
Pol. J. Environ. Stud. Vol. XX, No. X (XXXX), 1–14
DOI:10.15244/pjoes/192978 ONLINE PUBLICATION DATE:

Original Research

Copula-Based Spatial Model and Identification 
of Extremal Regions of Soil Heavy Metal 

Concentrations in a Mine Consolidation Area

Xiaohui Chen1, Qiong Wang1*, Qinfei Yu2, Kai Li3

1BGRIMM Technology Group, Beijing 100160, China 
2Chinese Academy of Natural Resources Economics, Beijing 101149, China

3State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese 
Academy of Sciences, Beijing 100085, China 

Received: 26 April 2024
Accepted: 4 September 2024

Abstract

The specification of environmental extrema is a persisting problem, especially in soil with spatial 
heterogeneity owing to anthropogenic activities. Using a geographic detector, a Bayesian spatial model, 
and a copula-based spatial model, methods of identification of extremal regions in a mine area were 
compared. The results are as follows. (1) All of the heavy metals in anthropogenic soil, including As, Cd, 
Cr, Hg, and Ni, had a weak random spatial heterogeneity, but Cd and As exhibited strong stratification 
spatial heterogeneity (q = 0.21** and 0.11*, respectively). (2) The Cr, Hg, and Ni predictions are very 
similar for both models (the improvements in the mean absolute percentage error (MAPE) and R2 are 
5.88% at most and 3.29%, respectively). The copula-based spatial model outperformed the Gaussian 
spatial model in the predictions of Cd (MAPE: 12.12%; R2: 16.67%) and As (MAPE: 4.16%; R2: 7.89%). 
(3) Based on the comparison with the Gaussian spatial model using a Bayesian process, the identification 
of the extremal regions using the copula-based spatial model had a higher accuracy for the extreme 
samples. In general, the prediction obtained using the copula-based model revealed the probability 
of exceeding a certain threshold at a location. Moreover, it uses the copulas fitting of the samples’ spatial 
heterogeneity obtained through maximum likelihood estimation, rather than variogram fitting, resulting 
in the random spatial heterogeneity summing to a nugget, which preserves more information about 
the samples. Thus, we conclude that the copula-based spatial model can be used to predict the heavy 
metal concentrations in soil with weak random spatial heterogeneity but strong stratification spatial 
heterogeneity.
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Introduction

Obtaining the geostatistics of soil samples can help 
government departments and agencies to accomplish soil 
surveys, but is always affected by the spatial heterogeneity 
caused by anthropogenic influences such as mining, soil 
covering, soil improvement, etc. [1–4]. Previous studies 
on anthropogenic soil related to mining have often focused 
on issues of environmental significance [5, 6]. China has 
recognized the importance of protecting the soil environment 
and has implemented the Action Plan for Prevention 
and Control of Soil Pollution [7]. In addition, the risk 
screening and intervention values for soil contamination 
have been confirmed through soil environmental quality 
risk control standards, which also guide the monitoring 
of land consolidation areas [8].

Both the environmental factors and physicochemical 
properties of soil exhibit spatial heterogeneity 
and autocorrelation, and a semi-variable function has 
always been used as the spatial model before obtaining 
a locally linear unbiased estimation [9, 10]. However, 
the modeling data, which may be either raw data or 
Box-Cox conversion data, need to have or approximate 
a Gaussian distribution. Moreover, owing to the random 
effects or extremal distribution, the spatial heterogeneity 
and unbiased estimation obtained from semi-variance do 
not perform well enough. For instance, researchers have 
proposed multifractal analysis to manage the geochemical 
anomalies at the boundaries between different geologic zones 
[11, 12]. In addition, Wang et al. developed the sandwich 
model for stratified mapping in scenarios in which spatial 
heterogeneity relies more on the spatial stratification 
of some influencing factors [13, 14]. For semi-variance 
based on stratification heterogeneity, it is difficult to fit 
a function due to the cross-distribution of the stratifications 
and the limited number of samples. Compared with 
the Gaussian unbiased estimation, which reduces the spatial 
correlation of the extremes, the copula-based spatial model 
may be sufficient and provide more characterization 
of the spatial variations in the heavy metal concentrations 
of the soil [15–18]. Bárdossy (2006) first proposed the use 
of the copula-based spatial model as a replacement for 
variograms and covariance functions in order to describe 
the spatial heterogeneity. The structure of the copula-
based spatial model is composed of the dependent function 
and the marginal distributions; and the dependent function, 
i.e., the copula, is the basis, which is based on Sklar’s 
theory [19, 20]. Some experts have used the Copula-based 
model to study the spatial dependence of extreme rainfall 
weather in the Mediterranean Sea, and there are also studies 
that use the spatial copula model combined with Bayesian 
approximation to predict extreme temperature [16, 17]. 
In addition, the copula has many families that can serve 
as alternatives for spatial model construction [21, 22], 
which can achieve visualization through the web app 
Copulatheque [23].

