
Introduction

Historically, to guarantee the feeding of the world 
population, agriculture has been the activity that has 

consumed the greatest amount of water [1]. Approximately 
40% of the world’s food depends on activities inherent to 
agricultural irrigation [2]. This constantly increasing water 
demand [3] can trigger significant meteorological droughts 
[4–6], which are accentuated in arid regions [6, 7], where 
the incident solar radiation (SR) is more intense [8, 9]. 
Intense SR causes approximately 60% of precipitation to 
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Abstract

The goal is to create regression models estimating the daily Penman–Monteith reference 
evapotranspiration (PMR) using latitude–temperature for the state of Sinaloa. The reference 
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equations (PMC), Hargreaves (HAC), and PMR. Prior to calculating PMC, the incident solar radiation 
(SR) was calculated. From the Acaponeta station (2005–2008, 2011–2013, and 2015–2017), all complete 
observed variables were obtained: mean temperature, incident solar radiation (SRg), average relative 
humidity, and average wind speed at a height of 10 m. The data from the eight weather stations were 
provided by the National Meteorological Service and the National Water Commission. The daily 
observed Penman–Monteith reference evapotranspiration (PMO) was calculated. For validation, three 
simple linear regressions (SLR) were applied: SR vs SRg, PMC vs PMO, and PMR vs PMO hypothesis 
tests were applied to each SLR: Pearson correlation (Pr) vs critical Pearson correlation (Pcr). All rP 
were significantly different from zero (> |0.576|): SRg vs SR (Pr = 0.951), PMC vs PMO (Pr = 0.592), 
and PMR vs PMO (Pr = 0.625). This study provides new models that can motivate and support intelligent 
irrigation in “the breadbasket of Mexico.”

Keywords: reference evapotranspiration, Penman–Monteith, Hargreaves, intelligent irrigation, 
“the breadbasket of Mexico”

Omar Llanes Cárdenas et al.

*e-mail: oma_llanes@yahoo.com.mx  
Tel./Fax: +(52) 687-872-9625



Omar Llanes Cárdenas et al.2

return to the atmosphere in the form of evapotranspiration 
[10, 11], causing these regions to be classified as vulnerable 
to desertification [12]. For example, in semi-arid regions, 
agricultural irrigation is a parameter that should trend 
toward intelligent irrigation [13–16]. To develop intelligent 
irrigation, valuable information must be available that 
establishes the relationship between crop growth and water 
balance [17], in which reference evapotranspiration (ETo) 
is essential [18]. According to [19] and [20], ETo is 
the potential evapotranspiration of a hypothetical grass 
surface with uniform height, well-watered, and active 
growth, and which depends entirely on climatological 
variables [9, 21]. According to [9, 22–24], it is always 
advisable to use empirical equations to estimate ETo by 
the Penman–Monteith (PMC) method, even when data is 
lacking, mainly because it remains the most precise method. 
Of alternative methods, Hargreaves (HAC) continues to 
be the most used, mainly due to its high accuracy/number 
of variables used ratio [25–27]. However, [26, 27] state that 
another possible way to estimate ETo by Penman–Monteith 
is through simple linear regressions (SLR) and simple 
nonlinear regressions (SNR); PMR (dependent variable) 
vs HAC (independent variable), which more accurately 
calculates the hydric requirements of crops.

In Mexico, approximately 77% of the volume of the total 
water resource is allocated to the agricultural sector, and two-
thirds of the national territory is characterized by an aridity 
index ranging from arid to semi-arid [13]. In particular, 
the state of Sinaloa has a predominantly semi-arid climate 
[7], and according to [13, 23], this condition predisposes 
it to focus efforts on the characterization of PMR, as well 
as the subsequent design and administration of intelligent 
irrigation systems [13, 23]. Intelligent irrigation could 
improve the volumes of yields of Sinaloan crops as well 
as encourage the conservation of water resources [23, 28].

