
Introduction

Human survival and development are intricately 
linked to the ecological environment and directly impact 
the sustainable development of local economies and societies 
[1]. However, in recent years, rapid urbanization in China 

has resulted in a series of ecological and environmental 
issues, significantly constraining regional sustainability 
[2]. Therefore, the objective and timely monitoring 
and assessment of the quality of the ecological environment 
and its dynamic changes are important for achieving 
the cogovernance and sustainable development of regional 
ecological environments [3, 4]. With the rapid development 
of Earth observation technologies, satellite remote sensing 
technology, characterized by its high timeliness, rapid 
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Abstract

As a new first-tier city, Chengdu serves as a crucial ecological demonstration area in the upper 
reaches of the Yangtze River. Assessing and monitoring the quality of the ecological environment 
within this region are fundamental tasks for advancing the construction of an ecological civilization. 
Our analysis revealed that from 2013 to 2022, the average RSEI ranged between 0.4 and 0.6, indicating 
a gradual improvement in the quality of the ecological environment. Notably, between 2017 and 2022, 
areas exhibiting excellent ecological quality expanded, while those exhibiting poor quality decreased. 
Additionally, regions of medium-grade quality remained relatively stable and dominant. Over the past 
decade, the global Moran’s I values ranged from 0.914 to 0.960, indicating a positive spatial correlation for 
the ecological quality of Chengdu, albeit with a decreasing degree of clustering. Further analysis of the local 
spatial autocorrelation of the RSEI revealed ‘high-high’ (H-H) concentrations primarily in the western 
mountainous areas, attributed to lower urbanization rates and superior ecological conditions. Conversely, 
‘low-low’ (L-L) clusters predominantly appeared in central urban zones characterized by intensive social 
and industrial activities. In addition, the future trend of Chengdu RSEI showed a strong sustainability, 
reflecting the continuous improvement of the overall ecological environment of Chengdu.
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acquisition cycle, and periodic, repetitive observation 
advantages, has become a mainstream and effective research 
tool in regional ecological studies [5]. Various remote 
sensing indices/indicators, such as the impervious surface 
ratio, land surface temperature, and vegetation index, have 
been widely applied in the monitoring and quantitative 
evaluation of ecosystems and various environments, such as 
cities [6, 7], forests [8, 9], grasslands [10, 11], and wetlands 
[12]. However, for complex ecosystems, especially 
urban‒rural composite ecosystems, it is challenging to 
measure and quantify ecological quality using a single 
ecological index/indicator that reflects only one aspect 
of the ecosystem [13].

In this regard, Xu [13] proposed the remote sensing-
based ecological index (RSEI). Based on principal 
component analysis (PCA), the RSEI using the first 
principal component of four factors, namely, greenness, 
wetness, dryness, and heat, is a comprehensive indicator 
reflecting ecological quality. The RSEI facilitates 
the quantitative assessment of ecological quality changes 
at a regional scale. The main advantage of this method 
is that the four factors share the same remote sensing 
data source, thereby avoiding changes or errors in weight 
definition due to individual characteristics [14]. However, 
with the widespread application of the RSEI model, some 
issues have gradually emerged, and an opposing model was 
developed from the original model. Some scholars have 
calculated the RSEI based on the original model, while 
others directly use PC1 as the regional ecological quality 
index instead of “1-PC1”, which is mainly attributed to 
the uncertainty in the direction of feature vectors in PCA; 
in this case, the model yields different results, making it 
challenging to adapt to long-term sequences and batch 
operations when using large-scale remote sensing data 
[15]. Scholars [15, 16] have improved the RSEI model, 
and modifications have been tailored for different users; 
these improved RSEI models can support long-term, 
objective, and comprehensive evaluations of regional 
ecological quality.

The GEE (Google Earth Engine) is a cloud computing 
platform that efficiently stores a vast repository of historical 
images and geographic databases [17]. This platform 
facilitates the rapid batch processing of remote-sensing 
images and other large datasets. Furthermore, given 
the immense computational capabilities of GEE, it is well-
suited for analyzing and addressing various environmental 
and societal issues [18]. In comparison to traditional remote 
sensing methods, the GEE platform offers a wealth of remote 
sensing images and streamlines operational procedures. 
GEE data are well suited for calculating large-scale, long-
term remote sensing-based ecological indices (RSEIs) 
and performing ecological quality assessments.

Previous studies provided essential tools and methods 
for monitoring and evaluating the ecological environment, 
offering profound insights into the pressures imposed 
on the environment by human activities, ecological 
variations, and climate change. Chengdu, the capital 
of Sichuan Province and the largest city in western 
China, has undergone rapid development due to its 

advantageous geographical location. Such development 
includes the expansion of urban areas, an upsurge in motor 
vehicles, and accelerated industrial production. As 
a pioneer of urbanization in Midwest China, Chengdu has 
experienced rapid economic growth, attracting a substantial 
population from various regions and resulting in consistent 
increases in total population and land use [19]. However, 
persistent resource consumption has led to concerns 
regarding future sustainable development amid prominent 
urbanization. Socioeconomic factors, such as population 
growth, policy guidance, and economic development, 
act as the primary driving forces leading to the depletion 
of ecological assets in Chengdu. The rapid development 
of Chengdu has simultaneously placed significant pressure 
on its ecological environment. Therefore, monitoring 
spatiotemporal changes in the ecological environment is 
necessary to provide a scientific foundation for decision-
making regarding future sustainable development [20].