Soil pollution should be investigated before and after 
land consolidation in mining areas to identify and control 
the key environmental areas [24–27], especially when 

a certain emergency threshold may have been exceeded 
[28]. Although a spatial Bayesian process unifies 
the estimation and prediction and takes into account 
the uncertainties of the model parameters, which means 
it can acquire the uncertain information in the high-risk 
areas regarding heavy metals, it generally assumes that 
the model is a Gaussian random field [29, 30]. In addition, 
it is possible to use indicator kriging (IK), which does 
not require the data to obey the normal distribution. As 
a non-parametric geostatistical method, IK is robust 
regarding outliers [9, 31, 32]. However, one threshold 
means one model with one map, which is extremely 
unintelligent. Thus, a copula-based spatial model can 
provide the probability distribution function of each 
prediction site and can identify the extremal regions, i.e., 
where the heavy metal concentrations of the soil exceed 
particular thresholds with a 50% probability [33]. It can be 
concluded that the copula-based spatial model combines 
the optimal prediction results of the Bayesian spatial model 
and the non-normality assumption of IK.

In summary, we analyzed and predicted the spatial 
heterogeneity of the As, Cd, Cr, Hg, and Ni contents and pH 
value of soil in a mine consolidation area, and we identified 
the extremal regions of Cd pollution of the soil. First, using 
variogram analysis and a geographic detector, the spatial 
heterogeneities of these environmental factors were 
determined. Second, the copula-based and Gaussian spatial 
models were compared, and the soil environmental factors 
were predicted throughout the area. Finally, the extremal 
regions were identified using the copula-based spatial model 
and the Gaussian spatial model through a Bayesian process.

Materials and Methods

Study Area

The study area is located in the southern Sichuan 
Basin (27°41′–28°20′ N, 105°34′–106°20′ E), which has 
a long history of sulfur ore mining. It shares the climatic 
characteristics of both the Sichuan Basin and the Guizhou 
Plateau and is located in the subtropical humid climate 
zone, with mean temperature, precipitation, and relative 
humidity values of 16.8–18.6°C, 1000 mm, and 83%, 
respectively. The elevation of the study area ranges 
from 501 m in the southwest to 948 m in the northeast, 
and the main soil types are yellow soil and brunisolic 
soil. Owing to long-term mining and concentration, most 
of the study area contains harmful substances, such as 
sulfur waste, and the original ecological landscape has been 
seriously damaged. Since 2013, consolidation of abandoned 
industrial and mining areas has been conducted, including 
soil replacement in mining areas (SRM), soil replacement 
in concentration areas (SRC), and natural vegetation.

Sampling and Analyses

The soil environment survey for heavy metals included 
175 observations throughout the entire 4 km2 study area. 
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The distribution of all of the samples is shown in Fig. 1. 
The soil samples were collected from the topsoil layer 
(0–20 cm), and they were combined into a composite 
sample for a 20×20 m area. The soil samples were air-
dried, sieved to 2 mm, and digested using HNO3 and H2O2 
via Method 3050B (USEPA, 1996). The Cd, Ni, and Cr 
concentrations of the digestion solution were measured via 
inductively coupled plasma optical emission spectrometry 
(ICP-OES, Optima 5300DV, PerkinElmer Instrument 
Co., Ltd., USA), and the As and Hg concentrations were 
analyzed using an atomic fluorescence spectrometer (AFS-
2202, Haiguang Instrument Co., Ltd., China). The pH 
values of the soils were determined using the potentiometric 
method. Standard reference soils GSS-1 and GSS-2 were 
obtained from the Center of National Standard Reference 
Material of China and were used for quality assurance 
and quality control.

