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Abstract

As an important factor in urban planning and urban design, blocks exhibit complex and diverse 
thermal environment characteristics due to the thermal properties of the underlayment materials and 
the non-uniformity of the spatial distribution of the buildings. Previous research has predominantly 
concentrated on the urban-scale thermal environment and its underlying drivers. Yet, there remains 
a notable inadequacy in the precise identification of core urban heat island patches and critical nodes, 
the scientific rigor applied in selecting geographical units and research methodologies, as well as the 
depth of exploration concerning improvement strategies for the thermal environment at the block scale. 
To address this gap, this study uses a typical urban neighborhood in Jinan as a case study. It employs 
geographic information system (GIS), spatial statistics, and analysis methods, grounded in the spatial 
heterogeneity of different geographical units, to explore the spatial distribution characteristics and 
heterogeneity mechanisms of the thermal environment at the neighborhood scale. The results indicate 
that: (1) in the study area, the core area and the edge area account for the largest proportion of the heat 
island landscape, and the accumulation, diffusion, and radiation of the two areas lead to the increasing 
degree of aggregation among the heat island patches, which has an important impact on the adjustment 
balance of the heat environment inside the block and the spatial distribution pattern of the heat island. 
(2) There are significant differences in the correlation and explanatory power between urban form 
indicators and the land surface temperature (LST) among different geographical units. Local climate 
zoning (LCZ) can preserve the complete urban landscape type and has strong explanatory power for 
local thermal environmental effects, making it highly suitable for the block-scale analysis of thermal 
environmental spatial feature correlations. (3) The HRE (height of roughness elements), BEI (building 
evenness index), and SVF (sky view factor) are the indicators that have the greatest impact on the LST. 
Building height, evenness, and openness have a significant impact on the spatial distribution pattern of 
heat islands. Urban planners should fully consider the impact mechanisms of the indicator factors to 
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Introduction

In recent years, rapid urban development and 
continuous population growth have significantly 
changed the surface morphology and underlying surface 
characteristics of urban agglomerations [1], causing a 
series of climate-related and environmental problems 
[2], such as extreme heat waves, floods, storm surges, 
and ozone holes [3-5]. Climate change threatens the 
health of urban residents in a variety of ways; for 
instance, extremely high temperatures can induce 
respiratory system diseases and cardio-cerebrovascular 
diseases [6–8]. The Blue Book on Climate Change 
in China (2022) highlights that global warming 
continues, and China's warming rate has been higher 
than the global average over the same period; this is a 
sensitive area for global climate change [9]. Numerous 
studies have indicated that widespread exposure to 
high temperatures exacerbates health risks, impacting 
various diseases, vulnerable populations, and regions 
with differing climates [10]. Urban areas are more 
susceptible to thermal environmental issues, such as 
high temperatures and heat waves, due to their complex 
building environments and frequent human activities 
[11, 12]. Therefore, against the background of the rapid 
change of the global climate and the rising health risks 
faced by human populations, research on urban spatial 
planning in response to climate change and the internal 
mechanisms of thermal environmental regulation has 
become urgent on a global scale [13, 14]. 

Human activities in the urban canopy have formed 
complex surface types and building forms, which impact 
solar radiation and air movement at the urban and local 
scales and then change the spatial distribution patterns 
of the thermal environment [15, 16]. As the basic unit 
of urban planning and design, the internal thermal 
environmental characteristics of a block largely depend 
on its own spatial structure. Morphological factors, 
including building height, sky view factor, and street 
aspect ratio, significantly influence the surface radiation 
energy balance and air circulation, collectively shaping 
the thermal environment within urban blocks. This 
results in a highly heterogeneous and complex thermal 
field pattern [17, 18]. Furthermore, the spatial spillover 
effects observed among urban blocks, in conjunction 
with their distinct differences in spatial locations and 
architectural morphologies, considerably impact the 
absorption efficiency of solar radiation, as well as the 
transportation and redistribution of water vapor and 
heat. These factors further exacerbate the complexity 
and heterogeneity of the thermal environment within 
these blocks [19, 20]. Thus, systematically analyzing how 

the spatial morphological distribution characteristics 
of urban blocks precisely shape and regulate LST can 
contribute to elucidating the formation mechanisms 
of urban thermal environment heterogeneity. It also 
provides valuable insights into enhancing urban climate 
suitability, optimizing urban landscape patterns, and 
formulating scientifically rational urban planning 
strategies.

Geographical unit division is an important 
foundation for quantifying the spatial forms of urban 
blocks and the mechanisms of thermal environmental 
interactions. Numerous studies have extensively adopted 
geographical unit frameworks such as grids and LCZ 
to delve into the correlation between urban thermal 
environment and multi-dimensional influencing factors 
[21, 22]. The grid approach, leveraging professional GIS 
software like ArcGIS, constructs regularly spaced fishnet 
spatial units that are frequently utilized as fundamental 
units to investigate the scale effects of urban thermal 
environments. The homogenization of these units 
facilitates the exposition of both the similarities and 
complexities in thermal environments across diverse 
regions, enabling a nuanced dissection of urban thermal 
environment effects [23]. LCZ is a natural geographic 
unit comprehensively defined based on factors such 
as building layout, land cover characteristics, spatial 
morphology, and human activity intensity. It is capable 
of accurately reflecting the temperature distribution 
features and variation patterns among different land 
surface types [24]. The introduction of the LCZ 
framework significantly enhances the precision of 
urban thermal environment research, enabling in-depth 
insights into the impact of urban spatial structure on 
local climatic conditions. This framework provides 
robust support for the quantitative assessment, causal 
analysis, and formulation of mitigation strategies related 
to urban heat island effects [25, 26].

