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Abstract

Prefabricated cabin substations, as a new type of substation, have advantages such as saving 
investment, a short construction period, and low-carbon environmental protection. They are 
the mainstream development trend of low-carbon substations in the future and play an important 
role in the construction of new power systems, especially in the development of urban power grids. 
This article systematically conducted carbon footprint tracing, analysis, calculation, and evaluation 
of prefabricated substations during the planning, construction, operation, and scrapping stages, forming 
a carbon footprint accounting method for the entire life cycle of prefabricated substations. The research 
results show that the carbon footprint of the construction and operation stages accounts for more than 
90% of the carbon footprint of a prefabricated substation throughout its life cycle. Material carbon 
footprint, SF6 carbon footprint, and station electricity carbon footprint are important components 
of the substation’s carbon footprint. Green plants and lawns can effectively reduce the carbon emissions 
of prefabricated substations and have a positive effect on controlling carbon footprints. Suggestions were 
put forward to reduce the carbon footprint of prefabricated cabin substations in the areas of equipment 
replacement, energy conservation and consumption reduction, operation monitoring, and optimization. 
Simultaneously, carbon footprint prediction models for substations based on the bat algorithm (BA) 
and extreme learning machine (ELM) were constructed to accurately predict the carbon footprint 
of substations at various stages, providing a reference for the design selection, scheme optimization, 
energy-saving, and carbon reduction transformation of prefabricated cabin substations.

Keywords: carbon footprint, prefabricated cabin substation, full lifecycle, gray relational analysis, bat 
algorithm
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Introduction

In recent years, the increase in greenhouse gases has 
led to global warming and frequent extreme weather 
events, which have adversely affected human production 
and life [1–3]. To effectively address climate change, China 
established a national carbon emissions trading market 
in July 2021 and took the lead in conducting carbon 
emissions trading in the power industry. As of now, China’s 
carbon market has become the world’s largest carbon 
market, covering greenhouse gas emissions. Prefabricated 
substations, as an important component of the power 
system, actively participating in carbon market trading is 
of great significance in reducing carbon emissions from 
prefabricated substations. Conducting a carbon footprint 
assessment of prefabricated substations can explore 
their carbon reduction potential and promote the green 
development of power grid enterprises [4–9].

With the accelerated construction of prefabricated 
substations, studying the full lifecycle carbon footprint 
of prefabricated substations is of great significance for 
controlling carbon emissions in the power industry 
and promoting the vigorous development of the carbon 
market in the power industry. According to the Second 
Biennial Update Report on Climate Change in China, 
China’s greenhouse gas inventory includes six categories: 
carbon dioxide (CO2), methane (CH4), nitrous oxide 
(N2O), hydrofluorocarbons (HFCs), perfluorides (PFCs), 
and sulfur hexafluoride (SF6). The full lifecycle carbon 
footprint of prefabricated substations mainly includes 
the carbon footprint of greenhouse gases such as CO2 
and SF6. This article focuses on studying the carbon 
footprint of prefabricated cabin substations throughout their 
entire lifecycle, starting from these two types of greenhouse 
gases (Fig. 1).

Many scholars at home and abroad have conducted 
research on the carbon footprints of substations. Liu et 
al. used the life cycle assessment method to calculate 
the carbon footprint of a 500 kV substation [10]. Zhao 
et al. studied the cost and carbon emission optimization 
calculation model for substations [11]. Liu et al. calculated 
the average carbon emissions of several West-East power 
transmission projects through Monte Carlo simulation [12]. 
Aryai et al. studied the differences in carbon emissions 
of power grids in different cities through electricity flow 
data [13]. Chen et al. proposed a comprehensive lifecycle 
cost for power transmission and transformation projects, 
including economic and carbon costs, and calculated these 
based on carbon market trading prices [14]. Lian et al. used 
the Granger causality test to verify the relationship between 
regional electricity carbon emissions and other factors [15].

Wei et al. studied the energy cost and related carbon 
footprint of ultra-high voltage substations in China [16]. 
Daneshzand et al. explored the impact of electric vehicle 
development on electricity prices and carbon emissions 
in response to the problem of potential power grid overload 
caused by electric vehicles [17]. Wang et al. studied 
the impact on the power grid as the penetration rate 
of renewable energy increases and proposed how to improve 

the carbon reduction capacity of the power grid through 
design optimization [18]. Desideri et al. evaluated the carbon 
emissions generated by the installation and transportation 
of photovoltaic system booster stations, taking into 
account the impact of global warming potential (GWP) 
[19]. Singh et al. calculated the carbon emissions changes 
of substations under different power factor operations [20]. 
Ruiz-Mendoza et al. defined the greenhouse gas emissions 
per unit of energy in electricity production as the carbon 
index and studied the relationship between the carbon 
index and power generation energy consumption in four 
Latin American countries [21]. Shaffer et al. proposed that 
deploying fuel cell clusters on the grid side can increase 
the penetration rate of renewable energy and continuously 
reduce carbon emissions [22].

Current research on the carbon footprint of substations 
mainly focuses on the carbon emissions of substations 
during the construction and operation phases. More 
in-depth research is still needed in many aspects: (1) 
A carbon footprint is the sum of greenhouse gas emissions 
and greenhouse gas removal, and current research is mainly 
limited to carbon emissions without studying carbon 
removal (i.e., negative emissions); (2) The study of carbon 
footprints in substations has overlooked the impact of GWP 
on research results. Taking SF6 gas, a common gas in power 
distribution equipment, as an example, its greenhouse effect 
is 23900 times that of carbon dioxide; (3) Prefabricated 
cabin substations, as a new type of substation, have been 
widely used due to their low construction investment, 
short construction period, and convenient operation 
and maintenance. Currently, research on the carbon 
footprint of substations mainly focuses on traditional civil 
engineering substations, with less research on prefabricated 
cabin substations; (4) Lack of evaluation and calculation 
methods for the carbon footprint system of the entire life 
cycle cost of substations has prevented effective prediction 
of the carbon footprint of substations [23–28].

