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Abstract 

Global warming caused by greenhouse gas emissions poses a significant challenge to the sustainable 
development of ecosystems and human society. It is crucial to conduct a comprehensive analysis of 
spatiotemporal dynamics and the underlying factors influencing CO2 emissions at a finer spatial 
scale to advance strategies for mitigating CO2 emissions. This study integrates energy consumption 
data, population grid data, and nighttime light data from 2000 to 2020 to construct a comprehensive 
evaluation system for estimating CO2 emissions of prefecture-level cities (hereinafter referred to as 
cities) in China. On this basis, we introduced the Exploratory Spatial-Temporal Data Analysis (ESTDA) 
method to systematically reveal the spatiotemporal patterns of per capita CO2 emissions in Chinese 
cities. Finally, an improved STIRPAT model is employed to analyze the influencing factors of per capita 
CO2 emissions. A panel regression model is adopted to examine the relationship between per capita CO2 
emissions and population, urbanization, industrial structure, fixed investment assets, and total import 
and export volume with the panel data of 284 prefecture-level cities in China spanning from 2005 to 
2020. The results indicate that:
1. There are huge regional differences in per capita CO2 emissions among Chinese cities. Notably, 
northern cities generally exhibit higher per capita CO2 emissions compared to southern cities. Moreover, 
certain provincial capital cities and independent plan cities display higher per capita CO2 emissions than 
their surrounding cities.
2. From 2000 to 2020, the spatiotemporal dynamics of per capita CO2 emissions in various cities 
demonstrated overall stability with localized variations. This stability is evidenced by the 85% 
spatiotemporal cohesion rate of per capita CO2 emissions from 2000 to 2020, indicating a dominant 
status of no correlation pattern shift. Local dynamics are reflected in the fact that the spatial correlation 
structure of per capita CO2 emissions in resource-based cities and some economically developed regions 
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Introduction

Global climate change profoundly impacts 
human development and public health, presenting a 
substantial environmental challenge for the international 
community. The Sixth Assessment Report [1] states 
unequivocally that human activities have led to global 
warming, with the global average surface temperature 
increasing by 1.1°C between 2011 and 2020 compared 
with temperatures during the pre-industrial period 
(1850–1900). The primary sources of global greenhouse 
gas emissions are the energy and industrial sectors. The 
rapid pace of economic development has intensified 
energy consumption and environmental pressures, 
leading to a continuous rise in CO2 emissions. This 
situation creates a dilemma where economic growth 
coincides with increased CO2 emissions. Decoupling 
CO2 emissions from economic growth is crucial for 
sustainable development and a critical issue that all 
nations must confront. Consequently, extensive attention 
has been devoted to researching the spatiotemporal 
dynamics of CO2 emissions and their influencing factors. 
An analysis of CO2 spatiotemporal variations from 1990 
to 2016 at global, regional, and national scales found 
that China had the highest annual CO2 growth rate 
and industrial emissions worldwide. Statistics from the 
International Energy Agency (IEA) [2] indicate that 
China has been the world’s largest CO2 emitter since 
2007, with CO2 emissions exceeding 12.1 billion tons in 
2022, accounting for approximately 33% of the global 
total. To promote sustainable development, at the United 
Nations Climate Conference in September 2020, the 
Chinese government unveiled targets to peak carbon 
emissions by 2030 and achieve carbon neutrality by 
2060. This pledge marks a pivotal shift from focusing 
on “relative emissions decreases” to pursuing “absolute 
emissions reductions”, The strategy aims to decouple 
socioeconomic growth from carbon emissions, ensuring 
a greener path forward for national prosperity. 

To better understand the spatiotemporal dynamics 
and determinants of CO2 emissions in China, scholars 
have extensively examined CO2 emissions characteristics 
across its provinces and cities, focusing on total CO2 
emissions, per capita CO2 emissions, and CO2 emission 

intensity. These studies have consistently shown a 
rising trend in both total and per capita CO2 emissions, 
with high-emission areas clustering along the coastal 
and northern regions of the country [3]. Moreover, the 
geographic center of CO2 emissions has shifted from 
the eastern to the western regions [4]. Factors such as 
energy intensity, industrial structure, urbanization level, 
the proportion of fixed investment assets in GDP, and 
the ratio of total import and export value to GDP have 
significant impacts on CO2 emissions [5]. Due to China’s 
distinctive political and administrative system, fulfilling 
the national CO2 abatement goals depends on cascading 
these objectives through different administrative levels, 
with cities being the primary agents for achieving these 
reductions [6]. Nonetheless, the National Bureau of 
Statistics of China only publishes energy consumption 
data for 30 provincial-level administrative regions, 
which obstructs the revelation of CO2 emissions and 
their causes at the city level. Consequently, downscaling 
the estimation of CO2 emissions becomes crucial for 
addressing this issue.

To tackle the problem of downscaling CO2 emission 
estimates, Ghosh et al. [7] pioneered the method of 
correlating nighttime light data with CO2 emissions 
to model emissions at a finer geographical resolution. 
Subsequent scholars expand on this approach. For 
instance, Wang and Ye [8] utilized single-year nighttime 
light data to estimate city level CO2 emissions throughout 
China in 2013, highlighting the positive correlation 
between CO2 emissions and economic growth. Wang 
and Liu [9] employed multi-period nighttime light data 
to reveal an inverted U-shaped relationship between 
per capita CO2 emissions and economic development at 
the city level from 1992 to 2013. With the emergence 
of the new generation of nighttime light data, NPP-
VIIRS, researchers have attempted to integrate DMSP/
OLS nighttime light data with NPP-VIIRS satellite data 
for long-term sequence analysis. Chen et al. [10] created 
an extended time series of NPP-VIIRS nighttime light 
data from 2000 to 2018 by combining the DMSP-OLS 
nighttime light data from 2000 to 2012, which was 
calibrated with a new cross-sensor, and monthly NPP-
VIIRS nighttime light data from 2013 to 2018. They also 
estimated CO2 emissions for 2,735 counties in China 

has changed. From the three subtypes of spatiotemporal transitions, Type 1 (0.095)>Type 3 (0.074)>Type 
2 (0.060), indicating that some resource-based cities have embarked on a low-carbon transformation 
development trend in China.
3. The panel data regression results reveal an inverted U-shaped relationship between economic growth 
and per capita CO2 emissions at the prefecture-level city scale. Initially, per capita CO2 emissions 
increase with economic growth, first increasing and then decreasing. Per capita CO2 emissions are 
positively correlated with population size, the proportion of the secondary industry’s value added to 
GDP, the proportion of fixed investment assets to GDP, and the proportion of total import and export 
value in GDP. Conversely, per capita CO2 emissions. are negatively correlated with urbanization level 
and the proportion of the tertiary industry’s value added to GDP. 