Stratification of Spatial Heterogeneity 
Using the Geographic Detector

The geographic detector is a geostatistical method 
that can be used to explore spatial heterogeneity without 
the Gaussian distribution assumption. Its core idea is that 
if the environmental factor is dependent on one influencing 
factor, they may have similar spatial distributions [34, 35]. 

The goal of this study was to identify the environmental 
factors with significant spatial differences due to 
anthropogenic influences, which always exhibit intense 
randomness. In addition, the geographic detector provides 
the driver of environmental pollution to a certain extent. 
Here, we used the q value of the geographic detector:

	 	 (1)

where s = 1, …, L is the stratification of the influencing 
factors; Ns and N are the number of units in each stratification 
and in the entire district, respectively; and σ2

s and σ2 are 
the variances in each stratification and in the entire district, 
respectively.

Geostatistical Models

Gaussian Spatial Models and Bayesian Process

The Bayesian spatial model is a Gaussian spatial 
process, which fits the multivariate normal distribution, 
and the basic function, which is obtained from the semi-
variogram is

   	 	 (2)

Fig. 1. Map of the study area showing the land consolidation subregions and sampling sites (n = 175).
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where μ(x) = m is constant; the spatial effect ω(x) = f(σ2, φ) 
is a function of the partial sill (σ2) and the range (φ); and non-
spatial effect ε(x) = f(τ2) is a function of the nugget (τ2).

The procedures of the Bayesian spatial model 
include establishing the model and the prior distribution, 
the posterior distribution based on Markov Monte Carlo 
(MCMC) sampling, and the spatial prediction based on 
the posterior distribution [36, 37].

First, based on the Bayesian hierarchical modeling 
approach, its data model, procedural model, and parametric 
model are

  	 	  (3)

where MND is the multivariate Gaussian distribution 
function; H(φ) is the correlation matrix, which is represented 
by an exponential function, i.e., H(φ) = exp(-φ||xi – xj||), and  
||xi – xj|| is the distance between two spatial points; m, σ2, φ 
and τ2 are random variables, which are independent with 
each other; m is constant; and the three other variables have 
exponential prior distributions.

Then, the posterior distribution sampling is conducted 
using the Markov chain Monte Carlo (MCMC) method, with 
the convergence of the Geweke z value. The mathematical 
formula is

	 	 (4)

where J0(θ) is the prior joint probability distribution 
of the four parameters m, σ2, φ and τ2, and f(Z|θ)  is 
the likelihood of the maximum likelihood estimation.

Finally, the spatial prediction is realized using 
the following equation:

   	 	 (5)

In this study, the R package spBayes and the sp and geoR 
packages were used to obtain the Bayesian spatial prediction 
of the soil environmental factors [38]. The Metropolis 
algorithm was used in the MCMC, with 10000 iterations 
and Geweke z value convergence checking.

Copula-Based Geostatistical Models

The copula-based spatial model describes the spatial 
stochastic field based on Sklar’s theory [28, 39, 40]. 
The basic formula is

   	 	 (6)

where Cθ,λ is the n-dimensional copula, with a correlation 
structure related to θ and λ; and Fη is the marginal distribution 
function related to η.

The sort order of the marginal functions does not affect 
the results because the copula is symmetric, which means 
that the sort order of the observations does not affect 
the structure of the spatial model. Similar to the traditional 
method, two points far apart are known to have mutual 
independence, while there is a strong dependency between 
points close to each other. In this study, the Gaussian 
spatial copula with non-Gaussian margins was used for 
the soil environmental factors, and the maximum likelihood 
function estimation through Θ = (θ, λ, η)  was as follows:

   	 	 (7)

where cθ,λ is the probability density function of the copula; 
and D = {z1,…, zn} are the observations.

Based on the observations and parameter estimation, 
the probability density distribution at location  needs to be 
predicted as follows:

   	 	 (8)

where cθ,λ is the probability density function 
of the conditional copula. The expected value and variance 
are calculated respectively as follows:

   	 	 (9)

   	 	 (10)

It should be noted that the direct calculation 
of the multivariant copula is miscellaneous and has poor 
accuracy, so the multivariant probability density function 
was decomposed into a series of copula pairs and marginal 
functions using the vine-copula method. In this study, 
the C-Vine copula model was used [41, 42]. In this study, 
the spcopula and VineCopula R packages were mainly 
used to create the copula-based spatial model [15, 40, 43].