In this study, daily series (1979–2017) of minimum 
(Tmin) and maximum (Tmax) temperatures were obtained 
from seven weather stations in Sinaloa from the National 
Water Commission (CONAGUA) [29]. PMC, HAC, and PMR 
were calculated. At another weather station, Acaponeta, 
observed daily series (2005–2008, 2011–2013, and 2015–
2017) were obtained of mean temperature (Tmno), 
incident solar radiation (SRg), average relative humidity 
(), and average wind speed at a height of 10 m (). The data 
for the eight stations were provided by the CONAGUA 
[29] and CONAGUA–National Meteorological Service 
(SMN) (CONAGUA–SMN) [30]. At Acaponeta, daily 
observed Penman–Monteith ETo (PMO) was calculated. 
For validation, three SLRs were obtained: SR vs SRg, PMC 
vs PMO, and PMR vs PMO. A hypothesis test was applied: 
Pearson correlation (Pr) vs Pearson critical correlation 
(Pcr). In the three SLRs, the condition Pr  >  |Pcr| was met; 
that is, all Pr were significantly different from zero [31].

The goal was to create PMR estimation models using 
latitude–temperature data for the state of Sinaloa, Mexico.

Although most of the weather stations for public 
use in Sinaloa lack the full set of climate variables 
necessary for the calculation of PMO [7], in this study, 
predictive models of PMR are provided using the variables 

latitude–temperature. These models can help ensure 
the feeding of “the breadbasket of Mexico” through 
intelligent irrigation [13, 23].

Materials and Methods

Study Area

Sinaloa is in the northwest of Mexico (Fig. 1), and because 
it is the most important agricultural state in Mexico, it is 
called “the breadbasket of Mexico” [32]. Furthermore, this 
state is the main producer of export-oriented crops [33] 
cited by [32]. Due to the planted area and sensitivity to 
extremes of RHO–Tmax–Tmin, two of the most important 
crops in Sinaloa are corn and beans [28].

Data

Daily Maximum (Tmax) and Minimum 
Temperature (Tmin)

Using data from CONAGUA (https://smn.conagua.
gob.mx/es/climatologia/informacion-climatologica/
informacion-estadistica-climatologica) [29], daily series 
of Tmax and Tmin were obtained from 70 weather stations 
in Sinaloa for the period 1942–2019. These same series 
were previously obtained by [34]. Through a review 
of the availability of recent information (<  5% missing 
data), in this study, it was decided to work with seven 
weather stations (Culiacán, El Playón, Las Tortugas, 
Rosario, La Concha, Ixpalino, and Sanalona II) for 
the period 1979–2017 (Fig. 1).

Imputation of Missing Data, Homogenization of Series, 
and Determination of the Mean Daily Temperature (Tmn)

Using RStudio software, with the Climatol library [35] 
and the orthogonal regression method, missing daily data 
of Tmax and Tmin were estimated by imputation. Using 
the standard normal homogeneity test (SNHT) [36] method, 
with Climatol, the series was also homogenized. By means 
of the semi-sum of the complete and homogeneous series 
of Tmax and Tmin, the daily series of Tmn was determined.

In general, the greatest thermal extremes were 
registered in Ixpalino (Tmax = 46.50°C day−1), El Playón 
and Las Tortugas (Tmin = −6.00°C day−1), and El Playón 
(Tmn = 38.00°C day−1, Table 1).

Wind Speed at 10 m Height (Uz)

Through the National Oceanic and Atmospheric 
Administration (NOAA) [37] (https://downloads.psl.noaa.
gov/Datasets/ncep.reanalysis2/Monthlies/gaussian_grid/), 
the monthly series (Jan–Dec) of wind speed at a height 
of 10 m (Uz) were obtained for the period 1979–2017. Due 
to the availability of satellite information, Uz was obtained 
for only two coordinates in the state of Sinaloa: 1) 25°43′14″ 
N by 108°45′00″ W and 2) 23°55′42″ N by 106°46′48″ W.
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Fig. 1. Study area, Sinaloa state.

Table 1. Maximum, minimum, and average values of the maximum (Tmax), minimum (Tmin) and mean (Tmn) temperatures, in Sinaloa, 
for the period 1979–2017.