Based on the analysis of the current research status 
of carbon footprint in substations, this paper conducted 
a study on the evaluation and prediction of the carbon 
footprint of prefabricated cabin substations throughout 
their entire life cycle. The main innovations are as follows:

(1) The carbon footprint of prefabricated cabin 
substations is calculated in four stages: planning stage, 
construction stage, operation stage, and scrapping stage, 
covering the entire process of substation investment 
decision-making, construction, operation, and scrapping;

(2) Introducing Global Warming Potential (GWP) to 
convert the carbon footprint of substations into carbon 
dioxide equivalent, making the carbon footprint of each 
stage comparable, is of great significance for analyzing 
the carbon emission levels of prefabricated substations at 
different stages;

(3) We comprehensively calculated the carbon 
emissions and removal of substations and, for the first time, 
measured the carbon removal of substations represented 
by green plants and lawns in substations, providing 
reliable support for the scientific evaluation of substations 
carbon footprint;
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Fig. 1. Carbon footprint composition of prefabricated substation throughout its entire lifecycle. 
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(4) We have constructed a BA-ELM substation 
carbon footprint prediction model and trained the model 
parameters based on sample data, which can effectively 
improve the accuracy of the BA-ELM model in predicting 
the carbon footprint of substations.

Materials and Methods

Carbon Footprint Calculation Method 
for Prefabricated Cabin Substations

The carbon footprint of a prefabricated substation 
throughout its entire life cycle includes the carbon footprint 
generated during the planning phase, construction phase, 
construction phase, operation phase, and scrapping phase:

  (1)

Among them, CC, CJ, CY, and CF are the carbon 
footprints generated during the four stages of preparation, 
construction, operation, and scrapping, respectively.

(1) Carbon footprint during the planning phase
The carbon footprint during the planning phase mainly 

comes from the energy and materials consumed during site 
cleaning. Referring to relevant research, it can be calculated 
at 105 kg CO2e/m2.

(2) Carbon footprint during the construction phase
The carbon footprint of a prefabricated substation 

during the construction phase includes the carbon footprint 
generated by engineering construction, equipment 
and material transportation, and building materials:

  (2)

Among them, CJ is the carbon footprint during 
the construction phase of prefabricated substations, 
CS is the carbon footprint of engineering construction, 
CT is the carbon footprint of equipment and material 
transportation, and CM is the carbon footprint of building 
materials.

The carbon footprint of engineering construction is 
mainly generated by the energy consumption of various 
construction machines during operation. Therefore, 
the engineering carbon footprint can be calculated through 
the engineering quantity, machinery shift quota, and energy 
consumption per unit mechanical shift:

  (3)

Among them, Qi is the engineering quantity of the i-th 
process, MTi is the machinery shift quota, MEi is the energy 
consumption per unit mechanical shift, and CFi is the carbon 
footprint factor.

The carbon footprint of equipment and material 
transportation refers to the carbon emissions generated by 
the energy consumption of vehicles during transportation.

  (4)

Among them, Wi is the weight of the i-th type 
of transportation material (or equipment), Di i is 
the transportation distance, and CAWj is the load capacity 
of the j-th type of vehicle, Vj is the energy consumption 
per unit distance of the j-th type of vehicle, and CFj is 
the carbon footprint factor.

The carbon footprint of building materials mainly 
comes from the production process of building materials, 
and the composition of the carbon footprint of building 
materials is:

  (5)

Among them, Mi is the consumption of building 
materials, li is the material loss rate, and CFi is the carbon 
footprint factor.

(3) Carbon footprints during the operation phase
Carbon footprints during the operation phase mainly 

include carbon emissions generated by station electricity, 
greenhouse gas leaks from SF6 equipment, carbon emissions 
generated by the energy consumption of operation 
and maintenance vehicles, and carbon emissions absorbed 
by green plants and lawns.

The carbon emission factor for station electricity 
adopts the national average carbon dioxide emission 
factor for electricity (0.5568 kg CO2/kWh) as stated 
in the Announcement on the Release of Carbon Dioxide 
Emission Factors for Electricity in 2021 by the Ministry 
of Ecology and Environment and the National Bureau 
of Statistics.

The SF6 gas dissipation refers to the typical design 
scheme of a 110 kV substation. The SF6 gas content 
in the GIS equipment is 2.25 t. Calculated based on 
an annual leakage of 0.5% (0.01125 t/year), the global 
warming potential (GWP) of SF6 is 23900 times that 
of CO2, and the equivalent carbon emissions are 268.875 t.

Carbon emissions generated by the energy consumption 
of maintenance vehicles:

  (6)

Among them, VEi is the energy consumption of operation 
and maintenance vehicles and CFi is the carbon footprint 
factor.

The carbon sink of green plants and lawns can refer to 
-13.425 kgCO2e/(m2 • a) and -1.15 kgCO2e/(m2 • a).

(4) Carbon footprint during the scrapping stage
The carbon footprint during the scrapping stage refers 

to existing research results and is simplified by 10% 
of the carbon footprint during the construction stage.

Gray Relational Analysis

Gray Relational Analysis (GRA) determines 
the correlation between factors based on their similarity 
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and dissimilarity, and this degree of correlation is called 
the Gray Relational degree. According to the gray 
correlation degree, the correlation of factors can be sorted to 
screen out factors with higher correlation further. The steps 
are as follows:

Step 1: Determine the reference sequence  
and the comparison sequence  in the sample data, t = 1, 2, 3, 
…, m; i = 1, 2, 3, …, n. Take the carbon footprint sequence 
of prefabricated cabin substations as the reference sequence 
and the influencing factor sequences (construction energy 
consumption, transportation energy consumption, station 
electricity, etc.) as the comparison sequences.

