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Abstract

Research Purpose: The aim of this study is to investigate the spatiotemporal evolution characteristics 
and the driving mechanisms behind the spatial patterns of land use in economically developing river 
basins. Research Methods: The study employed geographic information systems, spatial autocorrelation 
techniques, and geographic detector methods to analyze the Hanjiang River Basin, focusing on the 
logical sequence of "evolution process - evolution pattern - driving mechanism" in land spatial changes. 
Research Findings: (1) From 2000 to 2020, the comprehensive change rates for urban, ecological, and 
agricultural spaces in the study area were 228%, -3%, and -1%, respectively. (2) The centroid of urban 
space shifted from southeast to northwest, while that of agricultural space moved from southwest 
to northeast. The centroid of ecological space initially shifted from northwest to southeast but then 
reversed. Univariate and bivariate clustering features exhibited similarities. (3) The outward migration 
of labor-intensive industries from the Pearl River Delta was identified as a significant factor driving the 
spatiotemporal evolution of land spatial patterns in the study area. Significance: This study supports 
the implementation of land spatial planning in economically developed regions and offers insights for 
coordinated development in less-developed river basins.
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Introduction

Territorial space [1-4] is a complex and extensive 
system, shaped by the interactions, interplays, 

infiltrations, and couplings of various elements such 
as nature, economy, society, and human activities. It 
serves as the venue for a country's political, economic, 
and cultural activities and acts as the foundation for 
diverse construction projects. Faced with challenges 
including tightening resource constraints, worsening 
environmental pollution, and ecosystem degradation, 
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the 18th National Congress of the Communist Party 
of China proposed optimizing the territorial space by 
constructing a "triple-bottom-line space." The 19th 
National Congress further emphasized the need to 
demarcate three control lines: ecological protection 
redlines, permanent basic farmland, and urban 
development boundaries, aiming to adjust and optimize 
the structure of the territorial space.

With the 2019 release of the "Opinions on 
Establishing a National Spatial Planning System and 
Supervising its Implementation" by the General Office 
of the Communist Party of China Central Committee 
and the General Office of the State Council, territorial 
spatial planning has been formally established as a 
leadership role and top-level directive across all types 
of spatial planning. It is expected to resolve the issue of 
overlapping and contradicting objectives and contents 
of various spatial plans, leading to the integration 
and unification of multiple regulations. The central 
leadership consistently emphasizes adherence to 
bottom-line thinking, using territorial spatial planning 
as a basis for adjusting economic structures, planning 
industrial development, and promoting urbanization. 
Urban areas, agriculture, and ecological spaces, along 
with their respective protection red lines, are considered 
insurmountable boundaries that play a strategically 
important role in the economic and social development 
of the country through national land spatial planning.

To support the national strategy, scholars have 
conducted relevant research. Utilizing global surface 
coverage data and building on existing classification 
methods for national land use, researchers propose 
dividing land space into three categories: agricultural, 
urban, and ecological spaces. Building on the theoretical 
foundations and conceptual frameworks of these three 
life spaces, Lin Gang et al. [5] highlighted the integrated 
and coordinated use of production, living, and ecological 
spaces. They introduced a conceptual framework 
consisting of four elements: spatial structure, functional 
zoning, ecological protection, and social participation, 
drawing from both domestic and international research 
findings. Further, Ji Zhengxin et al. [6] applied a 
multifunctional value assessment methodology to 
identify and regulate the spatial patterns of these living 
spaces, with Zhangjiakou City serving as a case study. 
In exploring the evolution of spatial and temporal 
patterns of national land use, Shawky Mansour et al. [7] 
employed cellular automata and geospatial technology 
to evaluate and predict urban growth and changes in 
land cover. Additionally, Xu Zhirong et al. [8] used 
GIS-based spatial distribution and statistical models 
to characterize the evolution of spatial distribution and 
the influence of various factors on the spatio-temporal 
patterns of settlements. M. Munthali et al. [9] engaged 
in focus group discussions, key informant interviews, 
and semi-structured interviews with 586 households 
to identify drivers of land use and land cover change 
(LULC). ZHU W et al. [10] applied entropy-weighted 
TOPSIS and Tobit modeling to examine the spatial and 

temporal evolution patterns and spatial correlations 
of 13 cities in Jiangsu Province, analyzing the drivers 
of benefits from these patterns. Generally, existing 
studies emphasize the spatial and temporal evolution 
of land under natural and human influences, but pay 
less attention to the influences of economic and policy 
factors.

Regarding the classification system [11-13], 
understanding the formation mechanisms of national 
land space and its interrelationships across production, 
life, and ecology is fundamental for classifying and 
optimizing national land space structures, a view widely 
accepted by academics. However, the categorization 
of "ecological-agricultural-urban space" within 
national land spatial planning is rarely addressed. 
Research primarily focuses on urban agglomerations 
and administrative divisions across local or global 
scales [14-16], with analyses ranging from micro to 
macro perspectives of national land space evolution 
and function. Yet, in-depth analyses at the meso-level, 
which combine watershed and administrative divisions, 
particularly in ecologically vulnerable areas where land, 
rivers, and oceans converge, are infrequently conducted. 
In terms of methods for analyzing spatial and temporal 
evolution [17-20], the land-use transfer matrix [21, 22] 
and landscape pattern index [23-25] are crucial for 
depicting the evolution of national land space. These 
methods can quantitatively demonstrate the relationship 
between spatial evolution and its structure. However, the 
evolution of land involves not only quantitative changes 
but also the dynamics of speed and spatial attributes, 
particularly the spatial expression of agglomeration or 
disaggregation. Such quantitative relationships between 
neighboring administrative units are rarely reported.

This study is dedicated to the sustainable 
development of the region, taking the Hanjiang River 
Basin as the focal area. Utilizing land cover, social, 
and humanities data from 2000 to 2020, it builds upon 
and refines previously researched spatial categorization 
systems. The study delineates the spatial evolution of 
the land in multiple dimensions, including processes, 
patterns, and driving factors, to comprehensively 
uncover the general principles of land evolution. This, in 
turn, aims to provide decision-making references for the 
region's spatial planning and high-quality development.