Considering these concerns, this study outlines three 
main objectives:

1) Construct an improved RSEI by integrating various 
remote sensing indicators based on the Google Earth Engine 
(GEE) platform;

2) Monitor the spatiotemporal changes in the quality 
of the ecological environment of Chengdu from 2013 to 
2022; 

3) Explore the spatial differentiation characteristics 
of the quality of the ecological environment in Chengdu 
and its future development trends. This research introduces 
a practical and cost-effective approach for assessing 
spatiotemporal changes in eco-environmental quality by 
leveraging the RSEI and GEE.

Materials and Methods

The technical workflow of this study comprises three 
main parts (Fig. 1). In the first part, four basic ecological 
evaluation indicators from the GEE platform are established. 
The second part focuses on index selection, normalization, 
data reconstruction, and PCA, and RSEI maps from 2013 
to 2022 are constructed. The third part focuses on assessing 
the quality of the ecological environment by employing 
a transition matrix to evaluate the ecological dynamics 
in the study area from 2013 to 2022. In the first part, 
the selection of suitable ecological indices is critical for 
capturing the key environmental variables that influence 
the ecological environment. Indices such as vegetation 
greenness, surface temperature, humidity, and dryness 
provide valuable information for assessing the overall 
ecological conditions. Subsequently, PCA is employed to 
extract the essential information from multidimensional 
data and construct the RSEI, which integrates multiple 
ecological indicators into a comprehensive index for 
evaluating the ecological environment. Next, ecological 
quality assessment is performed based on the transition 
matrix approach. This approach allows for quantifying 
and characterizing changes in ecological conditions over 
time. Specifically, comparing the RSEI maps for different 
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years allows for the identification of spatial and temporal 
variations in the quality of the ecological environment 
of Chengdu. The transition matrix quantitatively represents 
shifts in ecological states, indicating whether the ecological 
environment has deteriorated, improved, or remained 
stable over the study period. Finally, the future RSEI trend 
in Chengdu is evaluated.

Study Area

Chengdu city (102.540–104.530°E, 30.050–31.260°N; 
approximately 14,335 km2), located in the Sichuan 
Basin, is the largest city in western China. Chengdu is 
characterized by a pleasant climate, an advantageous 

geographical position, and a rich cultural history. It serves 
as the center of politics, culture, business, and external 
exchanges in Sichuan Province (Fig. 2). The terrain is 
low in the center of the basin and high in the surrounding 
areas. Chengdu covers a built-up area of 2,176 km2. It 
occupies the western part of the Sichuan Basin, which is 
surrounded by the Tibetan Plateau to the west, the Yunnan-
Kweichou Plateau to the south, and the Qin Mountain 
range to the north. Chengdu is relatively isolated from 
external influences due to its topography. Chengdu has 
a subtropical monsoon climate characterized by frequent 
calm winds, with mean annual precipitation ranging from 
798.3 to 1541.0 mm and a mean annual temperature 
of 16°C [19].

Fig. 1. Workflow. 
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With contemporary globalization, Chengdu is 
emerging as a global city recognized by the Globalization 
and World Cities Research Network. In the wake of the 19th 
National Congress of the Communist Party of China 
(CPC), Chengdu’s government has unveiled a visionary 
roadmap for its future development, known as the Three-
Step Strategy (TSS). The first phase, spanning from 
2016 to 2020, is dedicated to achieving the national goal 
of establishing a prosperous society with high standards. 
During the second phase, from 2020 to 2035, Chengdu is 
committed to transforming into a livable and high-quality 
city, serving as an international gateway within urban 
China. During the third phase, spanning from 2035 to 
2050, Chengdu will focus on sustainable pathways, aspiring 
to become a modern and competitive global city. This 
journey involves addressing challenges related to natural 
conditions, population dynamics, and industrial structures, 
all within the framework of the new strategic vision [21].

Data Sources and Preprocessing

The RSEI integrates four key indices: the normalized 
difference vegetation index (NDVI) [22], wetness (tasseled 
capacity wetness index, WET) [23], heat (land surface 
temperature, LST) [24], and dryness (normalized difference 
bare soil index, NDBSI) [25]. Three indices, the NDVI, 
WET, and NDBSI, are calculated using Landsat 8/OLI 
data provided by the U.S. Geological Survey (USGS) 
(https://www.usgs.gov). The LST is calculated using data 
from the Moderate Resolution Imaging Spectroradiometer 
(MODIS, MOD11A2), a primary sensor on the Terra 
and Aqua satellites (https://developers.google.com/earth-
engine/datasets). On the GEE platform, the Landsat cloud 

mask algorithm is utilized to remove cloud pixels from 
the input image dataset based on the specified period 
and spatial range. The minimum cloud cover image is then 
synthesized using the median value of the cloud-free pixels. 
Additionally, to enhance the accuracy of the humidity index 
in representing ground humidity conditions and to mitigate 
the influence of large water bodies on the load distribution 
of principal components, the modified normalized 
difference water index (MNDWI) is used to mask water 
body information [13]. The elevation data, sourced from 
the Shuttle Radar Topography Mission (SRTM) dataset 
(USGS_SRTMGL1_003), are obtained from the USGS. 
Administrative division data are obtained from the National 
Basic Geographic Database of the Chinese National 
Geographic Information Resource Directory Service 
System (https://www.webmap.cn). All the data are 
processed uniformly to a resolution of 500 m.