Step 2: Perform dimensionless data processing:

  (7)

Step 3: Calculate the correlation coefficient between 
the comparison sequence and the reference sequence:

  (8)

Among them, ρ is the resolution coefficient, which has 
a value range of (0,1), generally taken as 0.5.

Step 4: Calculate correlation:

  (9)

Bat Algorithm

As a population-based intelligent optimization 
algorithm, the bat algorithm optimizes calculations by 
simulating the foraging behavior of bats. The update 
process of the bat algorithm for position and velocity is 
as follows:

  (10)

  (11)

  (12)

Among them, fi, fmin, and fmax represent the pulse frequency 
of the i-th bat, as well as the minimum and maximum values 
of the pulse frequency, respectively. λ is a random variable 
between 0 and 1. υt

i, xt
i represent the flight speed and position 

of the i-th bat individual. x* represents the global optimal 
value of bat position [29, 30].

To improve local search capability, update the current 
position when the bat approaches the global optimum:

  (13)

Among them, xbest is the current global optimal solution 
of the bat population, and At

i is the sound wave loudness 
at time t.

Bats increase the probability of discovering prey by 
varying the volume and frequency of sound waves while 
searching for them. At the beginning of the search, bats 
emit sound waves with high loudness and low frequency, 
thus conducting a global search over a large area. As 
the search range decreases and the prey gets closer, bats 
will increase their frequency and decrease their loudness to 
search for the location of the target prey more accurately. 
During the search process, the changes in the loudness 
and frequency of bat sound waves are as follows [31, 32]:

  (14)

  (15)

Among them, α is a random number within the range 
of (0, 1), ri

t+1 is the pulse frequency at time t+1, ri
0 is 

the initial pulse frequency of bat i, k is the bat pulse 
frequency enhancement coefficient, k > 0.

In Table 8, the maximum and minimum pulse 
frequencies of bats are 6 and 0, respectively. The number 
of bats is 65, the maximum loudness is 1.5, the initial pulse 
frequency is 1.2, and the maximum number of iterations 
is 100. Update the optimal solution of the bat algorithm 
based on the carbon footprint prediction error value until 
the prediction accuracy requirement is met.

Using the Mean Absolute Percentage Error (MAPE) 
as the loss function for model training to evaluate 
the effectiveness of model learning

Among them, yi represents the predicted value, yi 
represents the actual value, and n represents the number 
of predicted points.

Extreme Learning Machine

Extreme Learning Machine (ELM) is a type of neural 
network with a single hidden layer structure. After 
initialization, the input weights generally do not need to be 
adjusted again. Compared with traditional neural networks 
that require a large number of training samples, ELM 
has higher flexibility and can adapt to complex machine 
learning needs. It has the advantages of fast convergence 
and is not easily trapped in local optima.

For the given N samples , the number of input layer 
nodes is k, and the number of hidden layer nodes is m. 
The ELM neural network can be represented as:

 j = 1, 2, 3, …, N (16)
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Among them, g(x) is the Sigmoid activation function,  
wi is the weight between the i-th hidden node and the input 
node, bi is the bias of the i-th hidden node, βi is the weight 
between the i-th hidden node and the output node, and oj 
is the output value of ELM.

H represents the output matrix of the ELM hidden 
layer, β represents the output weight matrix, T represents 
the expected output matrix, and ELM can be expressed as:

  (17)

By solving Equation 17,

  (18)

Among them, H+ is the Moore-Penrose generalized 
inverse matrix of the hidden layer output matrix H [33–36].

Carbon Footprint Prediction Model for 
Prefabricated Cabin Substations

Using the carbon footprint data of prefabricated 
substations as samples, a bat algorithm optimized ELM 
model (BA-ELM) was constructed. The gray correlation 
analysis method was used to screen the influencing factors 
of the substation’s carbon footprint, and the BA-ELM 
prediction model was trained on the carbon footprint sample 
data. The weights and biases of ELM were iteratively 
optimized using the bat algorithm to continuously improve 
the convergence of BA-ELM on the carbon footprint 
sample data. The trained BA-ELM model was used as an 
optimization model to predict the carbon footprint data 
of prefabricated substations.

Empirical Research

Calculation of Carbon Emission Factors

The carbon emission factor cannot be directly 
obtained and needs to be calculated based on the heating 
value of unit energy consumption, the carbon content 
per unit calorific value, and the carbon oxidation rate 
provided in the “Guidelines for Compilation of Provincial 
Greenhouse Gas Inventories (2011)”. The carbon oxidation 
rate of liquid fuel is 0.98, the carbon oxidation rate of gas 
fuel is 0.99, and the carbon oxidation rate of solid fuel 
varies depending on the type of fuel. The calculation 
factors for the carbon footprint generated by energy 
consumption throughout the entire lifecycle of a substation 
are shown in Table 1.

Carbon Footprint Calculation 
of Prefabricated Cabin Substation

Select four 110 kV prefabricated cabin substation 
projects as research objects, with construction capacities 
of 2×50 MVA, 2×50 MVA, 2×63 MVA, and 2×50 MVA for 
projects 1, 2, 3, and 4, respectively. According to the energy 
carbon footprint factor calculated above and the power 
carbon emission factor released in the Announcement 
of the Ministry of Ecology and Environment and the National 
Bureau of Statistics on the Release of Carbon Dioxide 
Emission Factors for Electricity in 2021, the warming 
potential value of SF6 is calculated at 23900. The carbon 
footprint results of four prefabricated cabin substation 
projects in the planning, construction, operation, 
and scrapping stages are shown in Table 2 and Table 3.

