Uobs, each missing data is estimated independently 
[35, 36], that is, the value of U (t+1) 

mis is obtained from 
the conditional distribution p(Umis | Uobs, θ(t));

2) According to the complete data set after filling, 
the posterior mean vector and covariance matrix 
of the simulation data, i.e. θ(t+1) is obtained from p(θ | Uobs, 
U (t+1) 

mis), which is put into step 1) and repeated.
The missing data of ecological environment symbiosis 

monitoring is filled by two steps (1) and (2) mutual 
iteration until the filled missing data and corresponding 
data parameters are no longer changed or the change range 
is within the allowable range. In other words, a Markov 
chain [(U(1), θ(1)), (U(2), θ(2)), … (U(t+1), θ(t+1))], is generated 
in the filling process, which converges on the p[(Umis, θ) | 
Uobs ]distribution. When the distribution is stable, Umis will 
be obtained to fill the missing data, and the final complete 
data set will be obtained.

Abnormal Monitoring Modeling of Symbiosis 
Monitoring Data in Ecological Environment

In previous section, the Markov chain Monte Carlo 
algorithm was used to estimate and fill in missing data, 
and the processed data was integrated into an ecological 
environment symbiosis monitoring dataset, which was used 

as the data foundation for abnormal monitoring modeling 
of ecological environment symbiosis monitoring data. 
The ecological environment symbiosis monitoring dataset 
was divided into extreme clusters, outlier clusters, and normal 
clusters. In each cluster, abnormal possibilities were assigned 
in different ways, and a time series diagram of abnormal 
possibilities was obtained that comprehensively considers 
independent variables and effect quantities. Based on this, an 
improved local anomaly coefficient calculation method was 
used to establish an abnormal monitoring model for ecological 
environment symbiosis monitoring data, in order to achieve 
the ultimate goal of high-quality monitoring of abnormal 
ecological environment symbiosis monitoring data.

The density clustering theory is a clustering method 
based on the density distribution of data points. In this 
method, areas with higher density may be divided into 
clusters, while areas with lower density may be considered 
as boundaries or noise between clusters. This clustering 
method does not rely on a pre-set number of clusters, but 
automatically determines the number and shape of clusters 
based on the actual distribution of data. The specific 
description of the advantages of density clustering theory 
in abnormal monitoring of ecological environment 
symbiosis monitoring data is as follows:

(1) Automatically determining the number and shape 
of clusters: Ecological environment data often has complex 
distribution patterns, making it difficult to pre-determine 
the number and shape of clusters. The density clustering theory 
can automatically determine the number and shape of clusters 
based on the actual distribution of data, thereby more accurately 
revealing the structure and function of ecosystems.

(2) Robustness to noise and outliers: In an ecological 
environment, data, noise, and outliers often exist. Traditional 
distance-based clustering methods may be sensitive to noise 
and outliers, while density clustering theory can better 
handle these noises and outliers by considering the density 
distribution of data points.

(3) Discovering clusters of arbitrary shapes: 
The distribution of species in ecosystems may exhibit various 
complex shapes, such as rings, bands, etc. The density 
clustering theory can discover clusters of arbitrary shapes, 
thus better reflecting the distribution patterns of species 
in ecosystems.

(4) Adapting to high-dimensional data: With 
the continuous development of monitoring technology, 
ecological environment data often includes multiple 
dimensions (such as temperature, humidity, lighting, etc.). 
Density clustering theory can adapt to high-dimensional 
data, thereby more comprehensively analyzing multiple 
factors in ecosystems.

(1) Local anomaly coefficient
Breuning proposed a local anomaly coefficient based on 

density. The coefficient is simple and intuitive, independent 
of the data distribution, and quantifies the abnormal degree 
of the symbiosis monitoring data points of the ecological 
environment by the ratio of the average local reachable 
density near the data points to the local reachable density 
of the data points.
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After normalizing the effect quantity and independent 
variable of the symbiosis monitoring data of the ecological 
environment, the data set F is obtained. For the object point  
P and the object point A , the k-distance, k-neighborhood, 
reachable distance, local reachable density, and local 
anomaly coefficient of the object point P are defined as 
follows:

1) The distance of the k-th point closest to the point P  
is the k-distance fk(P) of the point k.