Methods

Construction of the RSEI

The RSEI is a remote sensing index that can be used 
to rapidly detect and assess the ecological environment 
[26, 27]. The RSEI considers the factors influencing 
the ecological environment and encompasses four 
interconnected components: greenness, wetness, dryness, 
and heat [28]. Among the commonly used vegetation indices 
[29, 30], the NDVI [31] has been found to be effective 
in reflecting the physical characteristics of vegetation, 
such as growth and coverage. This index has been broadly 
used in vegetation remote sensing research. In this study, 
the normalized NDVI was used as the greenness index. 

Fig. 2. Location of the study area. 
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Additionally, soil moisture is crucial in climate [32], 
environmental, and ecological research and applications. 
The soil moisture level serves as an indicator of the regional 
ecological-environmental quality and is vital for monitoring 
surface environment conditions [33]. In remote sensing, 
the tasseled cap transformation [34] has proven valuable 
for estimating soil moisture and efficiently reducing data 
redundancy. The humidity index in this study was derived 
from the humidity component obtained through the tasseled 
cap transformation [35]. In ecological-environmental 
monitoring and evaluation, the dryness index is a crucial 
indicator. Typically, the dryness index is calculated by 
combining the soil index (SI) [36] and the index-based 
built-up index (IBI) [37]. Surface temperature serves 
as a heat index, and its estimation is achieved using 
the atmospheric correction method in the single-channel 
algorithm [38]. The specific formulas for the four indicators 
are provided in Table 1. These four remote sensing indices 
are integrated through PCA. The RSEI, obtained through 
PCA considering covariance, is derived from objective 
data, thereby mitigating the impact of subjective factors 
on the contribution of each considered index to the RSEI 
[39]. The RSEI value is primarily determined from the first 
principal component.

Normalization processing is performed on the GEE 
platform before principal component analysis to ensure 
uniformity among dimensions and units and address 
comparability issues among diverse data types and indicators. 
The four indicators are standardized within the range of [0, 
1]. Principal component 1 (PC1) is calculated using the PCA 
algorithm [40]. PC1 represents RSEI0, and the RSEI is 
obtained by subtracting RSEI0 from PC1 [41]. To calculate 
the initial remote sensing ecological index (RSEI0), PC1 
is used, as follows:

  
	

 
 
 
 


PC1[f(Greenness, Humidity, Heat, 
Dryness)] VGreenness, VHumidity

1 – PC1[f(Greenness, Humidity, Heat, 
Dryness)] VGreenness, VHumidity

 > 0

 < 0
RSEI0 = 	 (1)

Where VGreenness and VHumidity represent the eigenvectors 
of greenness and humidity, respectively. To facilitate 
measurement and comparison, RSEI0 is further normalized 
using the following formula:

 
	 RSEI = RSEI0i – RSEI0min

RSEI0max – RSEI0min
	 (2)

RSEI0min and RESI0max are the minimum and maximum 
values of RESI0 in the target year, respectively, and RSEI 
is the final remote-sensing-based ecological index.

To precisely assess the spatial and temporal variations 
in ecosystem quality, the ecological quality of Chengdu is 
classified into five distinct categories based on the RSEI 
values. These categories are explicitly delineated as follows: 
excellent (0.8  < RSEI ≤ 1), indicating the highest ecological 
quality; good (0.6 < RSEI ≤ 0.8), representing a high-quality 
environment with minor areas for improvement; moderate 
(0.4 < RSEI ≤ 0.6), indicating a satisfactory environment 
with room for enhancement; fair (0.2 < RSEI ≤ 0.4), with 
areas of concern where improvements are needed; and poor 
(0 < RSEI ≤ 0.2), indicating the lowest ecological quality 
and the urgent need for remediation measures [42].

Geoscience Information Map Analysis

The application of the geoscience information 
mapping theory primarily focuses on tracking changes 
in spatial information. This theory serves as a valuable 
tool for intuitively representing the progression of process 
information, spatial data, and attribute information [43]. In 
this paper, we introduce the theory of geoscience information 
mapping to analyze changes in ecological quality grades. 
Using QGIS 3.22 software, ecological quality grades are 
assigned numerical codes (1, 2, 3, 4, and 5) corresponding 
to different levels: poor, fair, moderate, good, and excellent. 
The ecological quality grade of the previous period is 
represented as a 10-digit number, and a single digit denotes 

Table 1. Methods used for calculating the indicators.