Weather station Statistical variable Tmax (°C day–1) Tmin (°C day–1) Tmn (°C day–1)

Culiacán

Maximum 45.50 29.80 35.00

Minimum 15.50 2.00 11.00

Average 33.29 19.30 26.30

El Playón

Maximum 45.50 37.00 38.00

Minimum 13.00 –6.00 8.75

Average 31.54 16.52 24.03

Las Tortugas

Maximum 41.50 28.00 33.50

Minimum 17.50 –6.00 11.00

Average 33.56 16.87 25.21

Rosario

Maximum 41.00 31.00 35.00

Minimum 17.00 1.40 14.00

Average 32.66 18.86 25.76

La Concha

Maximum 43.50 30.00 34.90

Minimum 19.00 4.00 14.00

Average 33.86 20.17 27.02

Ixpalino

Maximum 46.40 28.50 34.65

Minimum 19.00 –1.30 11.70

Average 35.08 17.34 26.21
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Empirical Equations to Estimate Penman–Monteith 
Reference Evapotranspiration, Calculated with 
Missing Data (PMC) and Observed Data (PMO)

Wind Speed at 2 m Height (U2)

Although [9, 38] states that wind speed is not very 
relevant for estimating PMC in semi-arid regions, in this 
study, using Equation 1, the wind speed was obtained at 
a height of 2 m (U2) [19, 22].

  (1)

where U2 = monthly average wind speed at a height 
of 2 m (m s–1), Uz = average wind speed measured at a height 
of 10 m (m s–1), and z = measurement height of Uz (m).

Since PMC is the international standard because of its 
greater measurement accuracy [9], in this study, PMC was 
estimated daily using Equations 2–10. These equations, 
which are recommended by [19, 22] when there are missing 
data, are given as follows:

  (2)

where eaC = calculated actual vapor pressure and Tmin 
= daily minimum air temperature (°C).

  (3)

where es = saturation vapor pressure (kPa) and Tmn = 
daily mean air temperature (°C).

  (4)

where ∆ = slope of the saturated vapor pressure curve 
(kPa °C–1).

  (5)

where SR = calculated incident solar radiation 
(MJ m–2 day–1), KRS = solar radiation adjustment 
coefficient (dimensionless), with a value of 0.16 for 

continental conditions and 0.19 for coastal conditions 
(in this study, KRS = 0.16 was used), Tmax = maximum 
daily air temperature (°C), and Ra = extraterrestrial solar 
radiation (obtained through tabulated values with respect 
to latitude, MJ m–2 day–1).

  (6)

where SRo = incident solar radiation with clear sky 
(MJ m–2 day–1).

  (7)

where Rnl = net longwave radiation (MJ m–2 day–1), 
σ = Stefan–Boltzmann constant (0.4903×10–8 MJ K–4 m–2 
day–1) and TmnK = mean daily air temperature (°K4).

 Rns = 0.77 ∙ SR, (8)

where Rns = net shortwave radiation (MJ m–2 day–1).

  (9)

where Rn = net radiation (MJ m–2 day–1).

  (10)

where PMC = Penman–Monteith reference grass 
evapotranspiration (mm day–1, calculated with missing 
data), PMO = Penman–Monteith observed grass reference 
evapotranspiration (mm day–1, at the Acaponeta station), 
G = soil heat flux density (MJ m–2 day–1, null for daily 

Weather station Statistical variable Tmax (°C day–1) Tmin (°C day–1) Tmn (°C day–1)

Sanalona II

Maximum 43.00 27.20 34.35

Minimum 17.00 –5.00 8.25

Average 33.94 15.19 24.56



Penman–Monteith Reference Evapotranspiration... 5

estimates), and γ = psychrometric constant (0.067 kPa°C–1; 
tabulated value by [19, 22], for stations with altitudes 
ranging from 0 to 100 masl).

Calculated Hargreaves 
Reference Evapotranspiration 

(HAC, Alternative Method Used)

When the absence of data does not allow Equation 10 
to be used, [25] recommends the use of Expression 11 to 
estimate HAC, which is widely recommended worldwide 
due to the high ratio accuracy/number of variables used.

  (11)

where HAC = Hargreaves reference evapotranspiration 
(mm day–1).

PMC and HAC were also calculated as monthly (Jan–
Dec), seasonal (Mar–Aug), and annual (Jan–Dec) averages.

Pre-Validation

Normality Test and Correlation Coefficients

A Shapiro–Wilk normality test was applied to all PMC 
and HAC series [39]. To find out whether PMC and HAC 
were significantly correlated, a Pr was applied to the series 
that presented normality, and a Spearman correlation (Sr) 
was applied to the series that did not present normality.