Table 1. Calculation Table of Energy Consumption Carbon Footprint Factor.

Classification Types of fuel
Heating value of unit 
energy consumption 

(kJ/kg)

Carbon content per 
unit calorific value 

(tC/TJ)

Carbon oxidation 
rate

Unit calorific value CO2 
emission factor 

(kgCO2/kg)

solid fuel

standard coal 29307 26.37 0.94 2.664 

anthracite 30564 27.4 0.94 2.886 

bituminous coal 37200 26.1 0.93 3.311 

lignite 27214 28 0.96 2.682 

coke 28435 29.5 0.93 2.860 

liquid fuel

crude oil 41816 20.1 0.98 3.020 

fuel oil 41816 21.1 0.98 3.170 

gasoline 43070 18.9 0.98 2.925 

diesel oil 42552 20.2 0.98 3.089 

general  
kerosene 43070 19.6 0.98 3.033 

LPG liquefied 
petroleum gas 50179 17.2 0.98 3.101 

Refinery Gas 45998 18.2 0.98 3.008 

gas fuel natural gas 38931 15.3 0.99 2.162 
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The carbon footprint during the planning stage is mainly 
due to site clearance. The project is located in the urban 
area, and there are no structures or obstacles that need to be 
removed from the construction site. Therefore, the carbon 
footprint during the planning phase is not included.

The carbon footprint during the construction stage 
mainly includes the carbon footprint generated during 
the production process of materials such as concrete 
and steel bars, the carbon footprint during the production 

and installation of transformers and GIS equipment, 
and the carbon footprint during the use of construction 
machinery and transportation of materials and equipment.

The carbon footprint of station electricity in the operation 
stage is calculated based on the electricity carbon footprint 
factor, the SF6 dissipation carbon footprint is calculated based 
on the SF6 global warming potential (GWP), the carbon 
footprint of operation and maintenance vehicles is calculated 
based on the energy carbon footprint factor, and the carbon 

Table 2. Carbon footprint analysis table for each stage of the substation (unit: tCO2e).

Stage Name Project 1 Project 2 Project 3 Project 4

planning stage planning stage carbon footprint 0.00 0.00 0.00 0.00 

construction stage

construction carbon footprint 64.09 67.67 68.00 63.35 

transportation carbon footprint 505.11 454.60 518.95 491.27 

material carbon footprint 42507.55 43012.14 42179.93 42267.25 

operation stage

station electricity carbon footprint 2438.78 3048.48 3170.42 2682.66 

SF6 dissipation carbon footprint 13443.75 13443.75 13443.75 13443.75 

operation and maintenance vehicles carbon 
footprint 2242.01 2309.27 2398.95 2286.85 

green plants and lawns carbon footprint -69.96 -42.62 -48.77 -59.83 

scrapping stage scrapping carbon footprint 4307.68 4353.44 4276.69 4282.19 

total 65439.02 66646.73 66007.93 65457.49 

Fig. 2. Carbon footprint of each stage of the substation. 
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Table 3. Main carbon footprint of the substation (unit: tCO2e).

Project Name Activity 
level Unit Carbon foot-

print factor Factor unit Carbon 
footprint

Carbon 
footprint unit

Project 1

Construction energy 
consumption 207480 kg 3.089 kgCO2/kg 64.09057 tCO2e

Transportation energy 
consumption 1635200 kg 3.089 kgCO2/kg 505.1133 tCO2e

Station electricity 8.76 10000 
kWh/year 0.5568 kgCO2/kWh 2438.784 tCO2e

Operation and main-
tenance vehicles 153300 kg 2.925 kgCO2/kg 2242.013 tCO2e

Green plants 76.25 m2 -13.425 kgCO2e/
(m2•a) -51.1828 tCO2e

lawn 326.5 m2 -1.15 kgCO2e/
(m2•a) -18.7738 tCO2e

concrete 4503.71 m3 295 kg CO2e/m³ 1328.594 tCO2e

steel bars 339.14 t 2340 kg CO2e/t 793.5876 tCO2e

transformers 2 one 27.06 tCO2e 54.12 tCO2e

GIS composite appli-
ances 1 set 40331.25 tCO2e 40331.25 tCO2e

Project 2

Construction energy 
consumption 219055.2 kg 3.089 kgCO2/kg 67.66615 tCO2e

Transportation energy 
consumption 1471680 kg 3.089 kgCO2/kg 454.602 tCO2e

Station electricity 10.95 10000 kWh/
year 0.5568 kgCO2/kWh 3048.48 tCO2e

Operation and main-
tenance vehicles 157899 kg 2.925 kgCO2/kg 2309.273 tCO2e

Green plants 46.25 m2 -13.425 kgCO2e/
(m2•a) -31.0453 tCO2e

lawn 201.36 m2 -1.15 kgCO2e/
(m2•a) -11.5782 tCO2e

concrete 4912.36 m3 295 kg CO2e/m³ 1449.146 tCO2e

steel bars 503.26 t 2340 kg CO2e/t 1177.628 tCO2e

transformers 2 one 27.06 tCO2e 54.12 tCO2e

GIS composite appli-
ances 1 set 40331.25 tCO2e 40331.25 tCO2e

Project 3

Construction energy 
consumption 220147.2 kg 3.089 kgCO2/kg 68.00347 tCO2e

Transportation energy 
consumption 1680000 kg 3.089 kgCO2/kg 518.952 tCO2e

Station electricity 11.388 10000 kWh/
year 0.5568 kgCO2/kWh 3170.419 tCO2e

Operation and main-
tenance vehicles 164031 kg 2.925 kgCO2/kg 2398.953 tCO2e

Green plants 53.26 m2 -13.425 kgCO2e/
(m2•a) -35.7508 tCO2e

lawn 226.35 m2 -1.15 kgCO2e/
(m2•a) -13.0151 tCO2e

concrete 3759.26 m3 295 kg CO2e/m³ 1108.982 tCO2e

steel bars 286.97 t 2340 kg CO2e/t 671.5098 tCO2e
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footprint of green plants and lawns is calculated based on 
the corresponding negative emission factor.