Indicator Calculation Method

NDVI NDVI = (ρNIR – ρred)/(ρNIR + ρred)

WET WET = 0.1511ρblue + 0.1973ρgreen + 0.3283ρred + 0.3407ρNIR − 0.7117ρswir1 − 0.4559ρswir2

LST LST = 0.02DN − 273.15

NDBSI

NDBSI = (SI + IBI)/2
IBI = IBI1/IBI2

SI = (ρswir1 + ρred) – (ρNIR + ρblue)/ (ρswir1 + ρred) + (ρNIR + ρblue)
IBI1 = 2ρswir1/(ρswir1 + ρNIR) − [ρNIR/(ρred + ρNIR) + ρgreen/(ρswir1 + ρgreen)]
IBI2 = 2ρswir1/(ρswir1 + ρNIR) + [ρNIR/(ρred + ρNIR) + ρgreen/(ρswir1 + ρgreen)]

*ρBlue, ρGreen, ρRed, ρNIR, ρSWIR1, ρSWIR2 denote the blue, green, red, near-infrared, and shortwave infrared 1 and 2 bands, respectively; DN 
represents the digital number of a given pixel.
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the quality grade. These codes are synthesized through 
algebraic operations [44] as follows:

 	 N = 10A + B	 (3)

In the formula, N represents the newly generated map 
code, indicating the change in ecological quality from 
Grade A in the starting year to Grade B in the ending year. 
For instance, code 14 indicates a change in the ecological 
grade from 1 to 4, indicating a transition from poor to good 
quality. Changes in ecological quality encompass shifts 
from low-level to high-level ecological quality, and vice 
versa. During the research process, the initial and final data 
are superimposed to extract spatial change information 
corresponding to the ecological level.

Spatial Autocorrelation Analysis

The primary aim of spatial autocorrelation analysis [45] 
is to ascertain whether a variable exhibits spatial correlation. 
This type of analysis reveals the correlation between 
the quality of the ecological environment at a central pixel 
point and that at neighboring spatial points based on remote 
sensing, characterizing the homogeneity of the spatial 
distribution. Both the global Moran’s I index and the local 
Moran’s I index are used to assess the spatial correlation 
of the RSEI [46]. The global Moran’s I index provides 
an overview of the average correlation degree among 
the spatial units in the region and the surrounding units. 
However, the attribute value in the formula is contingent 
upon the research objective [47]. Details of the formula 
and the corresponding explanation can be found in [14].

Coefficient of Variation

The coefficient of variation (CV) is primarily used 
to reflect the degree of discreteness of data. A large 
CV indicates a discrete data distribution and high data 
fluctuations [48]. Conversely, when the data distribution 
is concentrated, the data fluctuations are small, indicating 
a stable time series. The CV is calculated based on the RSEI 
values of the pixels and reflects the stability of the ecological 
quality in Chengdu. The calculation method is as follows:

 
	

CV = = STDRSEI
(RSEIi –

RSEIi

RSEIi)
RSEImean

1

1

1
n

n

ni=1

i=1

i=1
n

n

nΣ

Σ

Σ�

	 (4)

In the formula, n represents the number of years, 
i represents the i-th year, RSEIi denotes the RSEI 
in the i-th year, STDRSEI represents the standard deviation 
of the regional average of the RSEI year by year, RSEImean 
represents the average annual RSEI of the region, and CV 
is the coefficient of variation. A large CV indicates a high 
degree of variation and low stability, while a small CV 
indicates a low degree of variation and high stability. 
The hierarchical breaks in cluster analysis are determined 
based on the natural arrangement and distribution of the data, 

rather than artificial settings. Therefore, the CV is divided 
into five levels according to the cluster analysis method [49]: 
low fluctuation (CV ≤ 0.15), low to moderate fluctuation 
(0.15 < CV ≤ 0.20), moderate fluctuation (0.20 < CV ≤ 0.25), 
slightly high fluctuation (0.25 < CV ≤ 0.31), and high 
fluctuation (CV > 0.31).

Mann‒Kendall and Sen’s Slope Tests

The Mann‒Kendall (M‒K) test is a nonparametric 
statistical approach designed for the significance testing 
of nonnormally distributed sequence trends, effectively 
revealing the trend characteristics in time series data. 
The detailed formula for this method can be found 
in the literature [50]. The significance of the change in RSEI 
is assessed at a confidence level of α=0.05. If the absolute 
value of Z is greater than 1.96, the change is deemed 
significant, and if the absolute value of Z is less than 1.96, 
the change is considered insignificant.

Sen’s trend degree indicates the magnitude and direction 
of a change in trend. The corresponding formula is as 
follows:

 
	 β = Median , n > j > i > 0RSEIj – RSEIi

j – i
 


 
 	 (5)

In the formula, β represents the trend degree of the RSEI 
sequence, Median denotes the median, RSEIi represents 
the RSEI pixel value of the RSEI sequence, and i and j are 
the i-th and j-th positions of the time series, with RSEIi 
and RSEIj representing the i-th and j-th RSEI pixel values, 
respectively. When β > 0, the sequence shows an upward 
trend, and when β = 0, the sequence displays no change 
in trend, indicating a flat sequence. When β < 0, the sequence 
exhibits a decreasing trend. The greater the absolute value 
of β is, the greater the degree of the upward or downward 
trend.