Validation of the Spatial Prediction Effect

In this study, first, the validation of the spatial prediction 
effect of the expected values for both the copula-based 
and Gaussian spatial models was conducted, and then, 
the comparison of the extremum characteristics was 
conducted [44, 45]. The performances of these models 
were compared via leave-one-out cross-validation, which 
was utilized to calculate the mean absolute percentage error 
(MAPE) and the goodness fit (R2). For each observation 
site xi, the distribution of Zi was conditional upon all 
of the observed data, except when z(xi) was calculated 
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and the predicted probability that z < z(xi)  was extracted. 
The cross-validation MAPE and R2 were computed as 
follows:

   	 	 (11)

   	 	 (12)

where Ẑ –i(xi) is the prediction at the location xi 
calculated using all of the observed values, except z(xi); 
z–(xi) is the mean of z(xi). The closer MAPE is to zero, 
the better it is; and, an R2 value closer to 1 is better.

The extremum analysis of the copula-based 
and Bayesian spatial models was based on the distribution 
of the probability of the predicted locations in order to 
obtain the extremal regions [18]. First, the observations 
exceeding the specific threshold were identified. Then, 
the predicted regions exceeding the threshold with a 50% 
or 75% probability were identified, and the coverage 
of the observations was checked.

Results and Discussion

Descriptive Statistics and Variogram Analysis

The descriptive statistics of the heavy metal 
concentrations and pH values of the topsoil in the mining 
area after consolidation are presented in Table 1. The As, 
Cd, Cr, Hg, and Ni concentrations and pH values of the soil 
throughout the study area were 4.19–32.92 mg·kg−1, 
0.09–6.29 mg·kg−1, 95.26–556.53 mg·kg−1, 0.03–0.47 mg·kg−1, 
21.19–166.89 mg·kg−1, and 2.78–8.52 mg·kg−1, 
respectively. Based on the soil screening values (SVs), 
the Cd concentrations of the soil seriously exceeded 
the regulation standard, and the mean concentrations 
of the other heavy metals were all below the SVs. According 
to the coefficients of variation (CVs) for the heavy 

metals, there was considerable variation within the range 
of 31.17% to 83.72%, and the CVs of the pH had the lowest 
value. After standardization using the SVs, Fig. 2 shows 
whether the concentrations of the heavy metals in the three 
consolidation types exceeded the regulatory limit. It shows 
that the standardized Cd value is much greater for the natural 
vegetation than for the SRM and SRC, while the values 
for the other heavy metals are similar for the different 
consolidation types. 

The variogram analysis of the heavy metal concentrations 
and pH values of the soil based on their spatial distributions 
is presented in Fig. 3. Fig. 3 shows that the variograms for As, 
Cd, and Hg hold for a large distance (at least 600 m) based 
on the spatial autocorrelation. Cr has a range of 385.72 m, 
while those of Ni and pH are 60.26 m and 76.41  m, 
respectively. Several studies have suggested that the nugget/
sill ratio n/(n+p) represents the ratio of the spatial 
heterogeneity, which obtains the spatial heterogeneity 
from the randomness of the variable, while the 1−n/(n+p) 
value reflects the structural spatial heterogeneity [31, 46, 
47]. Thus, this range can be considered to be the spatial 
heterogeneity scale, and the larger the nugget/sill ratio is, 
the stronger the random spatial heterogeneity is. A ratio 
of greater than 75% indicates strong random spatial 
heterogeneity; values of 25–75% indicate moderate random 
spatial heterogeneity; and values of < 25% indicate weak 
random spatial heterogeneity. Overall, in the study area, 
the nugget/sill ratios of As, Cd, Cr, and Hg were 16.00%, 
22.00%, 0%, and 20.69%, respectively, and in the different 
types of consolidation land, the ratios also indicate weak 
random spatial heterogeneity. Moreover, Ni and pH also 
exhibited weak random spatial heterogeneity.

Based on the first law of geography, Cr, Ni, and pH 
exhibited very weak random spatial heterogeneity, which 
was calculated from the variograms. Weak random spatial 
heterogeneity is equivalent to strong autocorrelation. 
The emergence of this situation can be attributed to 
the soil replacement in most regions of the study area. 
However, the spatial heterogeneity of As, Cd, and Hg are 
somewhat different, including a larger range and stronger 
random spatial heterogeneity. Thus, we conclude that 
several influencing factors continue to affect the spatial 
distributions of the As, Cd, and Hg concentrations.