2) In the data set F, the point whose distance to the target 
point P is less than or equal to the k-distance of the point P 
is called the k-neighborhood Mk(P) of the point P:

  (13)

Where, f(P, A) is the distance between point A and point 
P.

3) The maximum value of the distance from the target 
point A to the point P and the k-distance of the point P is 
called the reachable distance rd(P, A) from the point A to 
the point P:

  (14)

4) The reciprocal of the average reachable distance 
of points in the neighborhood of point P is the local 
reachable density lrfk(P) of point P:

  (15)

5) The ratio of the average local reachable density 
in the neighborhood of point P to the local reachable density 
of point P is the local anomaly coefficient LOFk(P) of point 
P:

  (16)

From the above formula, if the LOF score of point P 
is around 1.0, it indicates that the local reachable density 
of point P is close to the average reachable density 
in the neighborhood; If the score is less than 1.0, it indicates 
that point P is located in a relatively dense area, the data 
points have similar properties, and the possibility that 
the points in the area are outliers is small; If the score is 
far greater than 1.0, it indicates that the data point P is far 
away from the points in the neighborhood, the properties 
of the data points are not similar, and the possibility 
of outliers is large. It should be noted that if the data set 
and k value are different, the threshold value is not 1.0 as 
the absolute standard.

(2) Improved local anomaly probability algorithm based 
on density clustering

Due to the complexity of the ecological environment, 
there are different degrees of deviation, different quantities, 
and different ranges of multi-modal outliers in the long-
term monitoring data. The threshold needs to be further 
lowered to identify more outliers. As the threshold 
decreases, especially when it is lower than 2.0, more data 
points are judged as outliers, and misjudgment gradually 
appears. At this time, the LOF score of the data points 
fluctuates between 1.0 and 2.0, and the boundary between 
the outliers and other data points begins to blur, which is 
not conducive to the clustering of the symbiosis monitoring 
data of the ecological environment in the subsequent steps 
of the algorithm. Therefore, the reachable distance formula 
in the LOF algorithm is improved as follows:

  (17)

Where, rν represents the improved reachable 
distance, which is called reachable variance; vark(P) is 
the variance of the distance from all points to point P 
in the k-neighborhood of point P; vark(P, A) is the variance 
of the distance between the k-neighborhood joining point 
A and point P of point P.

If the point A is far from the point P, the reachable distance 
is the actual distance between the two points. If the point A is 
close to the point P and within the neighborhood of the point 
P, the reachable distance is the k-distance of the point 
P. Taking out a smooth window, and the distance within 
the neighborhood of point P is set as a constant value. 
After exceeding the neighborhood range, the reachable 
distance increases linearly with the distance from point A. 
The distance is replaced with the variance of the distance, 
so that the linear increase becomes a nonlinear increase. 
The farther the distance is, the greater the value of rν is.

Therefore, the expression of local reachable density is 
improved as follows:

  (18)

The expression of the local anomaly coefficient is 
improved as follows:

   (19)

(3) Construction of abnormal monitoring model for 
ecological environment symbiosis monitoring data

Therefore, the local reachable density of the symbiosis 
monitoring data set in the ecological environment calculated 
according to the above formula can be divided into different 
data clusters. In the high-density area, the distance between 
data points is relatively close, the local reachable density is 
close to the average reachable density in the neighborhood, 
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and the ILOF score is close to 1.0. It belongs to normal 
data points without abnormalities, which is called a normal 
cluster. In the transition area between the high-density 
and low-density areas, the distance between the data points 
is relatively long, and the local reachable density is different 
from the average reachable density in the neighborhood. 
The possibility that the data points are outliers gradually 
increases, which is called the outlier cluster. In the low-
density area, the distance between data points increases 
significantly, and it can be determined as outlier points 
according to experience, which is called extreme cluster 
[37, 38]. The algorithm needs to find a suitable boundary 
point to distinguish the three clusters. Let the ILOF score 
sequence of the outlier cluster be (LOC1,  LOC2, …, 
LOCt), then the average score LOCavg within the cluster 
is expressed as:

  (20)

Where, t is the amount of data contained in the outlier 
cluster.