Keywords: CO2 emission, prefecture level cities, ESTDA, China
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from 1997 to 2017 using the PSO-BP algorithm, unifying 
the scales of DMSP-OLS and NPP-VIIRS satellite 
images [11]. While earlier studies relied on nighttime 
light data alone to estimate CO2 emissions at smaller 
administrative scales, recent research indicates that 
incorporating nighttime light with population grid data 
yields better estimation accuracy. For example, Ou et al. 
[12] combined population grid data with nighttime light 
data to more accurately estimate China’s CO2 emissions 
in 2012. Building upon this foundation, Chen et al. [13] 
used corrected nighttime light data and population data 
to estimate CO2 emissions for Chinese cities in 2015, 
validating results against energy consumption data, and 
demonstrating the feasibility of this estimation method 
for studying China’s CO2 emissions.

In addition, Grossman and Krueger [14] introduced 
the Environmental Kuznets Curve (EKC) hypothesis 
to examine the relationship between environmental 
degradation and income levels. Subsequent scholars 
across various countries and regions have utilized 

diverse econometric methodologies to explore the 
association between CO2 emissions and the EKC 
premise. These investigations have revealed a spectrum 
of EKC relationships, including U-shaped, inverted 
U-shaped, and N-shaped curves. For instance, research 
on CO2 emissions and economic growth in Chinese 
provinces has confirmed an inverted U-shaped EKC 
[9, 13], allowing for an accurate assessment of the 
curve’s form and inflection points. Additionally, several 
prominent academics have identified an N-shaped 
relationship between economic development and 
environmental pollution in China [15]. However, some 
argue that the EKC hypothesis does not adequately apply 
to China. Pata and Caglar [16] used the Augmented 
Autoregressive Distributed Lag model to investigate 
annual time series data from 1980 to 2016 and found a 
U-shaped quadratic relationship between environmental 
pollution and income levels.

To sum up, this article improves existing research 
from the following aspects: Firstly, it utilizes an 

Fig. 1. Schematic of research framework.

Fig. 2. Box plot of per capita CO2 emissions in Chinese cities and kernel density estimation curve of per capita CO2 emissions in Chinese 
cities.
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extensive time-series dataset of nighttime light data 
spanning from 2000 to 2022, established by Wu et al. 
[17]. Building upon this foundation, we implement the 
methodology proposed by Chen et al. [10], integrating 
population grid data and nighttime light data to estimate 
CO2 emissions for cities in China, while subsequently, 
employing ESTDA to uncover the spatiotemporal 
dynamics of per capita CO2 emissions at the city scale. 
Finally, using an expanded STIRPAT model and panel 
data regression, we identify the factors influencing the 
dynamic evolution of CO2 emissions.

The marginal contribution of this article lies in 
proposing a method for estimating CO2 emissions at the 
prefecture level city scale and applying this method to 
estimate the CO2 emissions of Chinese cities from 2000 
to 2020. In addition, we apply panel data regression to 
investigate the presence of an environmental Kuznets 
curve between economic growth and CO2 emissions at 
this scale.

Material and Methods

The empirical research framework of this paper is 
shown in Fig. 1. It commences with the use of energy 
consumption data, population grid data, and nighttime 
light data to estimate CO2 emissions at the city scale. 
Subsequently, kernel density estimation is used to 
reveal the evolutionary characteristics of CO2 emissions, 
including changes in distribution location, distribution 
form, distribution expansion, and polarization trend 
[18]. Concurrently, the ESTDA method is employed to 
comprehensively analyze the spatiotemporal dynamics 
of CO2 emissions across Chinese cities. Finally, a panel 
data regression model is used to identify the factors 
influencing CO2 emissions at the city scale.

Data Sources

This study relies on several main data sources: 
1. Population data: population density data (2000-
2020) is obtained from the Global High-Resolution 
Population Project (https://landscan.ornl.gov/), along 
with census data and a 1% population sample survey 
data from the National Bureau of Statistics. 2. Nighttime 
light data was integrated by Wu et al. [17] using the 
“pseudo-invariant pixel” method from DMSP-OLS 
and SNPP-VIIRS and is available at https://dataverse.
harvard.edu/dataset.xhtml?persistentId=doi:10.7910/
DVN/GIYGJU. This dataset spans from 1992 to 2022, 
ensuring comparability and consistency across different 
satellite sensors. The data were projected into the Albers 
equal-area projection and resampled to a resolution of 
1km×1km for this study. 3. Energy consumption data is 
primarily sourced from the “China Energy Statistical 
Yearbook”, spanning from 2001 to 2021, while carbon 
emission coefficients are derived from the “2006 IPCC 
Guidelines for National Greenhouse Gas Inventories.” 

4. Socioeconomic data is obtained from the “China City 
Statistical Yearbook” spanning from 2001 to 2021.1

Fitting Prefecture-Level City-Scale CO2 Based 
on Nighttime Lighting and Population Data

Measuring CO2 Emissions from 
Provincial Energy Consumption

Building upon the CO2 emissions calculation 
methodology proposed by the IPCC, this study focuses 
on eight primary energy sources—coal, coke, crude oil, 
gasoline, kerosene, diesel, fuel oil, and natural gas—to 
estimate CO2 emissions. The calculation Equation is as 
follows [19]:

	 	 (1)

Where: Ei represents the total CO2 emissions, while 
NCVi refers to the average low-order calorific value of 
each type of fossil energy, obtainable from Appendix 
4 of the China Energy Statistical Yearbook 2011. 
Additionally, CEFi denotes the CO2 emission coefficients 
of the ith energy provided by the IPCC.