Table 1. Descriptive statistics of heavy metal concentrations and pH values of the soil samples.

Minimum
(mg·kg−1)

Maximum
(mg·kg−1)

Mean
(mg·kg−1) SD CV (%) SV

(mg·kg−1)

As 4.19 32.92 15.89 6.53 41.10 30

Cd 0.09 6.29 1.00 0.84 83.72 0.30

Cr 95.26 556.53 184.91 79.45 42.97 200

Hg 0.03 0.47 0.22 0.10 43.91 2.40

Ni 21.19 166.89 72.13 22.48 31.17 100

pH 2.78 8.52 6.56 1.20 18.33 7
Note: SD denotes standard deviation; CV denotes the coefficient of variation; SV denotes screening value for heavy metal, and the pH’s standardized 
values are calculated based on 7.
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Validation of the Performances 
of the Spatial Prediction Models

Similar to the above variogram analysis, for the copula-
based spatial model, a correlation function related to 
the spatial distance also needs to be established. In this 
study, the rank correlation for each bin was calculated, 
which was obtained from the point pairs in each step, to 
generate a function through polynomial regression (Fig. 4). 
Similarly, Ni and pH also had shorter ranges regarding their 
spatial heterogeneity, and the strengths of the correlations 
for As, Cd, Cr, and Hg gradually decreased as the distance 
increased, with good fitting conditions. However, 
their fitting functions could not be used to build an 
indicator similar to the nugget/sill ratio, so we explored 
the stratification of the spatial heterogeneity based on 
the different land consolidation types using a geographic 
detector. The geographic detector analysis generated q 
values (Table 2), and the larger the q value is, the stronger 
the stratified spatial heterogeneity is. It was found that the q 
value of Cd was the largest and it was extremely significant, 
which means the spatial distribution of Cd was highly 
dependent on the consolidation type. In addition, the q value 
of As was significant, while those of the others were not 
significant. Thus, the spatial distribution of Cd had a strong 
stratified spatial heterogeneity, and As had a moderate 
stratified spatial heterogeneity. However, based on 
the variogram analysis, the distributions of all of the heavy 
metals exhibited weak random spatial heterogeneity. Based 
on previous studies [34, 35], we conclude that the stratified 
spatial heterogeneity is not affected by the random spatial 
heterogeneity. Moreover, the former relies on spatial 
stratification, while the latter relies on samples, which 

means that they are calculated using different geostatistical 
scales but are complementary in terms of exploring spatial 
heterogeneity.

The copula-based spatial model constructs the different 
copulas based on the marginal distribution of the observations 
in each step. Cd is discussed as an example (Fig. 5). Because 
the joint probability distribution is only related to the distance 
between the spatial points, all of the copulas are symmetric. 
There are four types of copulas, including the frankCopula, 
tCopula, normalCopula, and claytonCopula. The selection 
of these copulas and their parameters is determined via 
maximum likelihood estimation. The two-dimensional 
frankCopula and claytonCopula are both Archimedean 
copulas with a single parameter [48–50]. The frankCopula 
is characterized by the symmetry of the upper and lower 
tails, while the claytonCopula is characterized by a light 
upper tail and heavy lower tail. The frankCopulas of Cd are 
located at mean distances of 40.86 m, 101.67 m, 227.27 m, 
and 422.84 m. In addition, as the parameter decreases 
from 5.43 to 2.38, the tails of the frankCopulas become 
lighter, which indicates stronger randomness throughout 
the probability distribution. The claytonCopulas of Cd 
are located at mean distances of 489.41 and 552.12 m, 
and as the parameter decreases from 0.148 to 0.058, 
the lower tails become lighter. The upper and lower tails 
of the normalCopula are also symmetrically distributed. 
Compared with the other symmetrical copulas, the tCopula 
always has heavy upper and lower tails. When the tails 
of the copulas with mean distances of greater than 227.27 m 
become light, the tCopula with a mean distance of 164.41 m 
has the heaviest tail, which means that the extremal regions 
appear within a radius of nearly 200 m around the extreme 
samples with a high probability.

Fig. 2. Standardized values for heavy metals and pH based on screening values for different land consolidation types.
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As was previously discussed, the copula-based spatial 
model does not have an indicator similar to the ratio 
of the heterogeneity from the variogram. The random 
error of the variogram fitting is finally summed up as 
the nugget, but the copula-based spatial model distributes 
the randomness to every copula in the form of probability 
through maximum likelihood estimation. Thus, the predicted 
results exhibit the characteristic of raw data rather than 
a Gaussian distribution.