Overview of the Study Area and Data Sources

Overview of the Hanjiang River Basin

The Hanjiang River Basin is situated in eastern 
Guangdong, southwestern Fujian, and southern Jiangxi, 
encompassing 8 prefecture-level cities and 24 counties 
(cities and districts) (Fig. 1). The upper and middle 
reaches of the region are sparsely populated, whereas 
the lower reaches and delta are densely populated, 
with Shantou having the highest density. In 2020, the 
watershed had a GDP of 2090.2 billion yuan, indicating 
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a relatively developed economy. The main stream spans 
470 km and covers a basin area of 130,803 km², with 
36,812 km² (28.14%) in Guangdong Province, 54,626 km² 
(41.76%) in Fujian Province, and 39,365 km² (30.10%) in 
Jiangxi Province. The Meijiang River is the mainstream 
of the Han River, originating at the junction of Zijin 
County and Luhe County in Guangdong Province. It has 
a length of 307 km and an average gradient of 0.40%, 
covering a catchment area of 13,929 km². The largest 
tributary, the Ting River, originates from Laijiashan in 
Ninghua County, Sanming City, on the southeast side 
of the southern section of Wuyi Mountain. It extends 
322 km, with an average gradient of 1.5%, and spans a 
catchment area of 11,802 km².

The basin frequently experiences floods and 
droughts, serious water pollution in some river sections, 
and common soil erosion in the mountainous and hilly 
areas of the upper and middle basin, necessitating 
significant governance and protection efforts. In October 
2020, General Secretary Xi Jinping, during his visit to 
Chaozhou, emphasized the importance of comprehensive 
management of the Han River basin to ensure its long-
term clarity. In 2021, the Pearl River Water Resources 
Commission of the Ministry of Water Resources drafted 
a "comprehensive plan for the Hanjiang River Basin", 
establishing four major systems for flood prevention and 
disaster mitigation, water resources conservation and 
utilization, water ecological environmental protection, 
and comprehensive basin management. Efforts in 
comprehensive management are now showing results, 

with several targets for 2025 being achieved ahead of 
schedule.

Data Sources and Data Processing

The dataset comprised data from the years 2000, 
2005, 2010, 2015, and 2020, analyzed in five-year 
intervals. This selection allows for the systematic 
observation and analysis of long-term trends and 
changes. The overview data for the Han River Basin are 
sourced from several plans and programs, including the 
Han River Basin Comprehensive Plan, the Guangdong 
Province Han River Basin Comprehensive Water 
Conservancy Management Work Programme, and the 
Gan, Fujian, and Guangdong Former Central Soviet 
Areas Revitalization and Development Plan. Specific 
data for each city are derived from their respective 
statistical yearbooks: Meizhou (2000), Shantou (2005), 
Chaozhou (2010), Heyuan (2015), and Zhangzhou 
(2020), along with the Longyan, Ganzhou, and Sanming 
Statistical Yearbooks. Initially, remote sensing data were 
extracted using the boundary of the study area to form 
the foundational database for the land space in ArcGIS 
10.3. The land space was then classified into three 
levels based on the correspondence between the LUCC 
classification system and the land space, as shown in 
Table 1.

Land cover data were processed using the 
boundaries of the study area. Based on the CLCD 
classification system and the correspondence of the 
national land space, the land was refined into three 

Fig. 1. Location of the Han River Basin.
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levels of classification (illustrated in Table 1). Social and 
humanistic attributes were integrated into each raster 
unit using GIS software, creating a spatio-temporal 
database for the national land space classification that 
serves as the foundation for the analysis and research 
presented in this study.

Research Methodology

String Diagram Visualization Models 

A string diagram visualization model is a data 
visualization technique that displays interrelationships 
between data arranged in a matrix. This method is 
primarily used to illustrate the relationships among 
multiple objects [26]. The string diagram consists of 
nodes and strings: nodes are arranged radially along the 
circumference of a circle, and chords, which are arcs 

weighted by width, connect any two points on the circle. 
Each chord represents the correlation between the two 
points. Nodes and chords are differentiated by color, 
allowing for a visual comparison of data and making it 
highly suitable for representing complex relationships. 
The number of nodes in the chord diagram reflects the 
current number of targets; the contact area between the 
arc and the node (the thickness of the chord) indicates 
the degree of relationship or proportionality between 
two sets of data, and the color of the arc can match 
either the target node or the source node.

Geological Information Mapping

Geological information mapping involves the use of 
extensive digital resources, including remote sensing, 
map databases, GIS, and digital earth technologies 
[27]. This process uses graphical concepts and abstract 
reasoning, along with computer three-dimensional and 

Classification At The First Level Secondary Classification Three-Tier Classification

Serial 
Number Name Serial 

Number Name Serial 
Number Name

1 Ecological space

1 Green space

21 Woodland

22 Shrubland

23 Open woodland

24 Other forest land

31 High-cover grassland

32 Medium-cover grassland

33 Low-cover grassland

61 Sandy beach or river bank

63 Saline soil

65 Bare ground

66 Bare rocky gravelly ground

2 Watershed ecological space

41 Rivers and canals

42 Lochs

43 Reservoir pit

45 Mudflat

46 Beach

64 Marshland

99 Oceans

2 Agricultural space
3 Rural production space

11 Paddy field

12 Arid

4 Rural living space 52 Land for rural settlements

3 Urban space
5 Urban living space 51 Town

6 Industrial and mining 
production space 53 Land for industrial, mining, and 

transportation construction

Table 1. Spatial classification system of land in the Han River Basin.
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dynamic visualization technologies, to illustrate the 
characteristics and patterns of the earth system and its 
elements across space and time. The primary purpose of 
geological information mapping is to visualize changes 
in the quantity and type of land space, facilitating the 
depiction of transformations from one land space type 
to another.