Simple Linear Regressions (SLR) and Simple 
Nonlinear Regressions (SNR)

To generate sensitive models [7] to predict PMR 
(dependent variable) based on HAC (independent variable), 
SLR were initially fitted (Equation 12). A Shapiro–Wilk 
normality test was applied to the SLR residuals. When 
the residuals were not normal, an SNR (10 different 
functions) was applied, fitting a curvilinear estimate. Of 
the 10 functions, the following were chosen: a) exponential 
function (monthly series, Equation 13) and potential 
function (seasonal series, Equation 14), which were selected 
due to the highest R2 recorded.

  (12)

  (13)

  (14)

where e = Euler number (2.7182) and a, b = regression 
coefficients that describe the relationship between PMR 
and HAC.

Hypothesis Test

For each SLR and SNR, the Pr and Sr were obtained 
by the square root of R2. To find out if each Pr and Sr were 
significantly different from zero, hypothesis tests were 
applied [31, 40]. Each Pr and Sr were compared with a Pcr 
= |0.316| (Equation 15) and a critical Spearman correlation 
coefficient (Scr = 0.318, Equation 16).

  (15)

where tc = critical value of the student t statistic and df 
= degrees of freedom (n–2).

  (16)

where z = 1.96, n = 39 (for the period 1979–2017).

The design of the hypotheses is shown in Equations 
17–18:

  (17)

  (18)

Also, the root mean square error (RMSE) between PMC 
and PMR was calculated.

Validation

Using the CONAGUA–SMN database (https://
smn.conagua.gob.mx/tools/GUI/sivea_v3/sivea.php) 
[30], the following observed data were obtained from 
the Acaponeta station: TmnO, UZO, SRg, and RHO, for 
the periods 2005–2008, 2011–2013, and 2015–2017. PMO 
was calculated, reapplying Equations 1, 3–4, 6–10, and 19.

  (19)

where eaO = observed actual vapor pressure and RHO = 
observed mean daily relative humidity (%).

Three SLRs were applied: 1) SR (La Concha) vs SRg 
(Acaponeta), 2) PMC (La Concha) vs PMO (Acaponeta), 
and 3) PMR (La Concha) and PMO (Acaponeta). A Shapiro–
Wilk normality test was applied to the residuals of the three 
SLRs. From each SLR, Pr = (R2)0.5 was obtained. To find 
out if Pr was significantly different from zero, another 
hypothesis test was carried out between Pr vs Pcr = |0.576| 
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(for n = 12). Finally, the RMSE values were calculated 
between the calculated and observed values of the three 
SLRs. The pre-validation and validation were adaptations 
of the development by [7].

Software Used

To carry out this research, the following programs were 
used: RStudio version 4.3.0, Past version 4.08, XLstat 
version 2023, Panoply version 5.2.6, and CorelDRAW 
version 2019.

 Results and Discussion

Calculated Monthly Average Reference 
Evapotranspiration: Penman–Monteith 
(PMC) and Hargreaves (HAC) Methods

The average ETo ranged from PMC = 1.483 mm 
day–1 in 1992 (Culiacán–Jan, Fig. 2a)) to PMC = 6.656 
mm day–1 in 1982 (El Playón–May, Fig. 2b)); and from 
HAC = 2.256 mm day–1 in 1991 (Culiacán–Dec, Fig. 2a)) 
to HAC = 8.133 mm day–1 in 2002 (Sanalona II–May, 
Fig. 2g)). The results of Fig. 2a) are similar to those 
reported by [41], who found a range from PMC = 3.0 
mm day–1 to PMC = 5.8 mm day–1 for the Culiacán valley 
in the period 2013–2014. The variation between PMC vs 
HAC ranged from RMSE = 1.861 mm day–1 (El Playón, 
Fig. 2b)) to RMSE = 1.972 mm day–1 (Culiacán, Fig. 2a)), 
that is, ETo presents a tendency towards underestimation 

of PMC and overestimation of HAC (RMSE > 0.3 mm 
day–1) [9].