Estimation of CO2 Emissions

The estimation method used was proposed by Elvidge 
et al. [20] and Chen et al. [13]. This method is a top-down 
process that allocates large-scale CO2 emission data to 
finer grid units based on a combination of nighttime 
lighting and population grids. For the light areas, CO2 
emissions are proportional to the lighting values, but in 
such areas, the population data is an effective proxy for 
detecting CO2 emissions, and thus, the population raster 
data is used to measure CO2 emissions in the light areas. 
Referring to the studies of Ou et al. [12] and Chen et al. 
[13], the per capita CO2 emissions of dark areas are half 
that of light areas, thus it can be assumed that the CO2 
emissions of light areas and dark areas of each province 
j are Xj and 1/2 Xj, respectively. Based on the above, the 
detailed calculation process is as follows:

(1) Population raster data calibration:
The national population census and the national 1% 

population sample survey are the most authoritative 
sources of population data published by the Chinese 

1	 Around the year 2000, China was experiencing a period of 
frequent changes in the delineation of its prefectural-level 
administrative divisions, leading to substantial variations in 
the number of cities. These changes were largely completed 
by 2005. The redrawing of administrative boundaries be-
tween 2000 and 2005 has resulted in poor comparability of 
data among cities during this period. To mitigate the impact 
of these changes on the comparability of statistical data, this 
study focuses on the period from 2005 to 2020 for the analy-
sis of factors influencing CO2 emissions.
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government. The population data for Chinese cities are 
obtained from the yearbooks of the previous population 
censuses and the 1% population sample surveys, and the 
population raster data are calibrated after resampling. 
The basic logic of the calibration is to summarize the 
population of each city in the spatial scope based on the 
population raster data, compare the obtained population 
with the real population obtained from the population 
census, and obtain the calibration coefficients. 
Subsequently, the population raster data for each city is 
multiplied by the corresponding calibration coefficient.

(2) Measuring CO2 emissions:
1. Provincial-scale CO2 emissions are calculated as 

follows: The provincial nighttime lighting data is overlaid 
with the population raster data for analysis, using the 
nighttime lighting data as a mask. The population raster 
data is extracted to obtain the population data from the 
light areas of each administrative unit j(SPLj) and the 
population data of the dark areas of each administrative 
unit j(SPDj) The total CO2 emissions of light and 
dark areas in administrative unit j (CO2Lj, CO2Dj) are 
calculated using:

(2)

2
1*
2Dj Dj jCO SP X= (3)

In Equations (2) and (3), the provincial per capita 
CO2 emissions are:

	 2 / ( / 2)j j Lj DjX TCO SP SP= + 	 (4)

The carbon emissions in light and dark areas 
constitute the total CO2 emissions of administrative unit 
j(TCO2j), as follows:

	 2 2 2j Lj DjTCO CO CO= + 	 (5)

2. This is calculated as being equal to the ratio of 
the total CO2 emissions of light areas of administrative 
unit j(CO2Lj) and the total light value of administrative 
unit j(TLj). Then, each light grid’s radiation value in 
administrative unit j(Lgj) is multiplied by the ratio 
described above. Thus, the light areas’ CO2 emissions 
grid value of the administrative unit j(CO2Lgj) is acquired 
by:

	 2 2*( / )Lgj gj Lj LjCO L CO T= 	 (6)

Similarly, for city dark areas, CO2 emissions per 
capita are equal to the ratio of total CO2 emissions to 
total population in the provincial dark areas. Therefore, 
the total CO2 emissions of the dark-value area are equal 
to the product of the CO2 emissions per capita and the 
population of the dark-value area (PDgj). The calculation 
formula is as follows:

	 2 2*( / )Dgj Dgj Dj DjCO P CO SP= 	 (7)

According to Equations (5) and (6), the total CO2 
emissions of administrative unit j are equal to the sum 
of CO2 emissions from light areas (CO2Lgj) and CO2 
emissions from dark areas (CO2Dgj) in administrative 
unit j of all the corresponding cities, where

	 2 2 2
1 1

N M

j Lgj Dgj
g g

CO CO CO
= =

= +∑ ∑ 	 (8)

Exploratory Spatiotemporal Data Analysis Methods

The ESTDA analytical framework proposed by Rey 
and Janikas [21] effectively extends the ESDA method 
in terms of time dimension and realizes the benign 
coupling of temporal-spatial measures, which mainly 
includes analysis techniques such as Local Indicators 
of Spatial Association (LISA), LISA time path, and 
LISA spatiotemporal transition. ESTDA was further 
introduced to reveal the spatiotemporal structural 
characteristics of per capita CO2 emissions at the city 
scale in China.

LISA Time Path

The LISA time path is a continuous expression of the 
positional shift of spatial units in the Moran scatterplot 
and a continuous expression of the LISA Markov shift 
matrix. By visualizing the pairwise shifts of an attribute 
value of a spatial cell with its neighborhood mean 
(spatial lag), revealing the extent and direction of the 
spatiotemporal interactions of per capita CO2 emissions 
between regions, it further reveals how spatiotemporal 
dependence shapes the developmental trajectory of the 
regional system. In this paper, we utilize the LISA time 
path metrics for the per capita CO2 emissions of each 
city. The leapfrog path of city i in Moran’s I scatterplot 
can be regarded as a set of vectors [(yi,1,yli,1),(yi,2,yli,2),··
·,(yi,T,yli,T)], where yi,t is the per capita CO2 emission of 
city i in year t, and yli,t is its spatial lag of per capita CO2 
emissions in year t [22]. The LISA temporal path length 
is expressed as:

	 	 (9)