The carbon footprint during the scrapping stage 
is simplified to 10% of the carbon footprint during 
the construction phase.

According to the definition of carbon footprint, it is 
the sum of greenhouse gas emissions and greenhouse 
gas removals. According to Table 2 and Fig. 2, it can 
be seen that only the carbon footprint of green plants 
and lawns is negative, which is the amount of greenhouse 
gas removal; all other carbon footprints are greenhouse 
gas emissions. The material carbon footprint and SF6 
dissipation carbon footprint are the carbon footprints 
with the highest proportions. Therefore, by optimizing 
the engineering quantity, improving the production 
technology level of building materials, and replacing 
existing GIS equipment with SF6 free equipment, 
the carbon footprint of prefabricated cabin substations can 
be effectively reduced. In addition, by increasing the area 
of green plants and lawns, the removal of greenhouse 
gases can also be increased, which can reduce the carbon 
footprint of prefabricated substations.

Sensitivity Analysis

In order to analyze the impact of changes in indicators 
of different activity levels on the total carbon footprint 
of substations, the focus was on analyzing the changes 
in carbon footprint caused by changes in indicators such 
as construction energy consumption, transportation energy 
consumption, station electricity consumption, operation 
and maintenance vehicles, green plants, lawns, concrete, 
steel bars, transformers, GIS composite appliances, 

etc. The results are shown in Table 4. The change 
in the activity level of GIS composite appliances has 
the greatest impact on the total carbon footprint. When 
the activity level of GIS composite appliances increases 
by 10%, the carbon footprint of substations increases by 
more than 6%. Project 1 has the highest carbon footprint 
change rate, which is 6.1632%. For every 10 percentage 
points increase in station electricity activity level, the total 
carbon footprint of projects 1, 2, 3, and 4 increases by 
0.3727%, 0.4574%, 0.4803%, and 0.4098%, respectively. 
For every 10 percentage points increase in the activity 
level of operation and maintenance vehicles, the total 
carbon footprint of projects 1, 2, 3, and 4 increases by 
0.3426%, 0.3465%, 0.3634%, and 0.3494%, respectively. 
The changes in the usage of materials such as concrete 
and steel bars have a significant impact on carbon footprint. 
For every 10 percentage points increase in concrete 
usage, the total carbon footprint of projects 1, 2, 3, and 4 
increases by 0.2030%, 0.2174%, 0.1680%, and 0.1783%, 
respectively. For every 10 percentage points increase 
in steel bar usage, the total carbon footprint of projects 
1, 2, 3, and 4 increases by 0.1213%, 0.1767%, 0.1017%, 
and 0.1092%, respectively.

Results and Discussion

Selection of Factors Influencing 
the Carbon Footprint of Substations 
Based on Gray Relational Analysis

In order to analyze the main factors affecting the carbon 
footprint of the prefabricated substation, gray correlation 

Project Name Activity 
level Unit Carbon foot-

print factor Factor unit Carbon 
footprint

Carbon 
footprint unit

transformers 2 one 34.0956 tCO2e 68.1912 tCO2e

GIS composite appli-
ances 1 set 40331.25 tCO2e 40331.25 tCO2e

Project 4 

Construction energy 
consumption 205077.6 kg 3.089 kgCO2/kg 63.34847 tCO2e

Transportation energy 
consumption 1590400 kg 3.089 kgCO2/kg 491.2746 tCO2e

Station electricity 9.636 10000 kWh/
year 0.5568 kgCO2/kWh 2682.662 tCO2e

Operation and main-
tenance vehicles 156366 kg 2.925 kgCO2/kg 2286.853 tCO2e

Green plants 64.85 m2 -13.425 kgCO2e/
(m2•a) -43.5306 tCO2e

lawn 283.54 m2 -1.15 kgCO2e/
(m2•a) -16.3036 tCO2e

concrete 3956.28 m3 295 kg CO2e/m³ 1167.103 tCO2e

steel bars 305.46 t 2340 kgCO2e/t 714.7764 tCO2e

transformers 2 one 27.06 tCO2e 54.12 tCO2e

GIS composite appli-
ances 1 set 40331.25 tCO2e 40331.25 tCO2e
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Table 4. Sensitivity analysis table.

Activity level Activity level 
change rate (%)

Total carbon footprint change rate (%)