Hurst Index

The Hurst index can be used to quantitatively characterize 
the persistence or long-term correlation of changes in time 
series data. The method most commonly used is the R/S 
analysis method [51], and the formula is as follows:

 
	 = (cm)HR

S
	 (6)

In the formula, R represents the range of RSEI values, 
S represents the standard deviation of RSEI values, 
and c is a constant. The observation values are divided 
into n subsequences of RSEIi, where i = 1, 2..., n. m is 
any positive integer, and 0 < m < n. H represents the Hurst 
index, and the formula for determining the range R(m) is 
as follows:

 
	 R(m) = maxX(t, m) – minX(t, m)	 (7)
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In the formula, X(t) is the cumulative dispersion, which 
is obtained as follows:

	 X(t) = (RSEIi – RSEIi)
1
mi=1 i=1

m m� � 	 (8)

In the formula, 1 < t < m. The formula for the standard 
deviation S(m) is as follows:

  
	 1

m
� (RSEIi – RSEIi)21

mi=1 i=1
m m� �S(m) = 	 (9)

Through computations, multiple average rescaled range 
values are derived. Taking the logarithm of both sides 
of equation (6) and employing the least squares method 
for linear fitting yields a slope, which is directly used to 
obtain the Hurst index (H). H ranges from 0 to 1. A value 
of H = 0.5 signifies that the time series data demonstrate 
independent randomness with no discernible patterns. When 
0.5 > H > 0, the time series exhibits evident antipersistence, 
indicating that the future trend opposes the past trend. 
Conversely, when 1 > H > 0.5, the time series reflects a state 
of continuous development, signifying that the future trend 
aligns with the past trend.

Results and Discussion

RSEI Model Building

The four indicators above were integrated through 
PCA, specifically focusing on PC1 to compute the RSEI 
in Chengdu. PC1, known to account for more than 
55% of the total variation in the dataset, was employed 

to mitigate potential biases stemming from subjective 
weighting during the calculation process (refer to Table 2 
for detailed information).

The utilization of PC1 effectively amalgamated 
the predominant characteristics of the four individual 
ecological indicators. Positive loading values for 
the humidity and greenness indices in PC1 across the period 
of 2013-2022 suggest their favorable impact on the regional 
ecological environment. Conversely, negative loading 
values for the dryness and heat indices indicate adverse 
effects in the observed scenario. In general, elevated values 
of the NDVI and WET correspond to increased vegetation 
coverage and surface humidity, indicative of enhanced 
ecological conditions. Conversely, heightened values 
of the NDBSI and LST imply intensified soil hardening, 
increased surface temperature, and a decrease in the quality 
of the ecological environment.

Given its effective integration of information from all 
four indicators and alignment with observed conditions, 
PC1 is ideal for establishing a comprehensive ecological 
index and analyzing changes in the ecological environment 
in the study area. From 2013 to 2022, the average RSEI 
in Chengdu increased from 0.482 to 0.557, reflecting 
a 15.56% improvement and indicating a gradual 
enhancement in the city’s ecological situation over 
the past decade. Notably, greenness emerges as the primary 
contributor to improved ecological quality, and LST is 
the primary driver of degradation in the study area.

Spatiotemporal Changes in the Ecological 
Quality in Chengdu

Fig. 3 shows the average RSEI and its distribution 
in Chengdu over ten years, from 2013 to 2022. These 
findings indicate a positive trend in the overall quality 
of the ecological environment in Chengdu. Specifically, 
the average RSEI increased from 0.482 in 2013 to 0.557 

Fig. 3. Average and distribution of the RSEI in Chengdu, 2013–2022. 
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in 2022, reflecting a notable increase of 15.56%. Notably, 
the highest average RSEI was observed in 2022 at 0.5183, 
while the lowest RSEI occurred in 2019 at 0.462. This 
discernible improvement in ecological quality over the study 
period can be attributed to concerted governmental efforts 
and policy initiatives. During this timeframe, the Chinese 
government sequentially released the National Ecological 
Protection and Construction Plan (2013-2020) and the Overall 
Plan for the Reform of the Ecological Civilization System. 
These policy frameworks were foundational elements 

that guided the vigorous pursuit of ecological protection 
and governance in Chengdu. Consequently, the region 
experienced a gradual enhancement in the quality of its 
ecological environment.

Fig. 4 illustrates the spatial dynamics of the ecological 
quality of Chengdu spanning from 2013 to 2022. Generally, 
western Chengdu exhibited greater ecological quality than 
did the central and eastern regions. Areas of excellent quality 
are predominantly clustered within the three-circle vicinity 
of Chengdu. In these areas, high vegetation coverage, 

Table 2. Contributions and loadings of the four indices to the first principal component (PC1).