Where: N denotes the number of cities; T is the 
annual time interval; Li,t represents the LISA coordinates 
of the city in year t; d(Li,t,Li,t+1) is the moving distance 
of city i from year t to year t+1. The larger the d, the 
stronger the dynamics of the local spatial structure; d>1 
means that the moving distance of the city is larger than 
the average value of the moving distance of the city.
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LISA Spatiotemporal Transition

LISA provides a local perspective to reveal spatial 
dependencies between study units [23]. Ye and Rey 
[24] proposed the concept of spatiotemporal transition 
based on the shifting of the types of local spatial 
associations of the units in Moran’s I scatterplot at 
different time periods. The spatiotemporal transition 
is classified into four types: Type0, Type1, Type2, and 
Type3 [25]. Among them, Type0 indicates that both city 
and its neighborhood do not undergo spatiotemporal 
transitions, all of which are located on the main 
diagonal of the transfer matrix; Type1 indicates that the 
city itself transitions while its neighborhood remains 
stable, including HHt→LHt+1, HLt→LLt+1, LHt→HHt+1, 
LLt→HLt+1; Type2 indicates that the city itself remains 
unchanged, but its neighborhood transition includes 
HHt→HLt+1, HLt→HHt+1, LHt→LLt+1, LLt→LHt+1; 
Type3 indicates that both the city itself and the 
neighborhood leap, and this type can be further divided 
into Type3A and Type3B, the former indicating that the 
city itself and the neighborhood have the same direction 
of the transition, including HHt→LLt+1, LLt→HHt+1; the 
latter indicates that the directions of the two transitions 
are opposite, and includes HLt→LHt+1, LHt→HLt+1. For 
spatiotemporal variability and coalescence in a regional 
system, Rey and Ye [22] define it as during this study 
period the ratio of the number of transitions of a certain 
type to the total number of transitions (m) that may be 
present in the system, m=336.

The spatiotemporal variation is expressed as

	 1 2F FSF
m
+

= 	 (10)

The spatiotemporal cohesion Equation is

	
0 3AF FSC

m
+

= 	 (11)

Where: F0, F1, F2, and F3A denote the number of leaps 
for Type0, Type1, Type2, and Type3A, respectively.

Analysis of Factors Influencing CO2 
Emissions Based on the STIRPAT Model

Based on IPAT and ImPACT, York et al. [26] 
proposed the STIRPAT model. The model is widely 
used as it makes it possible to decompose the factors in 
the model or extend the model by incorporating other 
influencing factors according to the needs of practical 
applications. The base form of the model is:

	 b c d
i i i i iI P A T eα= 	 (12)

Where: α is the model coefficient; I denotes the 
environmental pressure; P, A, and T are the population 
factor, affluence factor, and technology factor, 
respectively; b, c, and d are the indices of the population 

factor, the influence factor, and the technology factor, 
and e represents the disturbance term. The linear 
regression equation can be obtained by logarithmic 
treatment of both sides of Equation (12):
	
ln (ln ) (ln ) (ln )it it it it itI b P c A d T eα= + + + + 	 (13)

Where: i denotes individuals; t represents year; b, 
c, and d are indices of P, A, and T, respectively; e is a 
disturbance term; and α is a constant. Equation  presents 
a linear relationship between population, affluence, and 
technology.

This study extends the model with the following 
explanations: Existing research has analyzed the 
relationship between economic factors and CO2 
emissions, with the Environmental Kuznets Curve 
(EKC) hypothesis serving as a classic analytical 
paradigm. This hypothesis posits a nonlinear 
relationship between per capita income and per capita 
CO2 emissions. To test the EKC hypothesis, our study 
incorporates per capita GDP (PCGDP) and its quadratic 
term (PCGDP_sq) as key factors [27], capturing the 
impact of economic development on the environment.

Urbanization represents a dynamic process 
characterized by the concentration of population 
in urban areas, promoting urban development and 
significantly transforming social, economic, and 
production structures, as well as lifestyle, while 
urbanization can improve energy efficiency and reduce 
CO2 emissions [28]. It concurrently drives up energy 
demand due to population aggregation [29]. This 
increased demand fuels the construction of urban 
infrastructure and the demand for energy-intensive, 
polluting products, thereby further escalating CO2 
emissions [30]. Therefore, the urbanization rate, 
represented by the ratio of urban permanent residents to 
the total urban population (denoted as URB), emerges as 
a critical factor influencing CO2 emissions.

Population size (denoted as POP) has consistently 
been shown in previous research to be positively 
correlated with CO2 emissions [5, 31]. Population growth 
increases energy consumption, subsequently driving up 
CO2 emissions.

Economic growth is intricately related to various 
industrial sectors, with alterations in the industrial 
structure significantly impacting CO2 emissions [32]. 
The secondary industry, encompassing carbon-intensive 
sectors such as manufacturing and construction, exerts 
a substantial influence on CO2 emissions compared 
to agriculture and the tertiary industry. This study 
incorporates the proportion of secondary industry 
value added to GDP (SIP) and the proportion of tertiary 
industry value added to GDP (TIP) to measure the 
industrial structure.

Fixed-asset investment as a proportion of GDP 
(denoted as INV) is crucial, as increased investment 
drives substantial fossil energy consumption, thereby 
intensifying CO2 emission intensity [33]. Domestic 
investment-generated CO2 emissions constitute 
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approximately one-third of China’s total CO2 emissions, 
primarily from the construction and manufacturing 
sectors. Therefore, the proportion of fixed-asset 
investment to GDP serves as a proxy variable for CO2 
emissions [34].

The proportion of total imports and exports to GDP 
(denoted as IEP) serves as an indicator of trade intensity. 
The impact of trade openness on China’s CO2 emissions 
is widely debated, with both positive and negative 
effects of imports and exports on CO2 emissions [30]. 
Higher trade openness can lead to increased exports of 
energy-intensive products, thereby increasing pollution. 
With exports constituting approximately one-third of 
China’s GDP [35], CO2 emissions are influenced not 
only by domestic consumption but also by long-term 
trends in foreign trade, which could potentially reduce 
CO2 emissions. However, in the short term, foreign trade 
tends to have a negative impact on CO2 emissions [35].