Project 1 Project 2 Project 3 Project 4

Construction energy consumption

-10 -0.0098% -0.0102% -0.0103% -0.0097%

-5 -0.0049% -0.0051% -0.0052% -0.0048%

5 0.0049% 0.0051% 0.0052% 0.0048%

10 0.0098% 0.0102% 0.0103% 0.0097%

Transportation energy consump-
tion

-10 -0.0772% -0.0682% -0.0786% -0.0751%

-5 -0.0386% -0.0341% -0.0393% -0.0375%

5 0.0386% 0.0341% 0.0393% 0.0375%

10 0.0772% 0.0682% 0.0786% 0.0751%

Station electricity

-10 -0.3727% -0.4574% -0.4803% -0.4098%

-5 -0.1863% -0.2287% -0.2402% -0.2049%

5 0.1863% 0.2287% 0.2402% 0.2049%

10 0.3727% 0.4574% 0.4803% 0.4098%

Operation and maintenance ve-
hicles

-10 -0.3426% -0.3465% -0.3634% -0.3494%

-5 -0.1713% -0.1732% -0.1817% -0.1747%

5 0.1713% 0.1732% 0.1817% 0.1747%

10 0.3426% 0.3465% 0.3634% 0.3494%

Green plants

-10 0.0078% 0.0047% 0.0054% 0.0067%

-5 0.0039% 0.0023% 0.0027% 0.0033%

5 -0.0039% -0.0023% -0.0027% -0.0033%

10 -0.0078% -0.0047% -0.0054% -0.0067%

lawn

-10 0.0029% 0.0017% 0.0020% 0.0025%

-5 0.0014% 0.0009% 0.0010% 0.0012%

5 -0.0014% -0.0009% -0.0010% -0.0012%

10 -0.0029% -0.0017% -0.0020% -0.0025%

concrete

-10 -0.2030% -0.2174% -0.1680% -0.1783%

-5 -0.1015% -0.1087% -0.0840% -0.0891%

5 0.1015% 0.1087% 0.0840% 0.0891%

10 0.2030% 0.2174% 0.1680% 0.1783%

steel bars

-10 -0.1213% -0.1767% -0.1017% -0.1092%

-5 -0.0606% -0.0883% -0.0509% -0.0546%

5 0.0606% 0.0883% 0.0509% 0.0546%

10 0.1213% 0.1767% 0.1017% 0.1092%

transformers

-10 -0.0083% -0.0081% -0.0103% -0.0083%

-5 -0.0041% -0.0041% -0.0052% -0.0041%

5 0.0041% 0.0041% 0.0052% 0.0041%

10 0.0083% 0.0081% 0.0103% 0.0083%



Research on the Evaluation and Prediction... 11

Activity level Activity level 
change rate (%)

Total carbon footprint change rate (%)

Project 1 Project 2 Project 3 Project 4

GIS composite appliances

-10 -6.1632% -6.0515% -6.1101% -6.1614%

-5 -3.0816% -3.0257% -3.0550% -3.0807%

5 3.0816% 3.0257% 3.0550% 3.0807%

10 6.1632% 6.0515% 6.1101% 6.1614%

Table 5. Dimensionalization calculation results of influencing factors.

Influence 
factor

Construc-
tion energy 
consump-

tion

Transpor-
tati-on 

energy con-
sumption

Stati-on 
elect-
ricity

Operati-on 
and maint-

en-ance 
vehicles

Green 
plants lawn Conc-

rete steel bars Trans fo-
rmers

GIS 
compos-
ite appli-

ances

Project 1 0.974 1.026 0.860 0.971 1.268 1.258 1.052 0.945 1.000 1.000

Project 2 1.029 0.923 1.075 1.000 0.769 0.776 1.147 1.403 1.000 1.000

Project 3 1.034 1.054 1.118 1.039 0.885 0.872 0.878 0.800 1.000 1.000

Project 4 0.963 0.998 0.946 0.990 1.078 1.093 0.924 0.852 1.000 1.000

Table 6. The difference sequence between the compared sequence and the reference sequence.

Difference 
sequence

Construction 
energy con-
sumption

Transportati-
on energy 

consumption

Station 
electri-

city

Operation 
and mainten-
ance vehicles

Green 
plants lawn Concrete steel  

bars
Trans-

formers

GIS com-
posite ap-
pliances

Project 1 0.019 0.032 0.133 0.022 0.274 0.265 0.058 0.048 0.007 0.007

Project 2 0.017 0.088 0.064 0.012 0.243 0.235 0.135 0.391 0.012 0.012

Project 3 0.032 0.052 0.116 0.037 0.116 0.129 0.124 0.202 0.002 0.002

Project 4 0.030 0.004 0.047 0.003 0.085 0.099 0.070 0.142 0.007 0.007

analysis was conducted on multiple indicators such as 
construction energy consumption, transportation energy 
consumption, station electricity consumption, operation 
and maintenance vehicles, green plants, lawns, concrete, 
steel bars, transformers, GIS composite appliances, 
etc., to calculate the correlation between the indicators 
and the carbon footprint of the prefabricated substation. 
Sort the influencing factors based on the correlation index 
and select the main influencing factors of the carbon 
footprint of prefabricated cabin substations as input 
variables for the carbon footprint prediction model.

The data obtained by dimensionless processing 
of the influencing factor indicators are shown in Table 5. 
The difference sequence between the comparison sequence 
(influencing factors) and the reference sequence (carbon 
footprint) was further calculated, and the results are shown 
in Table 6. The correlation coefficient and correlation 
degree of the influencing factors were calculated based on 
the difference sequence, and the results are shown in Table 
7 and Fig. 3.

In Fig. 3, the correlation between transformers, GIS 
composite appliances, and carbon footprint is the highest at 
0.976. The factors that have a significant impact on carbon 
footprint include operation and maintenance vehicles (0.925), 
construction energy consumption (0.897), transportation 
energy consumption (0.837), station electricity consumption 
(0.702), and concrete (0.684). Green plants and lawns can 
effectively eliminate carbon emissions and have a negative 
impact on carbon footprint. However, due to their small 
area and low carbon footprint factor, their impact on carbon 
footprint is limited. By further expanding the area of green 
plants and lawns in the station area and planting plant species 
with higher carbon footprint factors, the absorption of carbon 
emissions can be improved.

Based on the analysis of the factors affecting the carbon 
footprint of prefabricated cabin substations, seven variables, 
including transformers, GIS composite electrical appliances, 
operation and maintenance vehicles, construction energy 
consumption, transportation energy consumption, station 
electricity consumption, and concrete, were selected as 
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the main influencing factors of carbon footprint and used 
as input variables for the BA-ELM prediction model.