Year NDVI WET LST NDBSI Eigenvalue Eigenvalue 
Percentage Mean RSEI

2013 0.725 0.028 -0.618 -0.302 0.052 64.26% 0.482

2014 0.729 0.096 -0.465 -0.493 0.039 63.49% 0.522

2015 0.751 0.093 -0.511 -0.406 0.029 55.47% 0.512

2016 0.605 0.072 -0.733 -0.304 0.025 56.72% 0.494

2017 0.565 0.085 -0.771 -0.283 0.037 70.36% 0.499

2018 0.727 0.153 -0.291 -0.602 0.029 58.38% 0.535

2019 0.639 0.113 -0.752 -0.115 0.023 56.44% 0.462

2020 0.736 0.091 -0.406 -0.534 0.034 66.36% 0.472

2021 0.698 0.151 -0.604 -0.353 0.039 70.58% 0.492

2022 0.768 0.142 -0.427 -0.455 0.031 66.86% 0.557

Fig. 4. Average and distribution of the RSEI in Chengdu, 2013–2022. 
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limited human activity, and robust ecological carrying 
capacity contribute to the superior ecological quality. 
Conversely, regions exhibiting an average ecological level 
are concentrated primarily in the second-circle vicinity, 
representing a transitional zone from urban to natural 
conditions. Areas characterized by poor and fair ecological 
environments are primarily within the highly urbanized 
central area of Chengdu. The expansion of construction land 
in these regions has encroached upon the original ecological 

landscape, leading to diminished vegetation, reduced green 
spaces, and an augmented urban heat island effect.

In the last decade, the rapid development in Southwest 
China has significantly impacted the region’s infrastructure 
and environment. The Southwest airline base, centered 
around Shuangliu Airport, has seen a notable decline 
in passenger capacity due to increasing demand. This has 
necessitated the establishment of a second international 
airport to support Chengdu’s continued growth. 

Fig. 5. Statistics of the RSEI based on percentage area by category from 2013 to 2022. 

Fig. 6. The RSEI transfer matrix of Chengdu. 

(a) 2013-2017  (b) 2017-2022
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Consequently, the construction of Tianfu International 
Airport in the Dongbu New District (DB) since 2017 has 
led to a decrease in RSEI in the vicinity, reflecting a decline 
in ecological quality.

Fig. 5 illustrates the proportional distribution 
of the quality of the ecological environment in Chengdu 
from 2013 to 2022. The overall proportions of excellent 

and good RSEI values in Chengdu exhibited fluctuations, 
trending upward at the decadal scale, while the proportions 
of poor and fair RSEI values showed a decreasing trend. 
The proportion of areas classified as having moderate 
ecological quality showed modest variations. The average 
RSEI value initially decreased from 2013 to 2017, followed 
by a gradual increase from 2018 to 2022. As a result, 

Fig. 7. Map of spatial changes in ecological and environmental quality.

(a) 2013-2017

 (b) 2017-2022
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the overall ecological quality of Chengdu gradually 
improved over the past decade.

RSEI Transfer Analysis

Fig. 6 and Fig. 7 delineate the variations in distinct levels 
of environmental quality in Chengdu from 2013 to 2022. 
There were notable decreases in the proportions of poor 
and fair grades, accompanied by increases in the proportions 
of moderate, good, and excellent grades. From 2013 to 2017, 
the areas transitioning from poor to fair and moderate grades 
covered 356.5 and 12.25 Km2, respectively, representing 
37.24% and 1.28% of the initial poor-grade area. 
Furthermore, approximately 20% of the initial areas with 
good RSEI grades evolved to areas with excellent grades, 
covering approximately 584.5 Km2. From 2017 to 2022, 
the proportion of areas categorized as good and excellent 
grades continued to increase, while those designated as 
poor and fair decreased. The moderate-grade area remained 
relatively stable and represented the dominant category. 
Notably, an area of approximately 501 Km2 transitioned 
from poor to higher grades, with fair grades primarily 
becoming moderate (approximately 2671.5 Km2) and fair 
grades (114.25 Km2). During this period, the expansion 
of good-grade areas primarily occurred via the conversion 
of moderate-grade (2,181.5 Km2), poor-grade (83.75 Km2), 
and excellent-grade (65.6 Km2) areas. Simultaneously, 
a segment of the excellent-grade area transitioned to 
a moderate grade, indicating a reduction in ecological 
quality in the corresponding areas.

A comparative analysis of RSEI transitions between 
2013 and 2017 and between 2017 and 2022 shows 
that the regions experiencing improvement outweigh 
those undergoing degradation. The enhanced areas are 
predominantly situated in the eastern sector of the study 
area. These areas encompass locales such as Longquanyi 
District (LQY), Jintang County (JT), Jianyang (JY), 
Dongbu New District (DB), and Pujiang County (PJ). 
Conversely, the degradation areas (areas experiencing 
a decline in ecological quality) are primarily located 
in the western mountainous regions. The areas with no 
change are mainly in the downtown area of Chengdu. 
This phenomenon is attributed to the mature and stable 
development of these central urban zones.

Spatial Autocorrelation Analysis 
of Ecological Quality

To maintain the integrity of information, considering 
the scale and the accuracy of quantitative evaluation 
and the internal characteristics of the study area, the images 
are resampled using a 1 km×1 km grid based on the landscape 
pattern and ecosystem characteristics in the study area. 
In this paper, we select 13974 sample points from each 
RSEI dataset (2013, 2017, and 2022) to account for spatial 
dependence. Then, we determine whether variables are 
spatially correlated and to what extent.