In this study, land cover data from two different years 
are overlaid using GIS software according to Equation 1. 
The resulting data are then reclassified to depict both the 
upward and downward transitions of land space types. 
The formula is as follows:

	 	 (1)

In Equation (1), X represents the national spatial 
map obtained through raster calculations, Q represents 
the national spatial map from two distinct years 
with the earlier year noted first, and H represents the 
national spatial map with the later year. For example, 
X=13 signifies the transformation of green ecological 
space into rural production space. After extraction and 
reclassification, this indicates a downward trend in the 
green ecological space and an upward trend in the rural 
production space.

Center of Gravity Offset Modeling

The center of gravity shift model calculates the 
coordinates of the mean center for each type of land 
space annually and then uses these coordinates to 
track the trajectories of shifts in different land spaces 
[28]. This model enables the calculation of the spatial 
distribution of each land space type, facilitating analysis 
of land space transfers across various regions.

The model visualizes the trajectory of land space 
changes, showcasing the migration of land space 
centers of gravity over different periods. The calculation 
formulas are as follows:

	 	 (2)

	 	 (3)

In Equations (2) and (3), P and Q represent the 
coordinates of the centers of gravity for different 
territorial spaces; Tb and c denote the total area (km2) 
and the number of areas of the bth region; and​ Lb and Fb 
represent the coordinates of the center of gravity of the 
bth region.

Spatial Autocorrelation Analysis

Spatial autocorrelation analysis examines whether 
there is a connection between changes in the same 
type of land space across different regions or between 
changes in one type of land space and changes in 
another. This analysis is divided into univariate and 

bivariate spatial autocorrelation [29-31]. Univariate 
spatial autocorrelation is formulated into the following 
functions:

	 	 (4)

	 	 (5)

In Equations (4) and (5): C represents the univariate 
spatial autocorrelation index; Oi and Ot are the land 
changes in the vth and tth plots, respectively; b is the 
number of regions; Fit is the spatial weight matrix; O 
is the spatial mean of the amount of change; S(I) is the 
standardized statistic threshold; E(I) is the expected 
value of the autocorrelation of the observed variables; 
and var(I) is the variance. The values of C range between 
[-1, 1], with C >0 indicating a positive relationship in the 
amount of land change.

The formula for bivariate spatial autocorrelation is as 
follows:

	 	 (6)

In Equation (6): Li
AB denotes the bivariate local 

spatial autocorrelation coefficient for geographic patch 
i; Xi

A indicates the amount of change in land category 
A for geographic patch i; Xi

B is the amount of change 
in land category B for geographic patch i;  and  
represent the mean values of changes in land categories 
A and B, respectively; σA and σB are the variances in the 
amount of change for land types A and B, respectively. 
HH and LL indicate the same type of changes in 
different territorial spaces, signifying a simultaneous 
increase or decrease. Conversely, HL and LH suggest 
different types of changes in different territorial spaces, 
indicating a reciprocal relationship where one increases 
while the other decreases.

Geoprobes

Geoprobes are a suite of statistical methods designed 
to detect spatial variation and identify the driving 
forces behind it. The premise is that when a variable 
significantly influences a dependent variable, their 
spatial distributions should be similar [32]. Geodetectors 
treat the factor under study as the independent variable 
and the factor to be detected as the dependent variable. 
As the units of each data set are different, the rate 
of change of each data set is used as the indicator. 
Through discretization, these are classified into five 
categories according to natural classification. Spatial 
autocorrelation helps identify the factors that most 
significantly affect the process of spatial change in the 
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country, allowing for targeted policy adjustments to 
mitigate unfavorable impacts and favorable ones.

The formula is as follows:

	 	 (7)

In Equation (7): Q is the driving detection indicator 
in the process of land evolution; L is the total number of 
samples in the study area; nt is the total sample size; t is 
the number of variables; δ2is the total variance within the 
study area; δt

2  is the discrete variance. The value interval 
of Q is [0, 1], where Q=0 indicates that the elemental 
factor is randomly distributed; the larger the value 
of Q, the greater the influence of the testing factor in 
driving the spatial evolution of the land. Based on these 
theories and typical cases, and in conjunction with the 
actual situation of the Hanjiang area, evaluation indexes 
are established from five aspects: natural environment 
foundation, transportation location conditions, social 
living conditions, economic development level, and 
policy and institutional environment (Table 2).

Results and Analysis

Characterization of the Overall Spatial 
Evolution of the National Territory

The land cover data of the study area were 
categorized according to land space classification 
(Table 3). From 2000 to 2020, the findings include:

The ecological space consistently covered more than 
106,307 km2, accounting for over 80% of the total area, 
marking it as the predominant land type.

Agricultural space remained stable at approximately 
22,067 km2, representing more than 17% of the land.

Urban space increased significantly, rising from 788 
km2 in 2000 to 2,585 km2 in 2020, yet it still accounted 
for the smallest proportion, about 1%.

Over the 20 years, the spatial changes for these three 
types of land were as follows:

Ecological space decreased by 982 km2 
(approximately -1%),

Agricultural space decreased by 761 km2 (about 
-3%),

Urban space expanded by 1,797 km2 (an increase of 
228%).

The most substantial change occurred in urban areas, 
particularly between 2000 and 2005, indicating rapid 
urban expansion during this period. Policy adjustments, 
particularly increased ecological awareness and the 
implementation of arable land protection strategies, have 
slowed the encroachment of urban areas into agricultural 
and ecological spaces.