Combining the above sections, the STIRPAT model 
was extended to analyze the influencing factors of city 
CO2 emissions using a panel regression model and 
constructing the following Equations:

	 	 (14)

Where: i and t represent the observation sample 
and time, respectively. PCCE indicates per capita 
CO2 emissions; PCGDP stands for per capita GDP 
value; URB stands for urbanization rate; POP refers to 
population size, SIP stands for the share of value added 
in the secondary industry in GDP, TIP represents the 
share of value added in the tertiary industry in GDP 
INV signifies the share of fixed investment assets in 
GDP, and IEP stands for the share of total imports and 
exports in GDP. α denotes the constant term; e stands 
for the unobservable interference term; and b-d and f-g 

represent the correlation coefficients of each influencing 
factor individually.

Results

Temporal Trends in City per Capita CO2 Emissions

As illustrated in Fig. 3, China’s per capita CO2 
emissions in cities exhibit a trend of fluctuating increase 
from 2000 to 2020. In 2000, per capita CO2 emissions 
mainly ranged from 1.9 to 4.3 tons; by 2010, this 
range had increased to 4.9 to 11 tons, and by 2020, it 
had further expanded to 5.5 to 13 tons. From 2000 to 
2020, both the minimum and maximum per capita CO2 
emissions in Chinese cities have increased, reflecting a 
more volatile and imbalanced distribution compared to 
the periods of 2000 and 2010.

In terms of concentration, the per capita CO2 
emissions in Chinese cities were more centralized in 
the early years. After 2010, the box plots show longer 
lengths, indicating a more dispersed distribution. The 
kernel density plots of per capita CO2 emissions in 
Chinese cities over five years reveal that the trend in 
the distribution’s skewness remains relatively constant. 
However, the kernel density curve has widened and 
slightly shifted to the right, with a decrease in peak 
values. These findings suggest a gradual increase in per 
capita CO2 emissions in Chinese cities and reflect the 
growing regional disparities from 2000 to 2020. Related 
studies [16, 36] have demonstrated that economic 
growth, urbanization, and other factors exhibit a non-
linear relationship with per capita CO2 emissions. With 
the increase of economic development or urbanization, 
per capita CO2 shows a trend of first increasing and 
then decreasing. Different cities are at different stages, 
resulting in an increasing variability and gap in per 
capita CO2 emissions between cities.

Fig. 3. The spatiotemporal evolution of per capita CO2 emissions at the city scale in China.



Rongwei Wu., et al.8

Overall Distribution Pattern of City CO2 Per Capita

Based on the per capita CO2 emissions data, the 
natural breakpoint method of classification is utilized to 
draw the spatial distribution of per capita CO2 emissions 
in Chinese cities in 2000, 2010, and 2020, which can be 
seen in Fig. 3.

Per Capita CO2 Emissions Are Generally Higher 
in Northern Cities Than in Southern Cities.

The per capita CO2 emissions in northern cities 
are generally higher than those in southern cities, 
reflecting a distribution pattern where emissions are 
more prevalent in the north. This disparity is primarily 
attributed to two factors: Firstly, the northern regions of 
China possess abundant fossil energy resources such as 
coal, oil, and natural gas. Cities like Yulin in Shaanxi 
Province; Datong, Yangquan, and Linfen in Shanxi 
Province; and Erdos City, Huolingol, and Alxa League 
in Inner Mongolia highly rely on these resources for 
socio-economic development, leading to the formation 
of industry clusters characterized by high energy 
consumption and emissions. Secondly, northern cities 
experience colder winters, necessitating prolonged 
central heating, which significantly increases the 
demand for thermal and electrical energy [37], thereby 
contributing to higher per capita CO2 emissions in the 
northern regions. Conversely, the southern regions have 
witnessed significant advancements in innovation and 
economic growth, transforming and upgrading their 
industrial structure. This has resulted in the tertiary 
industry becoming a dominant economic driver with a 
lower contribution to city CO2 emissions compared to 
the secondary industry. Consequently, per capita CO2 
emissions in the southern region are generally lower 
than those in the northern region. 

CO2 Emissions Per Capita in Provincial Capitals 
and Independent-Plan Cities is Generally Higher 

Than that in Their Neighboring Cities

Per capita CO2 emissions in provincial capitals and 
independent-plan cities are generally higher than those 
in surrounding cities (as shown in Fig. 3). In China’s 
development strategy, provinces and autonomous 
regions prioritize the enhancement of the construction 
level of provincial capitals and independent-plan cities, 
exacerbating the disparity in comprehensive socio-
economic development between these core cities and 
their surroundings. Residents in these areas typically 
enjoy higher living standards and possess more energy-
consuming products, such as cars, which increases 
energy demand [38]. This increase in demand also 
drives the expansion of transportation infrastructure 
and other public facilities, the integrated development 
of industries, and contributes to elevated CO2 emissions 
in surrounding cities [39]. Moreover, buildings in these 
cities, especially office towers and shopping malls, 
consume significantly more energy in operation and 
maintenance compared to a significantly higher overall 
energy demand in provincial capitals and independent-
plan cities, leading to per capita CO2 emissions notably 
higher than the average level in surrounding areas.

Spatiotemporal Dynamics of City 
Per Capita CO2 Emissions 

The spatial aggregation of per capita CO2 emissions 
in Chinese cities is pronounced. Calculating the global 
Moran’s I index for per capita CO2 emissions at the 
prefecture level across the years 2000, 2005, 2010, 2015, 
and 2020 resulted in positive values, with respective 
scores of 0.511, 0.553, 0.617, 0.520, and 0.693. Each score 
passed the 1% significance test. This demonstrates a 
significant spatial clustering of per capita CO2 emissions 
at the city scale, indicating that cities with higher and 

Fig. 4. The relative length of time paths for per capita CO2 emissions at different stages at city scale in China.