After establishing the variogram, the Gaussian spatial 
model was used to conduct a locally optimal unbiased 
estimation for the predicted locations. If the raw data did 
not have a Gaussian distribution, a logarithmic or Box-
Cox transformation was used. However, the copula-based 

spatial model does not require the data to obey a Gaussian 
distribution. The cross-validation of the spatial predictions 
obtained using both the Gaussian and copula-based spatial 
models is presented in Table 2. It reveals that the MAPE 
values of Cr, Ni, and pH, for both the Gaussian and copula-
based spatial models, are much smaller than those 
of the other factors. This could be due to the weak random 
spatial heterogeneity of these three factors. In addition, 
the R2 value of Cr is the largest, which may be because it has 
the largest range among these three factors, which means 
more useful data for the local estimation of the locations. 
In general, the prediction effects of both models are very 
similar for Cr, Ni, and pH. In addition, the prediction of Cd 
based on the Gaussian spatial model has the largest MAPE 

Fig. 3. Variogram analysis throughout the study area and for the different land consolidation types (Note: n stands for nugget and p stands 
for partial sill, which were calculated from the variogram model, including spherical (Sph), exponential (Exp), and Gaussian (Gau).  
No-fitting indicates that no variogram function can be fitted to the specific data).
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value, which is largely because it has the greatest random 
spatial heterogeneity. However, among these heavy metals, 
Cd’s prediction effect was the most improved through 
the  use of the copula-based spatial model, that is, its 
MAPE decreased from 0.33 to 0.29 and its R2 increased 

from 0.36 to 0.42. Moreover, the prediction of As was 
also improved through the use of the copula-based spatial 
model. Relative to the MAPE and R2 of the Gaussian spatial 
model, the improvements for Cr, Hg, and Ni were 5.88% 
(MAPE of Cr decreased from 0.17 to 0.16) and 3.92% (R2 

Table 2. Performances of the different spatial models based on different q values from the geo-detector.

Items Q
Gaussian spatial model Copula-based spatial model

MAPE R2 MAPE R2

As 0.11* 0.24 0.38 0.23 0.41 

Cd 0.21** 0.33 0.36 0.29 0.42 

Cr 0.06 0.17 0.56 0.16 0.53 

Hg 0.05 0.27 0.51 0.28 0.53 

Ni 0.01 0.20 0.28 0.20 0.29 

pH 0.03 0.17 0.24 0.17 0.32 

Note: * denotes a significant difference between the different land consolidation types and ** denotes an extremely significant difference.

Fig. 4. Strengths of the correlation functions calculated from the optimally estimated copulas per lag.
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of Hg increased from 0.51 to 0.53) at most, respectively. 
However, the improvements of Cd’s MAPE and R2 values 
were 12.12% and 16.67%, respectively, which are far 
better than those of the other heavy metals. In conclusion, 
the soil environmental factors of the consolidation land 
always exhibited weak random spatial heterogeneity 
because of the soil replacement in most of the study area, 
and the spatial model based on the Gaussian assumption 
satisfied the prediction requirements. However, some 
factors, such as Cd and As, in the study area may have 
strong stratified spatial heterogeneity, and their prediction 
effects were improved using the copula-based spatial model.

Identification of Extremal Regions for 
Heavy Metal Concentrations of the Soil

The prediction results obtained using the copula-
based spatial model are the probability distribution 
for each location, so the Gaussian spatial model using 
the Bayesian process was used for comparison. In addition, 
the phenomenon of the Cd concentration of the soil 
in the study area exceeding the standard overwhelming 
occurred, so Cd was taken as the object of the extremal 
region identification study. Based on both observation 
statistics and regulation, two thresholds were set, including 
the 95% quantile of the samples (2.47 mg/kg) and the risk 
control value based on the regulation (3.00 mg/kg). These 
values are abbreviated as q.95 and ConV, respectively.

During the calculation of the Gaussian spatial model 
using a Bayesian process, the posterior distributions 
of the parameters (m, τ2, σ2 and φ) and were obtained via 
the MCMC method. The mean of m is 0.01 (confidence 
interval of 90% is [-0.07, 0.05]), the mean of τ2 is 0.12 
(confidence interval of 90% is [0.09, 0.14]), the mean 
of  σ2 is 0.39 (confidence interval of 90% is [0.38, 0.40]), 
and the mean of  φ is 615.47 (confidence interval of 90% 
is [601.12, 645.11]).