From the data on the changes in different types of 
land use (Table 3), both ecological and agricultural 
spaces have shown a consistent decreasing trend over 
the years, whereas urban space has been increasing 
annually. However, the decrease in ecological and 
agricultural spaces is less noticeable since they 
constitute a large portion of the total area. In contrast, 
the growth of urban space is quite pronounced due to its 
initially small percentage. For instance, in 2000, urban 
space was only 788 km², but by 2005, it had increased by 
683 km², marking an 87% growth rate, while ecological 

Driving Force Variant Description of 
Indicators Data Sources

Natural 
environmental base

A. Rate of change in average annual 
precipitation

Precipitation condition 
factor

National Earth System Science 
Data Center

B. Average annual rate of change in temperature Climatic conditions http://www.Geodata.Cn/

Transportation
C. Rate of change in road passenger traffic Level of transportation 

development

2000, 2005, 2010, 2015, 2020, 
Meizhou Statistical Yearbook, 

Shantou 
Statistical Yearbook, 

Chaozhou Statistical Yearbook, 
Heyuan Statistical Yearbook, 

Zhangzhou 
Statistical Yearbook, Longyan 
Statistical Yearbook, Ganzhou 
Statistical Yearbook, Sanming 

Statistical Yearbook

D. Rate of change in road freight volume 

Social life situation
E. Rate of change in population density Population density

F. Rate of change in total retail sales of 
consumer goods 

Consumption level of 
the population

Level of economic 
development

G. Rate of change in per capita GDP Level of economic 
development

H. Rate of change in tertiary sector value added 
as a share of GDP 

Level of development 
of services

I. Rate of change in science and technology 
expenditures 

Level of scientific and 
technological progress

Policy and 
institutional 
environment

J. Rate of change in investment in fixed assets Investment level

K. Rate of change in local finance general 
budget expenditures 

Level of fiscal 
expenditure

Table 2. Indicators of the drivers of the spatial evolution of the homeland.
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space decreased by 590 km², which is less than 1%. 
Further analysis indicates a rapid increase in urban 
living space and industrial and mining production space. 
Meanwhile, rural agricultural production has been 
declining annually, and rural living space has generally 
been increasing. Ecological space trends are similar 
to those of agricultural space, with the green cover 
ecological space diminishing each year, while water 
ecological space first increased and then decreased.

Overall, the national land use in the study area 
exhibits an irreversible trend toward increasing urban 
space, thereby reducing ecological and agricultural 
spaces. This trend aligns with the rapid economic 
development and urbanization that demand substantial 
urban land [33].

Analysis of the Process of Spatial 
Evolution of the National Territory

Characterization of Size

Using the chordal graph visualization model, the 
scale characteristics of land space changes in the study 
area at different stages were analyzed. From 2000 
to 2005 and from 2005 to 2010, the changes were 
predominantly marked by the encroachment of industrial 
and mining production space on green ecological areas 
and the transformation of rural production space into 
other uses. From 2010 to 2015, this encroachment and 
transformation slowed down, with a marked increase 
in the conversion of rural production space and green 
ecological areas. From 2015 to 2020, the space dedicated 
to agricultural production significantly increased, while 
the transformation of rural production space and green 

ecological areas markedly decreased. Over the past 20 
years, the changes in land space in the study area have 
primarily involved the conversion of agricultural and 
ecological spaces into each other and into urban space 
(Fig. 2).

Spatial Mapping Characterization

(Ⅰ) Basic change mapping
The spatial mapping analysis revealed that a total of 

60 mapping units underwent changes from 2000 to 2005 
(Fig. 3a), with the transition from "green cover ecological 
space to rural production space" (code 13) being the most 
prevalent. The shift from "green cover ecological space 
to industrial production space" (code 16) was notably 
concentrated in Zhangzhou City and Longyan City. 
The most prominent changes from 2005 to 2010 (Fig. 
3b) involved the same categories (code 13 and code 31), 
which represent internal transitions between green cover 
ecological space and rural production space, showing 
a broader distribution. The mapping unit changes from 
2010 to 2015 were similar to those from the previous 
period (Fig. 3c). The period from 2015 to 2020 (Fig. 
3d) also displayed internal transitions between green 
cover ecological space and rural production space, but 
these transitions increased significantly in frequency 
and were more spatially dispersed. Overall, throughout 
the 20-year study period, the three types of land space 
in the study area experienced significant changes, with 
60 units altering and the most frequent transformations 
occurring between green cover ecological space and 
rural production space.

(Ⅱ) Mapping of upward and downward trend changes

Type of Territorial Space
Area/km² Change in area/ km²

2000 2005 2010 2015 2020 2000-
2005

2005-
2010

2010-
2015

2015-
2020

Ecological 
space

Watershed 
ecological space 105239 104568 104372 104196 104012 -671 -196 -176 -184

Watershed 
ecological space 1839 1920 2115 2111 2084 81 195 -4 -27

Subtotal 107078 106488 106487 106307 106096 -590 -1 -180 -211

Agricultural 
space

Rural production 
space 21585 21374 21092 20965 20763 -211 -282 -127 -202

Rural Living 
Space 1243 1257 1231 1247 1304 14 -26 16 57

Subtotal 22828 22631 22323 22212 22067 -197 -308 -111 -145

Urban space

Urban Living 
Space 477 800 863 901 967 323 63 38 66

Industrial and 
mining living 311 671 1021 1311 1618 360 350 290 307

Subtotal 788 1471 1884 2212 2585 683 413 328 373

National land space 105239 104568 104372 104196 104012 -671 -196 -176 -184

Table 3. Statistical table of spatial changes in the Hanjiang River Basin from 2000 to 2020.
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From the analysis of the fall potential mapping (Fig. 
4), the change in fall potential from 2000 to 2020 was 
relatively stable, but the distribution of these changes 
was complex and widespread. During 2000-2005, the 
area of fall potential change accounted for less than 
1% of the total area, predominantly involving green 
cover ecological space and rural production space, 
concentrated in Longyan City. The fall potential change 
from 2005-2010 was similar overall to the previous 
period, with the area of change being less than 1%, 
primarily due to the reduction in industrial and mining 
production space in Chaozhou and Shantou. The trend 
from 2010-2015 followed a similar pattern, with fall 
potential changes mainly transitioning from rural 
production to other types of land use, concentrated in 
Ganzhou City. From 2015-2020, there was a significant 
increase in fall potential changes, mainly attributed 

to the heightened dynamics in urban living spaces in 
Heyuan and Shantou.