Normality Test for the Calculated Average 
Reference Evapotranspiration: Penman–Monteith 

(PMC) and Hargreaves (HAC) Methods

Monthly (Jan–Dec), Seasonal  
(Mar–Aug), and Annual (Jan–Dec) Series

For PMC–Ixpalino in all months (Jan–Dec), p(normal), 
and W ranged from 0.090 to 0.623 and from 0.951 to 
0.978, respectively (Fig. 3a)). In total, 37 monthly series 
did not present normality; PMC = 15 series and HAC 
= 22 series (Fig. 3a)). The seasonal series (Mar–Aug) 
that did not present normality [p(normal) < 0.05] were 
PMC–El Playón [p(normal) = 7.8×10–5], HAC–El Playón 
[p(normal) = 1.7×10–6], HAC–Las Tortugas [p(normal) = 
0.003], and HAC–Rosario [p(normal) = 0.008, Fig. 3b)]. 
The annual series (Jan–Dec) without normality were 
PMC–El Playón [p(normal) = 2.3×10–4], HAC–El Playón 
[p(normal) = 9.4×10–7], HAC–Las Tortugas [p(normal) = 
0.006] and HAC–Ixpalino [p(normal) = 0.018, Fig. 3b)]. 
According to [42], the results of the PMC–Ixpalino 
series (Fig. 3a)) present normality. According to [43], 
in the results of Fig. 3b), the seasonal series (Mar–Aug) 
that did not present normality were: PMC–El Playón, HAC–
El Playón, HAC–Las Tortugas, and HAC–Rosario, because 
they did not present the condition of p(normal) > 0.05. 
According to [43, 44], the annual series (Jan–Dec) that 
did not present normality were PMC–El Playón, HAC–El 

Fig. 2. Calculated monthly average reference evapotranspiration: Penman–Monteith (PMC) and Hargreaves (HAC) methods for the 
period 1979–2017 (mm day–1).
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Playón, HAC–Las Tortugas, and HAC–Ixpalino, this is 
due to p(normal) < 0.05.

Pearson (rP) and Spearman (rS) Correlations 
of Calculated Average Reference 

Evapotranspiration: Penman–Monteith 
(PMC) and Hargreaves (HAC) Methods

Monthly Correlations (Jan–Dec)

As shown in Table 2, the correlations ranged from 
rP = 0.443 (El Playón–Jul) to rP = 0.929 (Las Tortugas–
Jan). All rP and rS were significantly different from zero 

(rP > rcP = |0.316| and rS > rcS = |0.318|). According to 
[31, 40], the results of Table 2 establish the significant 
monthly relationship (Jan–Dec) of PMC vs HAC, so monthly 
modeling of PMR is appropriate (Equations 12–14), 
applying SLR and SNR, as recommended by [19, 22] 
and applied by [27, 45].

Seasonal (Mar–Aug) and Annual (Jan–Dec) Correlations

As shown in Table 3, all seasonal (Mar–Aug) and annual 
(Jan–Dec) rP and rS were significantly different from 
zero (rP > rcP = 0.316 and rS > rcS = 0.318). Seasonal 
correlations (Mar–Aug) ranged from rP = 0.693 (Sanalona 

Fig. 3. Normality of the monthly series (Jan–Dec) of calculated reference evapotranspiration: Penman–Monteith (PMC) and Hargreaves 
(HAC) methods, for the period 1979–2017 (dimensionless).



Omar Llanes Cárdenas et al.8

Table 2. Pearson (rP) and Spearman (rS) correlations of the calculated monthly average reference evapotranspiration (Jan–Dec): Penman–
Monteith (PMC) and Hargreaves (HAC) methods (dimensionless). 

Type of cor-
relation

Weather  
station Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Pearson (rP)

Culiacán  0.895 0.848 0.869 0.780  0.639 0.781 0.908 0.867 0.865  

El Playón 0.896      0.443 0.691 0.888 0.841 0.845 0.840

Las Tortugas 0.929 0.878 0.808 0.772 0.734 0.848  0.831  0.850 0.829 0.866

Rosario      0.890 0.793 0.852 0.913  0.857 0.842

La Concha     0.831 0.839 0.753 0.820  0.850 0.811 0.831

Ixpalino  0.887 0.856 0.812 0.566 0.822 0.473 0.754 0.867 0.853 0.842  

Sanalona II 0.920 0.892 0.864  0.560 0.722  0.702 0.846 0.836 0.877  

Spearman 
(rS)