Parameter Setting and Model Construction

In order to verify the accuracy of the BA-ELM 
model in predicting the carbon footprint of prefabricated 
substations, sample data was used to train the BA-
ELM model, and the four items in this paper were 
used as the test set for prediction validation. The main 
parameter settings of the model are shown in Table 8. 
The number of bats is set to 65 to improve the efficiency 
and convergence speed of the algorithm. The maximum 
number of iterations is set to 100 to avoid overfitting 
the algorithm and enhance the model’s generalization 
ability. The hidden layer node is set to 12 in order to 
obtain effective information on influencing factors to 
the maximum extent possible while avoiding excessive 
model complexity and improving the accuracy of carbon 
footprint prediction [25].

In Fig. 4, as the model training process progresses, 
the loudness of the bat in the BA algorithm continuously 
decreases [26], the pulse frequency continuously increases, 
and the accuracy of the search algorithm continues to 
improve. Therefore, the fitting accuracy of the BA-ELM 
prediction model on carbon footprint sample data 
continues to improve. At the 57th iteration, the prediction 
error of the model decreased to 1.31%, and thereafter, 
with the increase of iterations, the error rate did not show 
a significant decrease. This indicates that the model 
parameters in the 57th iteration are the current global 
optimal solution of BA-ELM.

Research on Substation Carbon Footprint 
Prediction Based on BA-ELM Model

Empirical prediction studies were conducted on 
the carbon footprint of the four prefabricated cabin 
substations mentioned above. The prediction results are 
shown in Table 9 and Fig. 5, and the prediction errors are 

Table 7. Correlation coefficient of carbon footprint influencing factors.

Correla-
tion coef-

ficient

Construc-
tion energy 
consump-

tion

Transportat-
ion energy 

consumption

Station  
elec-
tricity

Operation and 
maintenance 

vehicles

Green  
plants lawn Concrete steel  

bars
Trans-

formers

GIS com-
posite ap-
pliances

Project 1 0.921 0.866 0.601 0.906 0.420 0.429 0.777 0.811 0.975 0.975

Project 2 0.928 0.695 0.761 0.953 0.451 0.458 0.597 0.336 0.953 0.953

Project 3 0.867 0.798 0.633 0.849 0.633 0.608 0.618 0.497 1.000 1.000

Project 4 0.874 0.989 0.813 0.993 0.705 0.669 0.744 0.585 0.977 0.977

Fig. 3. The correlation between carbon footprint and influencing factors of prefabricated cabin substations. 



Research on the Evaluation and Prediction... 13

Table 8. BA-ELM model parameter setting.

Model Parameter Value

BA 

Maximum pulse frequency 6

Minimum pulse frequency 0

Number of bats 65

Maximum loudness 1.5

Initial pulse frequency 1.2

Maximum number of iterations 100

ELM
Number of hidden layer nodes 12

kernel function sig

Fig. 4. Training curve of BA-ELM carbon footprint prediction model. 

Table 9. Prediction results of BA-ELM prediction model for carbon footprint of substations.

Stage Name
Project 1 Project 2 Project 3 Project 4

Actual Predict Actual Predict Actual Predict Actual Predict

planning 
stage

planning stage 
carbon footprint 0 0 0 0 0 0 0 0

construction 
stage

construction 
carbon footprint 64.09 65.26 67.67 66.25 68 67.68 63.35 64.28

transportation 
carbon footprint 505.11 501.23 454.6 449.36 518.95 526.36 491.27 503.16

material carbon 
footprint 42507.55 42019.32 43012.14 42895.32 42179.93 41846.35 42267.25 42031.26

operation 
stage

station electric-
ity carbon foot-

print
2438.78 2553.21 3048.48 3125.89 3170.42 3216.25 2682.66 2746.85

SF6 dissipation 
carbon footprint 13443.75 13021.87 13443.75 12945.26 13443.75 12983.48 13443.75 13217.78
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Fig. 5. Prediction results of BA-ELM prediction model for carbon footprint of substations. 

shown in Table 10 and Fig. 6. It can be seen that the total 
carbon footprint prediction errors of the four projects are all 
below 1.50%, achieving high prediction accuracy. The total 
carbon footprint prediction error of Project 3 is the largest, 
at -1.37%, while the total carbon footprint prediction error 
of Project 4 is the smallest, at -0.55% [13].

Among them, the prediction error of the carbon footprint 
of transportation vehicles is relatively large, with errors 
of 7.60%, -4.05%, -3.49%, and 1.69% for the four projects, 

respectively. The material carbon footprint accounts 
for the highest proportion of the total carbon footprint, 
and the prediction accuracy of the material carbon footprint 
for the four projects is relatively high, with prediction errors 
of -1.15%, -0.27%, -0.79%, and -0.56%, respectively [29]. 
The SF6 carbon footprint is relatively large, with each 
project exceeding 10,000 tCO2e. The prediction errors 
of SF6 carbon footprint are controlled within a reasonable 
range, with prediction errors of -3.14%, -3.71%, -3.42%, 

Stage Name
Project 1 Project 2 Project 3 Project 4

Actual Predict Actual Predict Actual Predict Actual Predict

operation and 
maintenance 

vehicles carbon 
footprint

2242.01 2412.35 2309.27 2215.68 2398.95 2315.26 2286.85 2325.48

green plants and 
lawns carbon 

footprint
-69.96 -67.23 -42.62 -41.06 -48.77 -49.26 -59.83 -60.15

scrapping 
stage

scrapping car-
bon footprint 4307.68 4336.25 4353.44 4312.71 4276.69 4198.46 4282.19 4267.38

total 65439.02 64842.26 66646.73 65969.41 66007.93 65104.58 65457.49 65096.04
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Table 10. Prediction error of BA-ELM model.