According to the rising trend mapping (Fig. 5), the 
entire study period predominantly featured internal 
conversions between green ecological space and rural 
production space. The most pronounced rising trend 
was in urban living spaces. From 2000-2005, the area 
of change was stable at 1%, with the most notable 
rise observed in urban living space, concentrated in 
Zhangzhou City and Longyan City, largely transitioning 
from green ecological space. From 2005 to 2010, there 
were no significant changes in the spatial status of the 
land, with urban living space continuing to show a 
prominent increase, now shifting from the central part 
of Zhangzhou City to the coastal areas. From 2010-
2015, the general trend remained consistent, with 
urban living space still prominent, although the rate 
of increase slowed and the spatial distribution became 

a) 2000-2005

c) 2010-2015

b) 2005-2010

d) 2015-2020

Fig. 2. Visualization of the chord diagram of spatial changes in the land.
Note: IMPS, ULS, RLS, APS, WES, and GQES represent industrial and mining production space, urban living space, rural living space, 
agricultural production space, water ecological space, and green ecological space, respectively.
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more dispersed. From 2015-2020, the rising trend in 
the change area increased significantly, accounting for 
3%, with the most distinct increases in rural production 
space and green cover ecological space. The rise in 
urban living space also saw a considerable increase. 
Generally, before 2010, the most noticeable increase 
was in urban living space, aligning with China's rapid 
economic development and accelerated urbanization 
during that period. After 2010, the most significant 
and extensive increases were in rural production space 
and green ecological space, closely related to China's 
policy adjustments focused on ecological environment 
protection and arable land conservation [34].

Analysis of Spatial and Temporal Patterns 
of Territorial Spatial Evolution

Trajectory Analysis of Territorial Spatial Evolution

Using the center of gravity shift model, we calculated 
and visualized the center of gravity for the three types 
of land space in the study area across different years 
(Figs. 6-8). The center of gravity for ecological space 
is located in Wuping County, Longyan City. It shifted 
from the northwest to the southeast during 2000-2015 
and then reversed direction from 2015-2020, ultimately 
surpassing its initial position in 2000. The center of 
gravity for agricultural space, situated in Wuping 
County and Changting County in Longyan City, 
displays an overall northeast-southwest from southwest 
to northeast from 2000 to 2010 and then meandered 
from northeast to southwest from 2010 to 2020, nearing 

Fig. 3. Mapping of spatial changes in the national territory, 2000-2020.
Note: The map unit represents the transformation of territorial space type, with the code consisting of two secondary classification codes 
of the transformation. For example, "ecological space of water area → industrial and mining production space" (Code 26).
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its original position in 2000. The center of gravity for 
urban space, located in Wuping County in Longyan City 
and Tai Po County in Meizhou, shifted from southwest 
to northeast from 2000-2005 and then from southeast to 
northwest from 2005-2020.

The main reason for the varying centers of gravity 
among the three spatial types in different periods is 
the disparate levels of economic development and 
urbanization among the cities in the study area. Each 
city and county is at a different stage of development 
during the same period, which causes deviations in the 
centers of gravity [35].

Territorial Spatial Autocorrelation Analysis

(Ⅰ) Univariate
In the univariate spatial autocorrelation analysis 

(Figs. 9-12), apart from the Moran's I index for urban 
space in 2010-2015 and 2015-2020, and for agricultural 
space in 2005-2010 which were less than 0 indicating 
a negative correlation, the rest of the Moran's I indices 
for homeland space were greater than 0, showcasing 

a positive phase of spatial agglomeration. The 
characteristics of this agglomeration have transitioned 
from the coastal and central regions to the southern 
region. Regarding ecological space, the total area 
change between 2000 and 2020 ranged from -1 km² to 
590 km². The number of High-High (HH) agglomeration 
administrative units declined from 12 in 2000 to 
none in 2015, then increased to 3 in 2020, with the 
agglomerations located in the southern part of the study 
area. The number of High-Low (HL) agglomeration 
administrative units remained constant at 2 from 2000 to 
2010, then decreased to 1 in 2020, located in the central 
region. Low-Low (LL) agglomeration units decreased 
from 6 in 2000 to 3 in 2020, also in the central region. 
Low-High (LH) agglomeration units increased from 
none in 2000 to 4 in 2010, decreasing again to 1 by 2020 
in the southern region.

In agricultural space, the total area change from 
2000 to 2020 ranged from -111 km² to -308 km². The 
number of HH agglomeration units decreased from 
5 in 2000 to 3 in 2020, with the agglomeration area 
shifting from the central to the southern region. LL 

Fig. 4. Spatial mapping of landfall, 2000-2020.
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units exhibited a pattern of decrease, followed by an 
increase, and finally stabilized at 5, with a shift from 
north to south. The number of LH units decreased, then 
increased, and finally decreased again, stabilizing at 1, 
located in the central region. HL units saw an increase 
and then a decrease, finally stabilizing at 1, located in 
the southern region.

From the perspective of town space, the total 
area change between 2000 and 2020 ranged from 328 
km² to 683 km². The number of HH agglomeration 
administrative units declined to zero, with spatial 
distribution centralized in the town's central area. 
LL units increased, then decreased, also to zero, with 
distribution in the southern part of the city. LH units 
decreased and then increased, finally rising to 2, located 
in the north. HL units decreased and then increased, 
stabilizing at 1, also in the northern part of the town.

(II) Bivariate
From the bivariate spatial correlation analysis (Table 

4), most of the correlation coefficients are less than 0, 
indicating significant relationships between spatial 
changes across different territories, with the strongest 

correlations observed in the southern region. The 
correlation between changes in ecological space and 
agricultural space shifted from positive to negative, with 
the absolute value initially increasing, then decreasing, 
and ultimately increasing again. In the bivariate spatial 
autocorrelation analysis (Figs. 13–16), from 2000 to 
2005, the relationship between these spaces fluctuated, 
with LL agglomeration predominantly located in 
Longhai District, Xiangcheng District, Zhangpu County, 
and Changtai District in the coastal area. From 2005 
to 2010, the relationship continued to fluctuate, with 
LH agglomeration primarily in Meixian District and 
Yongding District. From 2015 to 2020, the relationship 
oscillated with HL agglomeration being dominant, 
situated in Meixian District, Meijiang District, Fenshun 
County, and Taipo County.