Spatiotemporal Pattern and Influencing Factors of Carbon Dioxide... 9

lower per capita CO2 emissions tend to be spatially 
proximate to one another.

LISA Time Path of Per Capita CO2 Emissions

The relative length of the LISA time path is longer in 
the northern regions compared to the southern regions 
(Fig. 4), suggesting that the local spatial structure of per 
capita CO2 emissions in northern cities is more dynamic, 
whereas the southern regions are relatively stable.

Overall, cities with a relative length of the LISA time 
path greater than 1 are predominantly concentrated in 
the North China Plain and Northwest, as well as in some 
other regions, especially in resource-based cities within 
these areas. From 2000 to 2020, among 336 city units 
studied, the average relative length of the LISA time 
path was 1, with 108 cities exceeding this threshold, 
accounting for approximately 32%. These cities are 
mainly resource-based and include some economically 
developed areas. Conversely, cities with a relative LISA 
time path length of less than 1 are predominantly located 
in southern cities. From 2000 to 2010, 38 cities exceeded 
this threshold, increasing to 99 cities, indicating a rise 
from 11% to 29%. The reason for this phenomenon is 
that resource-based cities are highly sensitive to policy 
and market influences, with fluctuations in city CO2 
emissions growth and local spatial dependence changes 
being strong.

Due to the presence of many resource-based cities 
in the north that are dominated by high-carbon-emitting 
secondary industries, exhibit pronounced resource 
reserves and exploit economic development. Since 
2000, the development of resource-based industries 
has been highly sensitive to resource-related policies, 
the cyclical nature of government control policies, and 
market demand for these industries [40]. Furthermore, 
in some cities, prolonged resource exploitation has led 
to depletion, necessitating a shift towards industrial 
upgrades and transformations, thereby contributing to 
gradual reductions in per capita CO2 emissions.

LISA Spatiotemporal Transition

The study utilizes LISA Spatiotemporal Transition to 
analyze the evolution of local spatial association types 
in city CO2 emissions (Fig. 5).

(1) Per capita CO2 emissions in Chinese cities show a 
more stable spatial structure.

Table 1 shows that from 2000 to 2020, per capita 
CO2 emissions in Chinese cities exhibit a strong 
spatiotemporal cohesion probability (SC) of 85%, with 
a spatiotemporal transition probability (SF) of 15%. 
Type0 predominates at 77.1%, reflecting the strong path-
locking characteristics of spatiotemporal transitions 
in prefecture-level units. The probabilities of the four 
spatiotemporal transition types are Type0 (0.771)>Type1 
(0.095)>Type3 (0.074)>Type2 (0.060), indicating that 
the dominant position has not occurred in the transfer 
of spatial correlation forms, and the transfer of spatial 

correlation types exhibits varying degrees of transition 
inertia.

For Type0, the most stable transition probability of 
spatial correlation is LL→LL (0.861), and the transition 
probability from low-carbon cities to low-carbon spatial 
correlation is the highest, indicating that most cities 
can drive economic prosperity through green and low-
carbon systems in the development process, and cities 
with low per capita CO2 emission values have clustered 
development. Furthermore, a small portion of high-value 
per capita CO2 emissions from HH have broken the path 
lock of cities, and CO2 emissions from these cities or 
adjacent cities have shown a trend towards low-carbon 
development.

(2) A limited number of cities in China display 
characteristics of spatiotemporal transition in per capita 
CO2 emissions.

From the perspective of transition types, Type1 
(0.095)>Type3 (0.074)>Type2 (0.060), with the highest 
spatial transition probability towards LL, indicating a 
gradual shift in some Chinese cities towards low-carbon 
emission patterns. Type1 is the primary transition type, 
suggesting that cities themselves are more active in 
spatiotemporal transitions, whereas the neighboring 
areas are relatively stable. For Type1, the highest spatial 
association transition probability is HL→LL (0.685), 
indicating a significant probability of high CO2 emission 
cities transitioning to become low CO2 emission cities. 
This shift may be achieved through enhanced energy 
efficiency and a shift in energy structure, as observed 
in cities such as Shenzhen, Wuhan, and Hangzhou, 
which have reduced their per capita CO2 emissions 
due to population and industrial agglomeration effects, 
leading to improved energy efficiency. Similarly, 
cities such as Lanzhou and Panzhihua have achieved 
reductions through strategic shifts in energy utilization 
and fostering low-carbon industrial practices. In Type2, 
the highest spatial transition probability is LH→LL 
(0.320), indicating a reduction of per capita CO2 
emissions in certain areas due to the mitigating effects 
from neighboring areas. Technological innovations 
can notably reduce the CO2 emission intensity of a 
region, exerting a negative spillover effect on the CO2 
emission intensity of adjacent areas, which in turn leads 
to a substantial decrease in CO2 emissions in those 
neighboring areas. Cities such as Jinhua, Zhoushan, and 
Nantong have improved energy efficiency and reduced 
per capita CO2 emissions due to the influence of low-
carbon technologies from neighboring low-carbon cities 
[41]. In Type3, the highest spatial transition probability 
is HH→LL (0.182), primarily observed in provincial 
capitals such as Harbin, Changchun, Jilin, Shanghai, 
and Ningbo. This transition may be attributed to the 
influence of economic shifts towards low-carbon 
industries, leading to a gradual decrease in per capita 
CO2 emissions.
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Analysis of Factors Influencing 
City-Scale CO2 Emissions

In this study, per capita CO2 emissions (PCCE) are 
the dependent variable. Per capita GDP (PCGDP) and 
its square term, urbanization rate (URB), population size 
(POP), the share of value added by secondary industry in 
GDP (SIP), the share of value added by tertiary industry 
in GDP (TIP), the share of fixed investment assets in 
GDP (INV), and the share of total imports and exports 
in GDP (IEP) are taken as independent variables. The 
STIRPAT extended model with panel data is utilized for 
regression analysis, with results presented in Table 2.

Results of Regression Estimation

The results of the study are shown in Table 2. Where 
all five models employed fixed-effects estimators as 
deemed appropriate by the Hausmann test.