The results of both the copula-based spatial model 
and the Gaussian spatial model using a Bayesian process 
have four types of extremal regions, including the Cd 
concentration of the soil exceeding q.95=2.47 mg/kg 
with a 50% probability, the Cd concentration of the soil 
exceeding q.95=2.47 mg/kg with a 75% probability, the Cd 
concentration of the soil exceeding ConV=3.00 mg/kg with 
a 50% probability, and the Cd concentration of the soil 
exceeding ConV=3.00 mg/kg with a 75% probability (Figs. 
6 and 7). The red dots in the figures are based on whether 
the samples exceeded the thresholds. The recognition 
accuracy was obtained based on whether the red dots 
were located within the regions above (Table 3). It was 
found that the recognition accuracies of the copula-
based spatial model for regions with Cd concentrations 
exceeding q.95=2.47  mg/kg with a 50% probability 
and Cd concentrations exceeding ConV=3.00 mg/kg with 
a 50% probability were significantly higher than those 
of the Gaussian spatial model using a Bayesian process. In 
addition, Fig. 8 shows that the probability density functions 

Fig. 5. 3D scatter plots of the optimally estimated copulas per lag for Cd.
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(PDFs) of the predicted locations obtained using the copula-
based model are closer to the characteristics of the samples, 
whereas the results of the Bayesian spatial model may 
produce negative values.

Conclusions

In summary, in this study, the advantages 
of the copula-based spatial model were demonstrated, 
and the spatial heterogeneities of the heavy metal 
concentrations of anthropogenic soil related to mining 
were determined.

(1) After land consolidation, the heavy metal 
concentrations of the soil environment in the mining 
area always exhibit weak random spatial heterogeneity 
because of soil replacement. Among these heavy metals, 
several have strong stratified spatial heterogeneity, 
including Cd and As, in the study area. For this situation, 
e.g., for Cd and As, the copula-based spatial model 
may perform better than the spatial model based on 
the Gaussian assumption.

(2) The spatial heterogeneities of the heavy metal 
concentrations of anthropologic soil should be explored 
on two scales, including samples and stratified statistics. 
The combination of random and stratified spatial 

Fig. 6. The areas exceeding the specific thresholds (q.95 and ConV) with a 50% or 75% probability identified by the Gaussian spatial 
model using a Bayesian process.
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heterogeneity can depict the spatial characteristics 
of anthropological soil well. If some of the factors have 
strong stratified heterogeneity, the copula-based spatial 
model may be the better model to use.

(3) There are many copulas that can be used to 
fit the spatial rank correlation of the point pairs. 
The frankCopula, normalCopula, and tCopula have two 
heavy tails, while the claytonCopula and gumbelCopula 

Fig. 7. The areas exceeding the specific thresholds (q.95 and ConV) with a 50% or 75% probability identified by the copula-based spatial 
model.

Table 3. Recognition accuracies of the extremal regions for the different models.

Gaussian spatial model using a Bayesian process Copula-based spatial model

Threshold value 50% 75% 50% 75%

q.95=2.47 0.44 0.44 0.78 0.44 

Control value=3.00 0.33 0.33 0.67 0.33 
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have a single heavy tail. These types of copulas can 
adequately describe the correlation between the marginal 
distributions because the correlation between the spatial 
locations depends only on the distance. In addition, 
the copula-based model always produces better visual 
results. In the study area, by assessing the copulas for Cd, we 
determined that the extremal regions appear within a radius 
of nearly 200 m around the extreme samples with a high 
probability. In addition, the random error of the variogram 
fitting was finally summed up as a nugget, but the copula-
based spatial model distributes the randomness to every 
copula in the form of a probability through maximum 
likelihood estimation. Thus, the predicted results exhibit 
the characteristics of the raw data rather than a Gaussian 
distribution.

(4) Through identification of the extremal regions 
of the Cd concentration in the study area, it was determined 
that the recognition accuracy of the copula-based spatial 
model was higher than that of the Gaussian spatial 
model using a Bayesian process. Moreover, the results 
of the copula-based spatial model are more reasonable 
(non-negative).
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