The correlation between changes in ecological 
space and urban space was negatively correlated, with 
the absolute value first decreasing, then increasing, 
and finally decreasing again. From 2000 to 2005, the 
relationship between these spaces fluctuated, with LH 
agglomeration primarily located in Changtai District, 

Fig. 5. Mapping the spatial rise of the land, 2000-2020.
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Fig. 7. Path of spatial center of gravity shift in agriculture, 2000-2020.

Fig. 6. Path of spatial center of gravity shift in ecological, 2000-2020.
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Zhangpu County, Xiangcheng District, and Nanjing 
County. From 2005 to 2010, the relationship continued 
to fluctuate, with LL agglomeration primarily found 
in Meizhou City and Shantou City. From 2010 to 2015, 
the relationship oscillated, with HL agglomeration 
being dominant, situated in Meizhou City and Shantou 
City. From 2015 to 2020, the relationship continued to 
fluctuate, with more dispersed agglomeration areas.

The correlation between changes in agricultural 
space and urban space was negatively correlated, with 
the absolute value first decreasing and then increasing. 

From 2000 to 2005, the relationship between these 
spaces fluctuated, with LH agglomeration primarily 
located in Zhangzhou City and Longyan City. From 2005 
to 2010, the relationship continued to fluctuate, with HL 
agglomeration predominantly found in Meizhou City, 
Shantou City, and Chaozhou City. From 2010 to 2015, 
the relationship oscillated, with agglomeration areas 
becoming more dispersed. From 2015 to 2020, the 
pattern continued with dispersed agglomeration areas 
[36].

Fig. 9. Univariate spatial autocorrelation in territorial space, 2000-2005.

Fig. 8. Path of spatial center of gravity shift in urban, 2000-2020.
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Analysis of Drivers of Territorial Spatial Evolution

Driver Analysis

The characteristics of territorial spatial changes are 
influenced by a variety of factors, including nature, 
economy, society, transportation, and policies. The 

driving forces and intensities of various types of 
territorial spatial changes also differ. Utilizing social 
and humanistic data from past years and applying the 
geodetector model, the drivers of three types of spatial 
changes within the national territory of the study area 
were analyzed (Tables 5-7).

Fig. 10. Univariate spatial autocorrelation in homeland space, 2005-2010.

Fig. 11. Univariate spatial autocorrelation in homeland space, 2010-2015.

Fig. 12. Univariate spatial autocorrelation in territorial space, 2015-2020.
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In terms of ecological space, from 2000 to 2005, the 
top three drivers leading to ecological spatial changes 
were the rate of change in average annual temperature 
(0.964), total retail sales of consumer goods (0.962), and 
GDP per capita (0.932). An increase in total retail sales 
indicates a rise in consumption levels, which contributes 
to an increase in per capita GDP and promotes the rapid 
expansion of urban land. Changes in temperature lead 
to ecological instability, affecting the overall scale of 
ecological space. During the 2005-2010 period, the 
rate of change in fixed asset investment rose sharply 

(0.999), the rate of change in average annual rainfall 
remained high (0.999), and the rate of change in per 
capita GDP was also at the top (0.999). Increases in 
fixed asset investment and per capita GDP reflect 
rapid economic development and urban expansion, 
leading to an increase in urban territorial space. From 
2010 to 2015, the rate of change in annual average 
temperature ranked first (0.961), followed by the rates 
of change in road freight volume and road passenger 
volume. The increase in total freight and passenger 
volume indicates rapid development in transportation, 

Fig. 13.  Bivariate spatial autocorrelation in territorial space, 2000-2005.

Fig. 14. Bivariate spatial autocorrelation in homeland space, 2005-2010.

Time Ecological space and agricultural 
space Ecological space and urban space Agricultural space and urban space

2000-2005 0.199* -0.754*** -0.794***

2005-2010 -0.831*** -0.393*** -0.185

2010-2015 -0.195 -0.706*** -0.557***

2015-2020 -0.299** -0.597*** -0.587***

Note: *** indicates the explanatory variable at p < 0.01, ** indicates the explanatory variable at p < 0.05, and * indicates the explanatory 
variable is statistically significant at p < 0.1.

Table 4. Correlation coefficient of spatial variation in land.
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necessitating the construction of urban roads to support 
industrial development in the Pearl River Delta. The 
drivers of ecological and spatial changes from 2015 
to 2020 included the rate of change in annual average 
temperature (0.999) and total fixed asset investment 
(0.999), with the change in the proportion of tertiary 
industry value added to GDP ranking third (0.997). 
The increase in fixed asset investment and tertiary 
industry value added, along with the implementation 
of the PRD industry, promotes the development of the 
tertiary sector. The arrival of industries in the Pearl 
River Delta not only brings economic vitality but also 
necessitates significant urban industrial land, leading to 
urban expansion that encroaches on a large amount of 
ecological space. The level of economic development 
is the dominant factor leading to changes in ecological 
space [37].

In terms of agricultural space, the top three driving 
factors leading to the spatial divergence in the rate of 
change of agricultural space from 2000 to 2005 were 
the rate of change in the proportion of value added of 
the tertiary industry in GDP (0.837), local government 
expenditure in the general budget (0.817), and the rate 
of change in average annual temperature (0.812). Both 

the proportion of the tertiary industry and financial 
expenditures showed positive increases, clearly 
indicating that the focus of the policy environment 
did not prioritize agricultural space. From 2005 to 
2010, the top three drivers were the rate of change in 
average annual rainfall (0.983), investment in fixed 
assets (0.901), and per capita GDP (0.883). The rate of 
change in average annual rainfall, having risen from 
the bottom to the top, led to deteriorating farming 
conditions in some areas, which was associated with a 
decrease in agricultural space. Moreover, the increased 
investment in fixed assets not only accelerated urban 
development but also drew rural populations to cities, 
further reducing agricultural space. From 2010 to 
2015, the leading factors were the rate of change in 
annual temperature (0.903), the total amount of freight 
transported by road (0.863), and the ratio of the tertiary 
industry (0.851). The rate of change in temperature and 
the decrease in rainfall, along with climate change, had 
significant impacts on the agro-ecological space. From 
2015 to 2020, the top factors were the rate of change in 
the share of the tertiary industry (0.911), average annual 
rainfall (0.908), and investment in fixed assets (0.908). 
These changes were not significantly different from the 

Fig. 16. Bivariate spatial autocorrelation in territorial space, 2015-2020.