(1) An inverted U-shaped relationship between 
economic growth and environmental pollution in China 
at the city scale

Models 1–5 all include the variable “per capita GDP” 
and its squared term to investigate the Environmental 
Kuznets Curve (EKC) hypothesis. Results indicate a 
positive correlation between per capita GDP and CO2 
emissions, while the squared terms show a negative 
correlation, suggesting an inverted U-shaped relationship 
between economic growth and CO₂ emissions. Overall, 
economic growth influences CO2 emissions through 

three main effects: scale, structure, and technology. 
With the growth of the economic scale, the demand 
for energy increases, leading to an increase in CO2 
emissions. Simultaneously, economic growth also brings 
about changes in economic structure, transitioning from 
a high-pollution industrial economy to a cleaner service-
oriented and technology-driven economy, resulting in 
a decrease in CO2 emissions. Moreover, technological 
advancements driven by economic growth enable more 
effective strategies to mitigate CO2 emissions.

(2) Population size, fixed investment assets as a share 
of GDP, and per capita CO2 emissions show a positive 
correlation

Population size positively impacts CO2 emissions, 
indicating that population growth increases energy 
consumption and per capita CO2 emissions. The 
proportion of fixed investment assets is also positively 
correlated with per capita CO2 emissions. Historically, 
fixed asset investment in Chinese cities has concentrated 
on high-energy-consuming and high-polluting 
industries [42]. This study reveals that fixed-asset 
investment contributes to the expansion of energy-
intensive sectors like transportation, construction, 
and manufacturing industries, thereby escalating CO2 
emissions. Conversely, the negative correlation between 
the urbanization rates and per capita CO2 emissions 
indicates that urbanization promotes economic growth 
and energy efficiency through the agglomeration effect 
and economies of scale, consequently reducing per 
capita CO2 emissions.

Fig. 5. Distribution map of spatiotemporal transition types in China.

Table 1. Local Moran’s I Transfer probability matrices and spatiotemporal variability.

2000/2020 HH LH LL HL Type n Percent SF SC

HH 0.677 0.107 0.182 0.032 Type0 259 0.771

0.150 0.850
LH 0.240 0.440 0.320 0.000 Type1 32 0.095

LL 0.062 0.062 0.861 0.013 Type2 20 0.060

HL 0.315 0.000 0.685 0.000 Type3 25 0.074
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(3) Industrial structure is closely related to per capita 
CO2 emissions

The regression results show that the proportion 
of added value from secondary industry in GDP is 
positively correlated with per capita CO2 emissions, 
whereas the proportion of added value from tertiary 
industry in GDP is negatively correlated with per 
capita CO2 emissions. China’s manufacturing sector 
predominantly occupies the middle and lower ends of 
the value chain, characterized by a high concentration 
of energy-intensive industries like iron and steel, non-
ferrous metals, building materials, petrochemicals, 
and chemicals, which tend to increase per capita CO2 
emissions as their share in the economic structure 
grows. 

(4) The relationship between the intensity of import 
and export trade on CO2 emissions is not clear yet.

Two hypotheses address the impact of foreign trade 
on CO2 emissions: the “Pollution Haven Hypothesis” 
(PHV) and the “Pollution Halo Hypothesis” (PHL). The 
PHV theorizes that pollution-intensive industries tend 
to be established in countries with laxer environmental 
regulations due to technology spillover effects. 
Developing countries may gain comparative advantages 
in high-pollution and high-energy-consuming industries 
due to weaker environmental standards, making them 
destinations for the relocation of pollution industries 
from developing nations. In contrast, the PHL suggests 
that multinational enterprises can improve the energy 
efficiency of their host countries through technology 
spillover, thereby helping to reduce CO2 emissions. Our 
regression shows that the ratio of total import and export 
to GDP is positively associated with CO2 emissions, 
but this relationship does not pass the significance test, 

model1 model2 model3 model4 model5

lnpcgdp 1.042*** 1.173*** 0.606*** 0.582*** 0.583***

(0.0962) (0.0937) (0.108) (0.107) (0.108)

lnpcgdp_s -0.0427*** -0.0339*** -0.0143** -0.0143** -0.0144**

(0.00483) (0.00473) (0.00508) (0.00507) (0.00507)

URB -0.384*** -0.289*** -0.269*** -0.269***

(0.0703) (0.0697) (0.0698) (0.0698)

lnpop 0.394*** 0.204*** 0.180*** 0.181***

(0.0274) (0.0316) (0.0321) (0.0322)

SIP 0.347*** 0.373*** 0.373***

(0.0823) (0.0824) (0.0824)

TIP -0.439*** -0.391*** -0.392***

(0.0820) (0.0827) (0.0827)

INV 0.0304*** 0.0304***

(0.00744) (0.00744)

IEP 0.000601

(0.00307)

lnyear 37.74*** -16.70** 27.30*** 30.47*** 30.41***

(2.778) (5.309) (6.252) (6.288) (6.297)

_cons -291.3*** 114.8** -213.3*** -236.9*** -236.4***

(21.14) (39.92) (46.87) (47.14) (47.21)

N 4544 4544 4544 4544 4544

R2 0.509 0.538 0.556 0.557 0.557

Hausman test 60.61*** 144.80*** 60.80*** 87.15*** 62.19***

AIC -3929.7 -4203.6 -4375.4 -4391.2 -4389.3

BIC -3904.1 -4165.1 -4324.0 -4333.4 -4325.1

Note: * p<0.05, ** p<0.01, *** p<0.001.

Table 2. Regression results.
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which may be due to the complexity of the relationship 
between the degree of import and export trade on CO2 
emissions, making it challenging to draw consistent 
conclusions.

Discussion

(1) There are significant regional differences in 
per capita CO2 emissions in Chinese. 

Our results show that there are significant spatial 
differences in per capita CO2 emissions in Chinese 
cities, showing that the per capita CO2 emissions of 
northern cities are greater than those of southern 
cities, which is consistent with previous studies 
[43], and that the per capita CO2 emissions of 
provincial capitals and independent-plan cities are 
generally higher than those of surrounding cities.