Culiacán 0.846     0.719      0.845

El Playón  0.767 0.682 0.816 0.725 0.749       

Las Tortugas       0.656  0.798    

Rosario 0.793 0.820 0.721 0.790 0.757     0.832   

La Concha 0.856 0.809 0.866 0.859     0.843    

Ixpalino 0.916           0.750

Sanalona II    0.740   0.551     0.837

n = 39; rcP = |0.316|; rcS = |0.318|

Table 3. Pearson (rP) and Spearman (rS) correlations of calculated seasonal (Mar–Aug) and annual (Jan–Dec) average reference 
evapotranspiration: Penman–Monteith (PMC) and Hargreaves (HAC) methods (dimensionless).

Type of correlation Weather station Seasonal (Mar–Aug) Annual    (Jan–Dec)

Pearson (rP)

Culiacán 0.852 0.895

El Playón   

Las Tortugas   

Rosario  0.865

La Concha 0.907 0.921

Ixpalino 0.698  

Sanalona II 0.693 0.848

Spearman (rS)

Culiacán   

El Playón 0.794 0.831

Las Tortugas 0.773 0.854

Rosario 0.823  

La Concha   

Ixpalino  0.839

Sanalona II   

n = 39; rcP = |0.316|; rcS = |0.318|
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II) to rP = 0.907 (La Concha). The annual correlations 
(Jan–Dec) ranged from rS = 0.831 (El Playón) to rP = 
0.921 (La Concha). Because all the correlations in Table 3 
were significant [31, 40], SLR and SNR can be applied to 
estimate PMR with a seasonal (Mar–Aug) and annual (Jan–
Dec) scale, with HAC as the independent variable [27–45].

Linear (SLR) and Simple Nonlinear Regressions 
(SNR) of Calculated Average Reference 
Evapotranspiration: Penman–Monteith 

(PMR, dependent Variable) and Hargreaves 
(HAC, Independent Variable) Methods

Normality Test of Monthly (Jan–Dec), Seasonal 
(Mar–Aug), and Annual (Jan–Dec) Residuals

The only series of monthly residuals (Jan–Dec) that did 
not present normality was Sanalona II–Oct [p(normal) = 
0.046 and W = 0.942, Fig. 4a)]. In the normal monthly series, 

the p(normal) values ranged from 0.059 (El Playón–May) 
to 0.951 (Culiacán–Nov, Fig. 4a)). As seen in Fig. 4b), Las 
Tortugas for the seasonal period (Mar–Aug) [p(normal) = 
0.028 and W = 0.936] was the only series that did not register 
normality. In the normal seasonal series, the p(normal) 
values ranged from 0.237 (Ixpalino) to 0.445 (Rosario). 
In the normal annual series, the p(normal) values ranged 
from 0.221 (Ixpalino) to 0.964 (La Concha). According to 
[43] in the results of Fig. 4b), and for the seasonal period 
(Mar–Aug), the only series that did not present normality 
was Las Tortugas, because p < 0.05. All series that did 
present the condition of p > 0.05 were considered normal 
series [42].

Monthly Coefficients and Goodness of Fit (Jan–Dec)

The fit ranged from R2 = 0.196 (rP = 0.443, El Playón–Jul) 
with RMSE = 0.274 mm day–1 to R2 = 0.863 (rP = 0.929, Las 
Tortugas–Jan) with RMSE = 0.218 mm day–1 (Table 4). For 

Fig. 4. Normality of regression residuals between reference evapotranspiration calculated from Penman–Monteith (PMR) and Hargreaves 
(HAC): a) monthly (Jan–Dec) and b) seasonal (Mar–Aug) and annual (Jan–Dec) (dimensionless).
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the SNR–exponential function (Sanalona II–Oct, Table= 4), 
R2 = 0.706 (rS = 0.840 > rcS = |0.318|). All RLS (Table 4) 
exceeded rcP = |0.316| [31, 40] (significant correlation) 
and did not register a trend towards underestimation or 
overestimation (RMSE < 0.300 mm day–1) [9]. In Table 4 
and for Sanalona II–Oct (SNR–exponential function), 
the results were rS = 0.840 > rcS = |0.318| [31, 40] (significant 
correlation) [31, 40]. The methodology of Table 4 was 

applied to obtain more accurate estimates [19, 22] and was 
previously applied by [26, 27].