According to the characteristics of the ILOF algorithm 
based on density, when the value of t is small, the average 
value of ILOF scores in the low-density area is close 
to the ILOF scores of the data points, and the LOCavg 
in the abnormal cluster is close to 1.0. When the value of t 
increases, the distance between the data points in the cluster 
decreases and the density increases [39, 40]. The average 
ILOF score of the data points in the density transition area 
is greater than the ILOF score of the data points, and LOCavg 
in the abnormal cluster increases. The point increasing from 
1.0 can be used as the boundary point between extreme 
clusters and outlier clusters. As the value of t continues 
to increase, the cluster gradually contains normal data 
points, and the ILOF score of normal data points is close to 

1.0. Therefore, the mean value of ILOF scores in the data 
point field of the high-density area decreases, and LOCavg 
in the abnormal cluster decreases [41, 42]. The increasing 
or decreasing inflection point can be used as the dividing 
point between normal clusters and abnormal clusters. 
Normalizing the ILOF score sequence of the outlier 
cluster can obtain the quantification of the outlier anomaly 
probability.

To sum up, the separation of the ILOF algorithm from 
the normal cluster, outlier cluster, and extreme cluster 
constitutes an improved calculation method for local anomaly 
probability based on density clustering. The established 
anomaly monitoring model of symbiosis monitoring data 
in an ecological environment is shown in Fig. 3.

Results and Discussion

In order to verify the overall effectiveness of the research 
method for abnormal monitoring and modeling of symbiosis 
monitoring data in an ecological environment based on 
density clustering, it is necessary to carry out relevant 
tests. According to the research purpose of this study, it 
is assumed that compared with the comparison method, 
the proposed method has a higher accuracy rate of abnormal 
data monitoring, and shorter monitoring time of abnormal 
data which means higher efficiency, higher detection rate, 
and lower false detection rate.

The experimental parameters are set as follows: 
the operating system is Windows 10; the software is 
Linux; the simulation tool is Matlab 7.2; the programming 
language is VC; the integrated environment is Anaconda3; 
data processing in Python 3.8; the hardware memory is 
8GB; the GPU is GeForce GTX 1080Ti.

By conducting on-site investigations and sampling, 
remote sensing technology, automatic monitoring stations, 
laboratory analysis, biological monitoring, and other 
methods, ecological environment symbiosis monitoring 

Fig. 3. Abnormal monitoring model of symbiosis monitoring data in the ecological environment.
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data can be obtained, and an ecological environment 
symbiosis monitoring dataset can be constructed. The data 
types in this dataset include physical data, chemical data, 
biological data, remote sensing data, behavioral data, time 
series data, etc. The specific introduction is as follows:

Physical data: Such as temperature, humidity, light 
intensity, wind speed, rainfall, etc.

Chemical data: Such as soil pH value, nutrient content 
(nitrogen, phosphorus, potassium, etc.), dissolved oxygen 
in water, pH value, conductivity, pollutant concentration, 
etc.

Biological data: Such as species composition, biomass, 
population density, biodiversity index, niche width, etc.

Remote sensing data: Such as vegetation index (NDVI), 
land cover type, water distribution, etc.

Behavioral data: Such as animal migration paths, 
foraging behavior, reproductive behavior, etc.

Time series data: Records the changes of ecosystems 
over time, such as seasonal and interannual changes.