Fig. 15. Bivariate spatial autocorrelation in territorial space, 2010-2015.
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previous period. The arrival of industries in the Pearl 
River Delta squeezed agricultural land space. However, 
the decrease in rainfall, climate changes, and the impact 
of agricultural protection policies slowed the reduction 
of agricultural land space [38].

In terms of urban space, the top three drivers of 
the spatial evolution of cities and towns from 2000 to 
2005 were the rate of change in science and technology 

expenditures (0.990), the total amount of consumer 
goods (0.974), and the proportion of the tertiary 
industry (0.951). Increases in science and technology 
expenditures, total consumer goods, and the proportion 
of the tertiary industry positively impacted the spatial 
evolution of cities and towns. From 2005 to 2010, the 
leading factors in urban spatial evolution were the 
rate of change in average annual temperature (0.912), 

Driving 
factor

2000-2005 2005-2010 2010-2015 2015-2018

q statistic p value q statistic p value q statistic p value q statistic p value

A 0.407 0.818 0.999 0.000 0.476 0.776 0.999 0.000

B 0.964 0.065 0.462 0.746 0.961 0.053 0.419 0.809

C 0.429 0.795 0.275 0.914 0.838 0.282 0.466 0.771

D 0.932 0.148 0.911 0.199 0.857 0.261 0.467 0.772

E 0.348 0.860 0.359 0.856 0.092 0.991 0.420 0.810

F 0.962 0.071 0.463 0.746 0.780 0.356 0.363 0.852

G 0.932 0.149 0.999 0.000 0.293 0.945 0.468 0.771

H 0.720 0.472 0.384 0.838 0.820 0.393 0.997 0.000

I 0.717 0.471 0.331 0.874 0.350 0.948 0.421 0.807

J 0.331 0.872 0.999 0.000 0.717 0.503 0.999 0.000

K 0.884 0.283 0.912 0.196 0.666 0.723 0.217 0.933

Note: A-K denotes the rate of change of eleven driving factors: average annual precipitation, average annual temperature, road 
passenger traffic, road freight traffic, population density, retail sales of consumer goods, per capita GDP, value added of the tertiary 
industry as a share of GDP, science and technology expenditures, fixed-asset investment, and general budgetary expenditures of the 
local Treasury, respectively.

Driving 
factor

2000-2005 2005-2010 2010-2015 2015-2018

q statistic p value q statistic p value q statistic p value q statistic p value

A 0.161 0.968 0.983 0.023 0.406 0.894 0.908 0.193

B 0.812 0.417 0.841 0.217 0.903 0.185 0.485 0.793

C 0.306 0.935 0.233 0.952 0.753 0.488 0.492 0.752

D 0.407 0.879 0.731 0.589 0.863 0.305 0.559 0.732

E 0.369 0.843 0.448 0.779 0.389 0.833 0.499 0.781

F 0.558 0.804 0.410 0.783 0.371 0.913 0.430 0.836

G 0.450 0.852 0.883 0.292 0.820 0.343 0.251 0.934

H 0.837 0.290 0.590 0.639 0.851 0.263 0.911 0.184

I 0.589 0.641 0.276 0.915 0.315 0.929 0.431 0.824

J 0.595 0.661 0.901 0.241 0.659 0.594 0.908 0.195

K 0.817 0.372 0.716 0.618 0.585 0.677 0.332 0.871

Note: A-K denotes the rate of change of eleven driving factors: average annual precipitation, average annual temperature, road 
passenger traffic, road freight traffic, population density, retail sales of consumer goods, per capita GDP, value added of the tertiary 
industry as a share of GDP, science and technology expenditures, fixed-asset investment, and general budgetary expenditures of the 
local Treasury, respectively.

Table 5. Detection of driving factors of ecological spatial rate of change.

Table 6. Detection of driving factors for the rate of change in agriculture.
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total retail sales of consumer goods (0.894), and total 
volume of road freight (0.771). The growth in total retail 
sales and road freight volume reflects rapid economic 
development and a rise in population consumption levels. 
These increases not only fostered economic growth but 
also promoted the expansion of urban space. For the 
period from 2010 to 2015, the most significant changes 
were seen in average annual rainfall (0.936), total 
retail sales of consumer goods (0.960), and science and 
technology expenditures (0.859). These factors indicated 
that rapid economic development and increased social 
consumption continued to drive the spatial expansion of 
cities and towns. From 2015 to 2020, the primary drivers 
were the rate of change in road freight transportation 
(0.953), population density (0.854), and science and 
technology expenditures (0.848). A notable shift 
occurred with the rate of change in population density 
moving to second place, where a decrease in population 
density had a counteracting effect on urban space. 
Meanwhile, increases in road freight transportation 
and science and technology expenditures continued to 
drive urban expansion. The influx of industries into the 
Pearl River Delta accelerated economic development, 
boosted social consumption, and attracted science and 
technology investments, all contributing to urban space 
expansion. However, due to the rapid urban expansion 
in previous years, the focus of urbanization shifted from 
incremental expansion to the revitalization of existing 
urban areas [39].

Analysis of Driving Mechanisms

Based on the variations in influencing factors of land 
space change across different periods within the study 
area, the top three driving factors were selected for 
each period, and a systematic analysis was conducted to 
elucidate the driving mechanisms of land space change 
in the Hanjiang River Basin after the implementation of 
industrial transfers from the Pearl River Delta (Fig. 17).