Coefficients and Seasonal (Mar–Aug) 
and Annual (Jan–Dec) Goodness of Fit

Seasonal fit (Mar–Aug, Table 5) ranged 
from R2 = 0.480 (rP = 0.693, Sanalona II) with 

Table 4. Monthly regression coefficients to estimate calculated reference evapotranspiration: Penman–Monteith (PMR, dependent 
variable) and Hargreaves (HAC, independent variable) (dimensionless).

Month
Type of 

coefficient of 
the equation

Coefficients of each equation by weather station

Culiacán El Playón Las Tortugas Rosario La Concha Ixpalino Sanalona II

Jan

a

–1.330 –1.864 –2.877 –1.942 –2.116 –3.322 –2.851

Feb –2.734 –2.612 –2.359 –2.335 –1.838 –3.967 –3.833

Mar –2.178 –2.952 –2.485 –2.225 –2.486 –3.926 –3.479

Apr –3.045 –2.405 –3.781 –3.793 –3.274 –4.429 –4.668

May –1.781 –2.705 –2.400 –2.113 –3.364 –3.021 –0.777

Jun –1.495 –1.551  –2.915 –2.650 –1.694 –5.048 –3.747

Jul 0.105 –0.313 –1.712 –1.042 –1.269 0.286 –0.100

Aug –0.951 –1.938 –1.229 –1.137 –1.164 –1.935 –1.079

Sep –1.784 –1.655 –0.914 –0.851 –0.966 –2.229 –2.295

Oct –2.350 –2.887 –2.354 –1.469 –1.935 –2.901 0.530

Nov –2.440 –2.280 –2.558 –1.947 –2.062 –2.521 –3.186

Dec –1.409 –0.956 –2.661 –1.763 –1.673 –2.705 –2.731

Jan

b

1.250 1.456 1.639 1.368 1.426 1.779 1.714

Feb 1.488 1.486 1.379 1.340 1.228 1.716 1.733

Mar 1.193 1.368 1.266 1.190 1.227 1.507 1.460

Apr 1.192 1.094 1.314 1.310 1.224 1.402 1.454

May 0.883 1.033 0.988 0.936 1.120 1.069 0.782

Jun 0.782 0.798 1.009 0.974 0.816 1.302 1.113

Jul 0.526 0.605 0.829 0.709 0.751 0.515 0.576

Aug 0.664 0.852 0.708 0.691 0.700 0.832 0.688

Sep 0.885 0.883 0.704 0.686 0.717 0.963 0.976

Oct 1.140 1.293 1.128 0.932 1.044 1.239 0.366

Nov 1.388 1.409 1.364 1.209 1.251 1.382 1.570

Dec 1.259 1.179 1.561 1.295 1.287 1.610 1.670

Plain Simple linear regression (SLR) 
Bold Simple nonlinear regression (SNR)
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RMSE = 0.156 mm day–1 to R2 = 0.823 (rP = 0.907, La 
Concha) with RMSE = 0.117 mm day–1. Annual fit (Jan–
Dec) ranged from R2 = 0.719 (rP = 0.848, Sanalona II) 
with RMSE = 0.112 mm day–1 to R2 = 0.848 (rP = 0.921, 
La Concha) with RMSE = 0.082 mm day–1. For the SNR–
potential function (Las Tortugas–seasonal, Table 5), 
the fit was R2 = 0.699 (rS = 0.836 > rcS = |0.318|). All SLR 
(seasonal and annual, Table 5) exceeded rcP = |0.316| [31, 
40] (significant correlation) and showed no trend towards 
underestimation or overestimation (RMSE < 0.300 mm day–1) 
[9]. These results are in agreement with [19, 22], who 
state that PMR models are more accurate than when only 
Equations 1–10 (PMC) are used. [46] also state that HAC 
estimation is the most recommended method when data is 
not available to estimate PMC.