Set up an ecological environment symbiosis monitoring 
dataset consisting of 2000 temperature monitoring 
data and 2000 humidity monitoring data, including 20 
temperature monitoring abnormal data and 15 humidity 
monitoring abnormal data. Now, the research method for 
abnormal monitoring modeling of symbiosis monitoring data 
in an ecological environment based on density clustering, 
the method of reference [7], the method of reference [8], 
and the method of reference [9] are adopted for carrying 
out data abnormal monitoring on the symbiosis monitoring 
data set of ecological environment. The monitoring results 
are shown in Fig. 4.

The analysis of the results in Fig. 4(a) shows that 
the proposed method can monitor 20 abnormal temperature 
data, the method in reference [7] can monitor 10 abnormal 
temperature data, and the method in reference [8] can 
monitor 24 abnormal temperature data. The method 
in reference [9] can monitor 13 abnormal temperature 

data, and only the abnormal temperature monitoring 
results of the proposed method are consistent with reality, 
indicating that the method has high monitoring accuracy. 
Analysis of the results in Fig. 4(b) shows that the proposed 
method can monitor 15 abnormal humidity data, the method 
in reference [7] can monitor 20 abnormal humidity data, 
and the method in research [8] can monitor 13 abnormal 
humidity data. The method in reference [9] can monitor 
10 abnormal humidity data, and only the abnormal 
humidity monitoring results of the proposed method are 
consistent with reality, indicating that the method has 
high monitoring accuracy. Through comparison, it can 
be seen that when abnormal monitoring of temperature 
and humidity monitoring data is carried out using 
the proposed method, all abnormal data can be monitored, 
while other methods have the phenomenon of missing 
detection and false detection, because the proposed method 
cleans the data before monitoring, filters out the dirty data 
in the ecological environment symbiotic monitoring data, 
and fills in the missing data. The accuracy and integrity 
of the data are improved, and the accuracy of the data 
anomaly monitoring results is improved.

Taking the running time as an indicator, the monitoring 
efficiency of the proposed method, the method in reference 
[7], the method in reference [8], and the method in reference 
[9] are tested. The test results are listed in Table 1.

For different data volumes, the average operation time 
of the proposed method is 3.2375s, the average operation 
time of the method in reference [7] is 6.3625s, the average 
operation time of the method in reference [8] is 5.3s, 
and the average operation time of the method in reference 
[9] is 6.4625s. It can be found that the operation time 
of different methods increases with the increase in the data 
volume. Under the same data volume, the operation 
time of the proposed method is the least, indicating that 
the proposed method has high monitoring efficiency. 
The reason is that the proposed method uses the Markov 

Fig. 4. Data monitoring results of different methods. (a) Temperature monitoring data and monitoring results; (b) Humidity monitoring 
data and monitoring results.

a) b)
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chain Monte Carlo algorithm to estimate and fill the missing 
data on the basis of the optimal parameters. The ecological 
environment symbiotic monitoring data set was divided 
into extreme cluster, outlier cluster, and normal cluster, 
and the anomaly possibility was assigned to each cluster 
in different ways, and the anomaly possibility time series 
diagram considering independent variables and effect 
size was obtained. On this basis, an anomaly monitoring 
model of the ecological environment symbiotic monitoring 
data was established by using an improved local anomaly 
coefficient algorithm. Thus, the monitoring efficiency can 
be ensured to the maximum extent.

In order to further verify the effectiveness of the above 
methods, the rate of detection and false alarm are taken as 
indicators, and different methods are tested in the same test 
environment. The comparison results are shown in Fig. 5 
and Fig. 6.