(1) Before the industrial transfer from the Pearl River 
Delta, the economy of the Hanjiang River Basin lacked 
foundational industries, which necessitated reliance on 
large-scale land development and intense utilization. 
This led to the formation of a territorial spatial pattern 
predominantly characterized by tourism and agriculture. 
On one hand, much of the Hanjiang River Basin consists 
of hilly terrain, unsuitable for agricultural cultivation. 
This, coupled with abundant rainfall, frequently resulted 
in flooding. Consequently, there was a modest increase 
in water ecological space and a reduction in the area 
available for agricultural production, compressing the 
agricultural land space. On the other hand, the absence 
of sufficient industrial employment opportunities 
triggered a significant migration of the rural population 
to urban areas. Cities began to expand their urban spaces 
to accommodate this labor influx, further compressing 
ecological national space [40].

(2) Post-transfer, the Hanjiang River Basin 
benefited from its natural geographical proximity 
to the PRD region and its administrative alignment 
within Guangdong Province, similar to the PRD. This 
facilitated the reception of some industries from the 
PRD, which significantly altered the spatial pattern 

Driving 
factor

2000-2005 2005-2010 2010-2015 2015-2018

q statistic p value q statistic p value q statistic p value q statistic p value

A 0.190 0.949 0.653 0.572 0.980 0.032 0.375 0.817

B 0.861 0.293 0.912 0.210 0.549 0.699 0.795 0.507

C 0.549 0.792 0.293 0.934 0.643 0.711 0.329 0.871

D 0.871 0.268 0.771 0.525 0.846 0.405 0.953 0.093

E 0.592 0.635 0.332 0.913 0.376 0.892 0.854 0.362

F 0.974 0.045 0.894 0.243 0.960 0.078 0.836 0.409

G 0.447 0.878 0.513 0.731 0.179 0.959 0.652 0.627

H 0.951 0.061 0.761 0.453 0.297 0.931 0.736 0.444

I 0.990 0.006 0.199 0.952 0.859 0.375 0.848 0.382

J 0.359 0.862 0.668 0.550 0.842 0.254 0.273 0.927

K 0.546 0.801 0.405 0.792 0.819 0.297 0.716 0.473

Note: A-K denotes the rate of change of eleven driving factors: average annual precipitation, average annual temperature, road 
passenger traffic, road freight traffic, population density, retail sales of consumer goods, per capita GDP, value added of the tertiary 
industry as a share of GDP, science and technology expenditures, fixed-asset investment, and general budgetary expenditures of the 
local Treasury, respectively.

Table 7. Detection of driving factors for the rate of change in urban space.
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of the national territory. On one hand, a decrease in 
rainfall and increased water supply pressure led to a 
slight reduction in water territorial space. On the other 
hand, the region's adoption of certain industries from the 
Pearl River Delta, many of which are heavily polluting, 
necessitated a trade-off between ecological space and 
economic development. Investments in fixed assets from 
earlier periods laid the groundwork for this industrial 
takeover, causing a shift in township construction from 
incremental expansion to revitalization of existing 
stocks. This transition slowed the growth of towns and 
cities. Moreover, the reduction in rainfall and flooding 
further decelerated the decrease in agricultural land 
space. With the acquisition of industries from the 
Pearl River Delta, the Hanjiang River Basin gradually 
enhanced its industrial structure through significant 
capital investments and increased capacity for 
innovation.

Conclusion and Outlook

This study analyzes the evolution of land space in 
economically developed watersheds based on the logical 
framework of "evolution process - evolution pattern 
- driving force." This analysis aims to provide useful 
references for the rational and orderly development and 
protection patterns of land use, leading to the following 
key conclusions:

(1) Temporal changes from 2000 to 2020: The land 
space in the study area primarily comprised ecological 
spaces, with variations in the evolution of land space 
types across different periods. Urban living spaces 
and industrial and mining production spaces exhibited 
increasing trends. Rural living space initially increased 
and then decreased, while rural production space 
consistently decreased. Water ecological space and 
green cover ecological space both followed a pattern 
of initial increase followed by a decrease. Overall, 
agricultural and ecological spaces have been gradually 

Fig. 17. Mechanisms of driving forces for territorial spatial evolution.
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diminishing, whereas urban space has been expanding 
and evolving. Ecological and agricultural spaces 
frequently transformed into each other, with agricultural 
space also showing interchangeability. The expansion of 
urban space predominantly encroached upon ecological 
and agricultural spaces.

(2) Spatial pattern evolution: The evolution of the 
land space pattern in the study area demonstrated 
regular changes. The center of gravity of urban 
space shifted from southwest to northeast, then from 
southeast to northwest [41]. Ecological space's center 
of gravity initially moved from northwest to southeast, 
then meandered in the opposite direction, surpassing 
its 2000 starting point. Agricultural space's center of 
gravity shifted from southwest to northeast and then 
converged back to the starting point from northeast to 
southwest. Town space exhibited univariate high and 
high agglomeration characteristics centrally, while low 
and low agglomeration shifted southward. Agricultural 
space showed a central high and high agglomeration. 
The spatial distribution of ecological space was more 
dispersed. The bivariate administrative unit of high and 
low agglomeration of agricultural space in town space 
shifted from north to south, and the spatial distributions 
of ecological space in town space and agricultural space 
were more decentralized.

(3) Driving factors: Average annual precipitation 
and fixed asset investment were the primary factors 
influencing the evolution of ecological space. The 
significant impact on agricultural space was determined 
by the proportion of tertiary industry value-added in 
GDP and average annual precipitation [33]. Total retail 
sales of consumer goods were the predominant drivers 
of urban space evolution.

This study extends and enhances the empirical 
research on land use/cover change, revealing the 
development processes, spatial patterns, and driving 
factors of the spatial and temporal evolution of the 
land space in the Han River Basin. It provides valuable 
insights for optimizing land space patterns. Compared 
to inland areas, the Han River Basin is economically 
advanced but exhibits more pronounced land space 
changes and a more fragile ecosystem. The frequent 
conversions of land space can destabilize regional 
development, which is detrimental to long-term 
sustainable growth. Therefore, conducting a "dual 
evaluation" of the river basin, drafting specialized 
plans for land space management, and clarifying the 
carrying capacity and suitability levels for regional 
development are crucial research focuses and directions 
for establishing a rational and orderly pattern of land 
space protection and development.
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