(2) The environmental Kuznets curve still refers to 
the Chinese city scale.

Our empirical results show that the inverted 
U-shaped relationship between economic growth and 
environmental pollution still exists at the prefecture 
level in China, aligning with previous studies [8]. Prior 
studies have found an inverted U-shaped relationship 
between economic growth and CO2 emissions at the 
provincial level, and recent work has extended this 
examination to the prefecture level. Specifically, 
research has found that there is an inverted U-shaped 
relationship between economic growth and CO2 
emissions in consecutive single years from 1992 to 2013 
[9]. Our empirical analysis extends this conclusion, 
validating its relevance to 2020.

(3) Population size is positively correlated with per 
capita CO2 emissions in cities.

Our research findings indicate that population 
growth promotes per capita CO2 growth, but in 2022, 
China experienced its first decline in total population, 
prompting the government to propose policy measures 
aimed at increasing fertility rates. While population 
growth typically correlates with higher CO₂ emissions, 
promoting a green lifestyle remains a crucial strategy 
for mitigating this impact, particularly in the context 
of rising birth rates. Examples of such lifestyle changes 
include implementing waste sorting, avoiding extreme 
air conditioning temperatures, adopting eco-friendly 
modes of transportation, and so on [44].

(4) Our findings reveal that the proportion of value 
added by secondary industry in GDP is positively 
correlated with per capita CO2 emission, whereas the 
proportion of value added by tertiary industry in GDP 
is negatively correlated with per capita CO2 emissions.

This is consistent with the findings of Zhao et 
al. [45], suggesting that China could reduce its CO2 
emission intensity by optimizing its industrial structure. 
It is noteworthy that the total imports and exports are 
not correlated with per capita CO2 emissions in our 
regression results, whereas Haug and Ucal [46] showed 

that an increase in the total imports and exports as a 
share of GDP increases per capita CO2 emissions, and 
at the same time, there are also studies that find that the 
total imports and exports as a share of GDP mitigate 
per capita CO2 emissions [47]. The advancement of 
urbanization will bring about population and industrial 
agglomeration, promote technological progress, improve 
total factor productivity, and increase income levels. 
This is precisely because agglomeration brings facility 
utilization efficiency and reduces per capita CO2 
emissions that our findings are consistent with the study 
by Wang et al. [48].

Limitations and Prospects

The research in this paper still has some uncertainties 
and limitations. First, based on methodologies proposed 
by Ou et al. [12] and Chen et al. [13], we developed a 
set of methods for downscaling estimation of CO2 
emissions, but the accuracy of this method can be 
further improved. On the one hand, the abnormally high 
nighttime light brightness in resource-based cities may 
overestimate their CO2 emissions. On the other hand, 
further discussion is needed to determine the per capita 
CO2 emissions in the dark areas. Meanwhile, although 
this paper corrects the landscan population dataset 
based on the Chinese census data and the national 
1% population sample survey data, there is still some 
discrepancy in the population number on a small scale, 
and the correction of the population raster data can be 
considered in the future using a finer scale. In terms 
of influencing factors, due to the limitation of data 
acquisition, this paper did not consider the influence 
of factors such as energy structure and technological 
progress on per capita CO2 emissions. If there are 
relevant data released in the future, such factors should 
be included in the analysis.

Conclusions

China implements a top-down management system, 
which decomposes the tasks of CO2 emissions at different 
administrative levels. Estimating CO2 emissions and 
their influencing factors at the city scale is of great 
significance for each local government in order to carry 
out the reduction of per capita CO2 emissions. Therefore, 
this paper estimates the per capita CO2 emissions at the 
city scale based on the population raster data, nighttime 
light data, and energy consumption data; we applies 
ESTDA method to analyze the spatial and temporal 
pattern of per capita CO2 emissions in Chinese cities 
from 2000 to 2020; and investigates the influencing 
factors based on the STIRPAT extended model using 
panel data regression. The main conclusions are as 
follows:

(1) In terms of overall distribution patterns, per 
capita CO2 emissions are characterized by uneven 
spatial distribution in Chinese cities.
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Per capita CO2 emissions in northern cities are 
generally higher than those in southern cities, which 
may be due to the fact that northern cities are richer 
in fossil energy resources such as coal, oil, and natural 
gas; furthermore, their development is highly reliant on 
carbon-intensive industries, and their total population 
is relatively small, which results in higher per capita 
CO2 emissions. Some provincial capitals and cities with 
separate plans have higher per capita CO2 emissions than 
their neighboring cities, mainly due to the higher living 
standards of their residents and their higher demand for 
energy in daily life.

(2) From 2000 to 2020, the per capita CO2 
emissions of Chinese cities show significant spatial 
agglomeration characteristics in terms of spatiotemporal 
dynamics. The overall stability is evidenced by an 
85% spatiotemporal cohesion rate during this period. 
Among the categories, Type0 category has the highest 
proportion of spatiotemporal transitions, while the 
majority remained unchanged in their correlation 
patterns. From the viewpoint of its subtypes, the LL 
type is the most stable, indicating the continuity of 
development. The probability of the transformation 
of the HH type is 30.9%, suggesting only some of 
the cities in high carbon-emission agglomerations 
underwent transformation and development. Local 
changes are reflected in the fact that from 2000 to 
2020, the rate of spatiotemporal transitions is 15%, and 
from the subtypes of the three types of spatiotemporal 
transitions, Type1 (0.095)>Type3 (0.074)>Type2 (0.060), 
all of which indicate that the development trend of low 
carbon transformation has emerged in some of China’s 
resource-based cities.

(3) There is an inverted U-shaped relationship 
between per capita GDP and per capita CO2 emissions, 
with positive correlations between population size, the 
proportion of value added by the secondary industry to 
GDP, and the proportion of fixed investment assets to 
GDP and per capita CO2 emissions. There are negative 
correlations between the level of urbanization, the 
proportion of value added by the tertiary industry to 
GDP, and per capita CO2 emissions.
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