By analyzing the data in Fig. 5 and Fig. 6, it can be 
seen that with the increase in data volume, the detection 
rate and false detection rate of the four methods show 
a decreasing and increasing trend, respectively. Among 
them, the detection rate of the proposed method is always 

above 90%, the detection rate of the method in reference 
[7] is between 56% and 74%, and the detection rate 
of the method in reference [8] is between 66% and 85%. 
The detection rate of the method in reference [8] was 
between 55% and 70%. In the process of false detection rate 
testing, the false detection rate of the proposed method is 
always lower than 7%, the false detection rate of the method 
in reference [7] is between 7% and 13%, and the false 
detection rate of the method in reference [8] is between 8% 
and 17%. The false detection rate of the method in reference 
[9] is between 5% and 15%. Compared with the test results 
of the other three methods, it is found that the proposed 
method has a high detection rate and a low false detection 
rate. The high detection rate means that the proposed 
method can accurately identify abnormal phenomena 
in the ecological environment, which is crucial for timely 
detection and treatment of environmental problems. 
The low false detection rate means that the proposed 
method does not frequently cause false alarms or issue 
unnecessary alarms, thus reducing operator interference 
and unnecessary waste of resources. This reliability 
ensures that the output information of the system has 

Table 1. Operation time of different methods.

Data volume / piece
Running time / s

The proposed  
method

The method in research 
[7]

The method in research 
[8]

The method in research 
[9]

50 2.6 3.6 3.1 4.0

100 2.7 4.5 3.9 4.5

150 3.0 5.3 4.4 5.1

200 3.1 6.0 4.9 5.9

250 3.3 6.7 5.3 6.8

300 3.5 7.4 6.1 7.6

350 3.7 8.3 7.0 8.5

400 4.0 9.1 7.7 9.3

Fig. 5. Detection rate test results.
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Fig. 6. Test results of false detection rate.

Table 2. F1 score comparison results.

Data volume/piece
F1 score

The proposed  
method

The method in research 
[7]

The method in research 
[8]

The method in research 
[9]

50 0.98 0.84 0.76 0.74

100 0.97 0.81 0.75 0.73

150 0.95 0.80 0.72 0.71

.7200 0.94 0.78 0.71 0.68

250 0.92 0.77 0.68 0.67

300 0.91 0.74 0.66 0.65

350 0.91 0.71 0.64 0.64

400 0.90 0.69 0.61 0.63

Table 3. Comparison results of false positive rates.

Data volume/piece
False positive rate/%

The proposed  
method

The method in research 
[7]

The method in research 
[8]

The method in research 
[9]

50 0.13 2.36 10.54 8.55

100 0.19 2.45 11.36 8.93

150 0.21 2.98 12.47 9.47

200 0.22 3.14 13.54 9.84

250 0.25 3.58 14.63 10.23

300 0.28 3.67 16.98 10.78

350 0.31 3.42 17.14 11.52

400 0.34 3.91 17.86 12.36
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high reliability, indicating that the abnormal monitoring 
of the ecological environment symbiosis monitoring data 
has a good monitoring performance.

On this basis, two indicators, F1 score and false 
positive rate, were selected to verify the application 
effects of different methods. The specific results are shown 
in Tables 2 and 3.

According to the analysis of Table 2, the mean F1 
score of the proposed method is 0.94, the mean F1 score 
of the method in reference [7] is 0.77, the mean F1 score 
of the method in reference [8] is 0.69, and the mean F1 score 
of the method in reference [9] is 0.68. After comparison, 
it can be seen that the proposed method has the highest 
mean F1 score, indicating that the ecological environment 
symbiosis monitoring data anomaly monitoring effect 
of this method is good.

According to the analysis of Table 3, the mean false 
positive rate of the proposed method is 0.24%, the mean 
false positive rate of the method in reference [7] is 3.19%, 
the mean false positive rate of the method in reference [8] 
is 14.32%, and the mean false positive rate of the method 
in reference [9] is 10.21%. A low false positive rate 
means that the error in the abnormal detection results 
of the ecological environment symbiosis monitoring 
data of the proposed method is low, which can improve 
the overall monitoring accuracy.