Deviation Project 1 Project 2 Project 3 Project 4

planning stage carbon footprint 0 0 0 0

construction carbon footprint 1.83% -2.10% -0.47% 1.47%

transportation carbon footprint -0.77% -1.15% 1.43% 2.42%

material carbon footprint -1.15% -0.27% -0.79% -0.56%

station electricity carbon footprint 4.69% 2.54% 1.45% 2.39%

SF6 dissipation carbon footprint -3.14% -3.71% -3.42% -1.68%

operation and maintenance vehicles carbon footprint 7.60% -4.05% -3.49% 1.69%

green plants and lawns carbon footprint -3.90% -3.66% 1.00% 0.53%

scrapping carbon footprint 0.66% -0.94% -1.83% -0.35%

total -0.91% -1.02% -1.37% -0.55%

and -1.68% for the four projects, respectively. For the carbon 
footprint of green plants and lawns, the prediction 
errors of the four projects are -3.90%, -3.66%, 1.00%, 
and 0.53%, respectively, indicating that the BA-ELM 
model can accurately predict negative carbon emissions 
(carbon removal) and plays an important role in predicting 
the carbon footprint of prefabricated substations [30].

Comparison of Model Effects

Compared with the prediction performance of BP 
neural network (BPNN) and extreme learning machine 
(ELM), the results are shown in Table 11. The carbon 
footprint prediction stability of the ELM model is poor, 
and the prediction error of ELM on project 3 is the largest 

Fig. 6. Prediction error of BA-ELM model. 
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(4.59%). The stability of the BPNN model is better than 
ELM, but the prediction error is still relatively large. BA-
ELM has high stability and prediction accuracy, and its 
prediction performance is significantly better than BPNN 
and ELM.

Conclusions

In order to track and evaluate the carbon footprint 
of a prefabricated substation throughout its entire 
life cycle, it is divided into four stages: the planning 
stage, the construction stage, the operation stage, 
and the scrapping stage. Different types of carbon 
emissions are calculated, including direct carbon emissions, 
carbon emissions generated by energy consumption, 
and carbon emissions generated by material production. 
The carbon removal amount of green plants, lawns, etc. is 
considered. A method for calculating the carbon footprint 
of a prefabricated substation throughout its entire life cycle 
is proposed, and a BA-ELM carbon footprint prediction 
model is constructed to predict the carbon footprint 
of the prefabricated substation. The conclusions drawn 
are as follows:

(1) The carbon footprint during the construction 
and operation phases accounts for over 90% 
of the total lifecycle carbon footprint of prefabricated 
substations. To control and reduce the carbon 
footprint of prefabricated substations, it is necessary 
to reduce energy consumption, use low-carbon 
and environmentally friendly materials, and adopt 
advanced production processes. On the other hand, by 
expanding the planting area of green plants and lawns, 
carbon removal can be increased, thereby effectively 
reducing the carbon footprint of substations;

(2) The global warming potential (GWP) of SF6 is 
23900, and its greenhouse effect is much greater than that 
of CO2 of the same mass. SF6 is also a commonly used 
medium in substation equipment. By using fluorine-free 
new circuit breakers instead of traditional ones, the carbon 
emissions of prefabricated substations can be effectively 
controlled while improving the safety and stability 
of the system, making it easier to operate and maintain 
the substations;

(3) The carbon footprint of station electricity is an 
important component of the carbon footprint of prefabricated 
cabin substations. It can be effectively reduced by adopting 

energy-saving equipment, optimizing the layout of electrical 
equipment in the station, strengthening insulation functions, 
and using clean energy such as rooftop photovoltaics to 
meet the demand for station electricity;

(4) Strengthen the monitoring of carbon emissions 
in prefabricated substations, especially for greenhouse 
gases with high GWP, such as SF6, whose greenhouse effect 
is significant. SF6 gas in GIS and other equipment should 
be monitored, the leakage of SF6 gas should be recorded, 
and timely measures should be taken to reduce carbon 
emissions in prefabricated substations;

(5) The constructed BA-ELM substation carbon 
footprint prediction model, based on sample data to 
train the model parameters, can effectively improve 
the accuracy of the BA-ELM model in predicting 
the carbon footprint of substations, providing 
a reference for carbon footprint prediction and control 
of prefabricated cabin substations.

Specifically for the management of prefabricated 
substations, the main recommendations include: 
optimizing the substation building scheme in terms 
of architectural design, reducing the building area, 
applying photovoltaic building integration technology, 
and achieving permanent CO2 storage. In terms 
of equipment selection, choose more environmentally 
friendly equipment. Using natural ester-insulated oil 
transformers and environmentally friendly gas GIS 
equipment, the carbon emissions of the equipment 
are significantly reduced by avoiding or reducing 
the use of SF6 gas. In terms of daily operation, improve 
the energy utilization efficiency within the station, 
promote the application of high-efficiency transformers 
and capacitors, and reduce equipment operating losses; 
configure a substation carbon emission monitoring 
system to monitor and manage energy consumption 
in real-time, conduct substation carbon footprint 
prediction; and reduce substation carbon emissions.

This article establishes a method for calculating, 
predicting, and evaluating the carbon footprint 
of prefabricated substations and conducts empirical research 
on the carbon footprint of prefabricated substations, 
proposing suggestions for energy conservation and carbon 
reduction in prefabricated substations. Under the dual 
carbon background, the research results have a positive 
role and practical significance in establishing low-carbon 
intelligent substations and accelerating the construction 
of new power systems.

Table 11. Comparison of Model Effects.

Prediction model Project 1 Project 2 Project 3 Project 4

BPNN 3.25% -2.18% 3.19% -1.98%

ELM -2.69% -3.98% 4.59% 0.87%

BA-ELM -0.91% -1.02% -1.37% -0.55%
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