Based on the 13,974 resampling points described above, 
Moran’s I index and LISA are used to conduct a spatial 

autocorrelation analysis of the RSEI in Chengdu. Fig. 8 
shows the Moran’s I scatter plot of the RSEI. The scatter 
points in each year are mainly distributed in the first 
and third quadrants, indicating that the ecological quality 
of the study area has a strong positive spatial correlation. 
The Moran I indices in 2013, 2017, and 2022 are 0.938, 
0.960, and 0.914, respectively. These values indicate that 
the spatial distribution of the ecological quality over time 
is strongly aggregated, rather than random. The positive 
spatial correlation was the strongest in Chengdu in 2017. 
Moreover, Moran’s I first displays an upward trend from 
2013 to 2017, and then a downward trend from 2017 to 
2022.

The LISA cluster diagram analysis provides valuable 
insights into the spatiotemporal distribution of ecological 
quality, categorizing areas into distinct patterns such as 
low-low (L-L) and high-high (H-H) spatial clusters, high-
low (H-L) and low-high (L-H) spatial outliers, and regions 
with no significant correlation.

As shown in Fig. 9, regions designated as ‘No Significant 
Correlation’ are predominantly found in Chengdu’s second- 
and third-circle areas. Conversely, H-H cluster areas are 
concentrated in the western alpine region, with increased 
concentration from 2013 to 2017, indicating an overall 
improvement in the quality of the ecological environment, 
which is consistent with high RSEI values. L-L clusters, 
on the other hand, are mainly located in central urban 
areas characterized by dense populations, significant 
infrastructure, and stable development. However, these 
clusters are gradually expanding, particularly toward the east 
and south, such as in TF, LQY, and DB. This expansion is 
attributed to Chengdu’s urbanization strategy, which has 
led to a decline in ecological quality in these areas. These 
results demonstrate the importance of considering spatial 
dynamics in urban planning and development to achieve an 
ecological balance and sustainability while accommodating 
urban growth.

Changes in Ecological Quality

The RSEI is utilized to calculate the CV (Fig. 10c)) 
of the ecological quality of Chengdu, employing pixel-
scale spatial measurements and temporal stability 
simulations. The resulting CV values range from 0.017 to 
2.030, with an average of 0.162. Impressively, more than 
90% of these values fall within the range of 0 to 0.31, 
indicating a predominantly low level of volatility across 
the city. Based on established grading principles, the spatial 
distribution of fluctuation levels is determined. Analysis 
reveals a temporal trend in the fluctuation frequency from 
2013 to 2022, ranging from high to low volatility, with 
the order being low volatility, slightly low volatility, high 
volatility, slightly high volatility, and moderate volatility. 
Overall, although high volatility is uncommon, other levels 
of volatility predominate. Regions with notably high CVs are 
primarily concentrated in the central urban area of Chengdu 
and around Chengdu Tianfu International Airport. Urban 
surface types, particularly buildings and other man-made 
structures, play a significant role in shaping the local 
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Fig. 8. Moran’s I of the RSEI from 2013 to 2022.

(a) 2013

 (b) 2017   

(c) 2022
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Fig. 9. LISA of the RSEI from 2013 to 2022.

(a) 2013

 (b) 2017   

(c) 2022
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climate and are highly susceptible to human activities. 
One of the most notable consequences of this interaction 
is the urban heat island (UHI) effect [51, 52]. This 
phenomenon occurs when urban areas experience higher 
temperatures than their rural surroundings, primarily due to 
the concentration of buildings, roads, and other infrastructure 
that absorbs and retains heat. In contrast, areas with small 
CVs, signifying high stability, are concentrated in regions 
distant from urban development. These areas demonstrate 
relatively stable vegetation coverage and experience less 
human interference than other areas. Moderate fluctuation 
areas are evenly dispersed within transitional zones. This 
assessment underscores the nuanced dynamics of ecological 
quality across Chengdu over time, emphasizing the need 
for comprehensive monitoring and adaptive management 
strategies to sustainably address fluctuations and ensure 
environmental well-being.

The M-K test and Sen’s slope estimation results, with 
a confidence level of α=0.05, are presented in Fig. 10a) 
and 10b). The results in the Z-value image are classified into 
five levels: significantly increasing (Z > 1.96), increasing 
(0.001 < Z < 1.96), no trend (-0.001 < Z < 0.001), decreasing 
(-1.96 < Z < -0.001), and significantly decreasing (Z < -1.96). 
Areas of improvement in the ecological environment 
accounted for 28.5% of the total area of Chengdu. 
Of these areas, those with significant improvements 
account for 10.6%, while approximately 42.8% exhibit 
no significant change. Conversely, areas experiencing 
a decline in ecological quality cover 28.4% of the total 
area, with significant decreases accounting for 4.8%. While 
the areas of improved and decreased ecological quality 
in Chengdu are nearly equivalent, the overall quality trend 
displays an upward trajectory. This indicates that Chengdu 
has successfully balanced the development of the urban 
environment and ecological quality over the past decade.