Validation

Simple Linear Regressions (SLR) between Calculated 
and Observed Values from: 1) Incident Radiation 

(SR vs SRg), 2) Penman–Monteith Reference 
Evapotranspiration, Calculated with Equations (PMC vs 
PMO), and 3) Calculated with Regressions (PMR vs PMO)

All the monthly average SLR (Fig. 5a)–5c)) recorded 
rP significantly different from zero (rP > rcP = |0.576|, for 
n = 12). Specifically for SR vs SRg, the measures of fit 
were: R2 = 0.905, rP = 0.951, and RMSE = 0.684 mm day–1 
(Fig. 5a)). In PMC vs PMO, the measures of fit were R2 = 0.350, 
rP = 0.592, and RMSE = 0.590 mm day–1 (Fig. 5b)). For PMR 
vs PMO, the measures of fit were R2 = 0.391, rP = 0.625, 
and RMSE = 0.578 mm day–1 (Fig. 5c)). The residuals 
of the three SLR presented normality: p(normal) = 0.193 
and W = 0.907 (Fig. 5a)), p(normal) = 0.344 and W = 0.927 
(Fig. 5b)), and p(normal) = 0.464 and W = 0.937 (Fig. 5c)). 

In validation, the three SLRs (Fig. 5a)–5c)) performed well 
(RMSE < 1.0 mm día–1) [47]. In this study, SR was highly 
influential (approximately 90.5%) for estimating PMC, 
which agrees with [8], who points out that SRg in Sinaloa is 
decisive for the estimation of PMC. According to the results 
of PMC vs PMO (Fig. 5b)), Equations 1–10 were reliable 
and sensitive for estimating PMC, even when the series 
presented missing data [9, 48, 49]. The results of Fig. 5c) 
and, according to [19, 22, 26, 27], the models of this study 
are also reliable and sensitive for predicting PMR. Finally, 
because the residuals of the three SLRs (Fig. 5a)–5c)) 
presented normality, the SLR is an appropriate statistical 
tool to use for comparison of calculated and observed 
data [7].

Conclusions

Due to the lack of data variables from weather stations 
in Sinaloa, PMC, and HAC were estimated with the use 
of equations. PMC presented trends toward underestimation, 
and HAC presented trends toward overestimation. For 
the first time in Sinaloa, monthly (Jan–Dec), seasonal 
(Mar–Aug), and annual (Jan–Dec) SLR and SNR were 
generated to estimate PMR (dependent variable) using 
HAC (independent variable). Although the equations are 
a good tool to estimate PMC, the use of PMR estimation 
models is more precise (without trends of underestimation 
or overestimation). To try to improve the fit of PMR vs 
PMO, in future studies, it is recommended to estimate 
PMR using any other alternative method for ETo, for 
example, Thornwaite, Priestley–Taylor, Valiantzas, 
Makkink, Schendel, Jensen, or Turc, among other methods. 
Knowledge of PMR in Sinaloa can contribute to facilitating 
the calculation of crop evapotranspiration, which can 

Table 5. Seasonal and annual regression coefficients, to estimate calculated reference evapotranspiration: Penman–Monteith (PMR, 
dependent variable) and Hargreaves (HAC, independent variable) (dimensionless).

Weather station
Seasonal (Mar–Aug) Annual (Jan–Dec)

a b a b

Culiacán –0.916 0.761 –1.182 0.888

El Playón –2.216 0.992 –2.304 1.141

Las Tortugas 0.352 1.328 –1.365 0.947

Rosario –1.428 0.853 –0.124 0.841

La Concha –2.005 0.945 –1.771 1.001

Ixpalino –3.036 1.114 –3.994 1.420

Sanalona II –1.358 0.869 –2.873 1.233

Plain  Simple linear regression (SLR) 
Bold Simple nonlinear regression (SNR)
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enable the design of intelligent irrigation plans that are 
efficient, sustainable, and affordable. The PMR models 
of this study are also a valuable tool when complete climate 

series are lacking, which are necessary for the calculation 
of PMO, since in this study to obtain PMR only latitude–
temperature is required. These predictive models can also 

Fig. 5. Regressions of calculated and observed values: a) incident solar radiation (SR vs SRg, mm day–1), b) Penman–Monteith reference 
evapotranspiration, calculated with equations (PMC vs PMO, mm day–1) and c) same as b), but calculated with regressions (PMR vs PMO, 
mm day–1).
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help ensure, in the near future, the feeding of the population 
of “the breadbasket of Mexico,” specifically through 
the relationship between less irrigation water/greater 
sustainability of food production.
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