Limitations and Directions for Improvement

The proposed method applies the improved algorithm 
in data cleaning and missing data filling to improve 
the convergence speed and level, so as to improve 
the accuracy and efficiency of abnormal monitoring 
of ecological environment symbiosis monitoring data. 
However, the designed abnormal data monitoring model does 
not have the specific refinement of ecological environment 
parameters and the weight evaluation of ecological 
environment parameters. Ecological environment 
parameters include geology, soil, hydrology, climate, 
plants, wild animals, etc. In order to apply the designed 
abnormal data monitoring algorithm to the ecological 
environment symbiosis monitoring, the classification 
of experimental data will be refined in the next step to 
verify whether the algorithm can improve the reliability 
of the ecological environment symbiosis monitoring data 
and reflect the improvement of the ecological environment.

Conclusions

The symbiosis monitoring data of the ecological 
environment is an important basis for analyz ing 
and evaluating the ecological environment. However, 
the symbiosis monitoring data of the ecological environment 
is usually affected by the structure, environment, and time 
cycle, resulting in abnormal monitoring data. It is necessary 
to carry out abnormal monitoring research of symbiosis 
monitoring data in the ecological environment. At present, 
the abnormal monitoring methods for symbiosis monitoring 

data of ecological environment have the problems 
of low monitoring accuracy, low monitoring efficiency, 
low detection rate, and high false detection rate. In 
view of these problems, a research method of abnormal 
monitoring and modeling of symbiosis monitoring data 
in the ecological environment based on density clustering 
is proposed. This method first cleans the ecological 
environment symbiosis data and fills in the missing values. 
On this basis, an improved local anomaly probability 
algorithm based on density clustering is used to establish 
the anomaly monitoring model of the symbiosis monitoring 
data in the ecological environment. The experimental 
results imply that the method in this paper can increase 
the monitoring accuracy and efficiency, improve the rate 
of detection, and reduce the rate of false detection. It is hoped 
that the proposed method can provide a valuable reference 
for the abnormal monitoring of symbiosis monitoring data 
of the ecological environment. Different data sets have 
different characteristics, such as data distribution, dimension, 
noise level, etc. These characteristics will directly affect 
the effect of the anomaly monitoring method based on 
density clustering. For example, in high-dimensional data 
sets, traditional distance measurement methods may fail 
due to the “dimensional disaster” problem, resulting in poor 
anomaly detection. Therefore, when the method is applied 
to different data sets, it needs to be adjusted and optimized 
according to the characteristics of the data sets. Different 
environmental backgrounds have different requirements for 
anomaly monitoring methods. For example, in air pollution 
monitoring, more attention may be paid to data points where 
concentrations change dramatically over a short period 
of time; in water quality monitoring, however, more attention 
may be paid to data points with persistent anomalies over 
time. Therefore, when the anomaly monitoring method based 
on density clustering is applied to different environmental 
backgrounds, it needs to be customized and adjusted 
according to specific needs. When the proposed method 
is used to carry out abnormal monitoring of temperature 
and humidity monitoring data, all abnormal data can be 
monitored. The average operation time of the proposed 
method is 3.2375s, the detection rate is always above 90%, 
and the false detection rate is always lower than 7%. These 
data are obtained by repeated experiments on multiple data 
sets and are relative according to indicators. Therefore, this 
method has a strong universality. This study may provide 
new tools and methods for ecosystem management, helping 
decision-makers better understand and predict the dynamic 
changes of ecosystems, thereby formulating more effective 
management measures. However, this method also has 
some limitations. For example, a genetic algorithm, as an 
optimization algorithm that simulates natural evolution, 
usually has high computational complexity. When 
processing large-scale ecological environment data, 
it may require a lot of computing resources and time, 
which will affect the real-time efficiency of data anomaly 
monitoring. Moreover, the estimation of missing data is 
usually accompanied by uncertainty, which may spread to 
the subsequent anomaly monitoring process, thus affecting 
the reliability of monitoring results. In the future, these 
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limitations should be fully considered and corresponding 
measures should be taken to reduce their impact on anomaly 
monitoring results. For example, the accuracy and reliability 
of anomaly monitoring can be improved by optimizing 
genetic algorithm parameters, selecting appropriate missing 
data estimation methods, and improving the algorithm based 
on density clustering.
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