According to Sen’s slope estimation (Fig. 10d)), 
areas of Chengdu that experienced a significant decline 
in ecological quality over the past ten years are predominantly 
located in the eastern and southern regions, such as DB, 
Qingbaijiang District (QBJ), and TF. The evident decline 
in ecological quality in urban areas is primarily driven 
by the rapid expansion of cities and the concentrated 
development of industrial zones. This urban sprawl 
and industrial concentration lead to several key issues 
that adversely affect the ecological health of districts 
and counties. Conversely, areas exhibiting a significant 
increase are relatively dispersed and lack a distinct 
agglomeration pattern.

Sustainability Analysis

The Hurst index, widely used to evaluate changes 
in the trends of time series, is applied in a pixel-by-pixel 
analysis to the RSEI dataset for Chengdu, spanning 2013 
to 2022. The results of the analysis, depicted in Fig. 11a), 
reveal an average Hurst index of 0.45. Interestingly, 
only 12.8% of the pixels display weak antisustainability 
(0.25 H < 0.5), with the majority (87%) exhibiting H ≥ 0.5. 
Of these, 19.3% of the pixels with H ≥ 0.5 display weak 

sustainability (0.5 < H ≤ 0.75). The remaining 67.7% 
exhibit strong sustainability (0.75 < H ≤ 1). Additionally, 
areas demonstrating strong sustainability are primarily 
concentrated in urban built-up areas and western high-
mountain regions in Chengdu.

The Hurst index results are integrated with previous trend 
test results to assess the sustainability of changes in ecological 
quality in Chengdu from 2013 to 2022, as depicted 
in Fig. 11b), which includes five categories: continuous 
degradation, future degradation, stable, future improvement, 
and continuous improvement. Regions undergoing continuous 
degradation are predominantly located in Pidu District (PD), 
DB, JY, and the northern part of TF; these areas require 
urgent and significant improvements. Areas anticipated to 
face degradation in the future are scattered, particularly 
within the urban built-up areas of each region, emphasizing 
the importance of ongoing monitoring and corresponding 
actions to prevent degradation and sustain the current level 
of ecological quality.

Conversely, regions displaying continuous improvement 
are primarily distributed in Chenghua District (CH), Qionglai 
(QL), and the Longquan Mountain region, indicating strong 
continuity in the future trend of RSEI in Chengdu from 
2013 to 2022. The results reflect the continued enhancement 
of Chengdu’s overall ecological environment.

Limitations and Improvements

Although this study focused on the ecological quality 
of Chengdu, certain city-specific ecological factors, such as 
the nighttime light index, population density, and economic 
indicators, which could significantly impact the urban 
ecological environment, were ignored. Thus, future studies 
will aim to enhance and refine the ecological evaluation 
index system to improve assessments of the quality 
of the ecological environment in the area. Notably, 
geographic detectors will be employed to detect and analyze 
ecological driving factors. The effects of different factors 
on the urban RSEI will be explored at various spatial scales 
through partial correlation analysis.

Using autocorrelated and resampled RSEI data 
at the 1  km scale in this study introduces potential 
complications due to scale differences. The choice of scale 
is critical in ecological and environmental studies because 
it can significantly influence the interpretation of data. In 
the future, the improved RSEI model for cities and spatial 
autocorrelation analysis at different resolutions can be used 
to study the spatial and temporal distributions of the quality 
in different natural and urban environments.

Conclusions

In this paper, the GEE platform and RSEI are used 
to analyze the changes in the quality of the ecological 
environment in Chengdu. Using spatiotemporal data, trend 
analysis and matrix transfer analysis, changes in ecological 
indicators in the Chengdu region from 2013 to 2022 are 
analyzed, and the following conclusions are drawn.
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Fig. 10. Spatial distribution of RSEI trends.

Fig. 11. Sustainability of ecological quality.

(b) M-K P

 (d) SEN’s Slope

(b) Future Trends

(a) M-K Z

(c) CV

(a) Hurst 



Huanhuan Sun, et al.16

The results of this study show that the average RSEI 
in Chengdu is between 0.4 and 0.6. Overall, the ecological 
quality of Chengdu is moderate, and the ecological 
situation is gradually improving. The distribution 
characteristics of the RSEI are low in the central urban area 
and high in the surrounding areas. The area of improvement 
in the RSEI was larger than the area of degradation over 
the past decade. The improvement area is mainly located 
in the eastern part of the study area. The Moran’s I values 
in 2013, 2017, and 2022 were 0.938, 0.960, and 0.914, 
respectively. The results show that the ecological quality 
in Chengdu displays a positive spatial correlation, clustered 
characteristics, and low randomness. The degree of spatial 
aggregation first increases and then decreases. H-H clusters 
are mainly distributed in the western mountainous areas, 
mainly because these areas have a low urbanization rate 
and a good ecological environment. L-L clusters are 
mainly distributed in central urban areas with intensive 
social activities and industry. In the future, the quality 
of the ecological environment of Chengdu is projected to 
continue to improve. Improving the ecological environment 
is the most effective way to create a livable city. Therefore, 
Chengdu should continue to attach importance to ecological 
protection and high-quality economic development, which 
are important for urban development.
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