Researchers have developed a series of LCZ 
classification methods using remote sensing images and 
geographic information data. Bechtel et al. proposed 
the World Urban Database and Access Portal Tool 
(WUDAPT) [27], which utilizes Landsat remote 
sensing images and the Google Earth cloud platform 
to achieve rapid mapping; this method has been used 
widely in multiple urban areas, such as Beijing and 
Guangdong [28, 29]. However, due to the difficulty in 
meeting the quantity requirements of machine learning 
in extracting training samples at the medium and micro 
scale, the accuracy of LCZ-type recognition is low. 
Therefore, the WUDAPT method is more suitable for 
drawing LCZ at the large-scale level of cities [30]. LCZ 
classification needs to consider the building height, 

minimize the LST. We believe that these findings can offer new theoretical foundations and practical 
pathways for the precise governance of urban heat island effects and the intelligent regulation of urban 
climates.
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land cover, sky openness, and other factors. Compared 
with remote sensing images, geographic information 
data can provide finer urban spatial form information 
[31]. Therefore, GIS-based methods can produce more 
accurate classification results within urban blocks [32]. 
Many scholars have attempted to use high-resolution 
remote sensing images and urban 3D building databases 
to calculate LCZ classification indicators using GIS 
methods. Many cities, such as Tokyo, Hong Kong, and 
Atlanta, have adopted this fine-grained classification 
method [33, 34]. However, GIS methods typically 
require accurate, complete, and real-time-updated 
city datasets, which are expensive to obtain and not 
suitable for all cities. Focusing on the problem of the 
difficulty of obtaining urban LCZ classification data, 
this study attempts to quantitatively describe urban 
spatial morphological parameters based on open multi-
source geographic information data, construct an LCZ 
classification system with urban blocks as the basic unit 
of analysis, and use the manually calibrated classification 
methods combined with physical parameter thresholds 
for LCZ mapping. 

The urban heat island effect has emerged as a 
critical issue influencing urban climate, public health, 
and ecosystem services, garnering significant attention 
in recent years. Despite substantial research on urban 
thermal environments and their driving factors, there 
is an urgent need to accurately identify core heat 
island patches and critical nodes that significantly 
impact the heat island effect. Furthermore, existing 
studies are often constrained by data availability 
and empirical biases, lacking in-depth analysis of 
thermal environment response patterns across different 
geographical units and regression models. Finally, 
LCZ-related studies primarily focus on LCZ mapping 
methods at the urban scale and the spatiotemporal 
differentiation characteristics of thermal environments 
in different types of LCZ. Further studies are needed to 
consider planning strategies for thermal environmental 
improvement within LCZ schemes at the block scale. In 
this context, the representative area of the Jinan High-
Tech Zone serves as an example, employing multi-
source remote sensing data and spatial statistical analysis 
methods to systematically explore the complexity 
and heterogeneity of urban thermal environments at 
the street block scale. Specifically, this study aims to: 
(1) Utilize the Morphological Spatial Pattern Analysis 
(MSPA) method to conduct a thorough examination 
of the spatial distribution characteristics of LST at the 
block scale, identifying and quantifying the core patches 
and critical nodes that significantly contribute to the 
urban heat island effect; (2) Reveal the differences and 
applicability of thermal environment response patterns 
at the street block scale through comparative analysis 
of various geographical units and regression models, 
thereby providing a scientific basis for precise modeling; 
(3) Further investigate the regulatory mechanisms of 
spatial morphological elements, such as building layout 
and underlying surface characteristics within street 

blocks, on LST, thereby offering theoretical support for 
developing effective strategies for thermal environment 
mitigation and urban planning.

Material and Methods

Study Area

Jinan (36°01 '–37 °32' N, 116°11 '–117 °44' E) is 
located in the middle of the North China Plain, a region 
with a warm temperate continental monsoon climate; in 
summer, it is one of the hottest cities in China. With the 
rapid expansion of the city, the increase in population 
concentration, and the limited space available for 
construction planning and development, the urban 
heat island effect is intensifying. This study selects the 
typical central business district (CBD) of the Jinan high-
tech zone as the research area; this district has an area of 
approximately 11 km2. There is a wide range of building 
types in the region, including a series of functional areas 
such as commercial areas, residential areas, industrial 
areas, scenic areas, cultural and educational areas, etc. 
The land-cover types are diverse, including ecological 
forests, parks, lakes, soil, asphalt surfaces, etc. The 
unique architectural spatial pattern within the region 
produces different microclimate characteristics, which 
facilitate an analysis of the spatial heterogeneity of the 
local geothermal environment and have strong research 
value and practical significance (Fig. 1).

Datasets

The data mainly comprise: (1) remote sensing image 
data and (2) geographic information data. The remote 
sensing image data include Landsat8 images, ZY-3 
images, and Google Earth image data. The geographic 
information data includes data related to the DEM, 3D 
buildings, road networks, and administrative divisions. 
See Table 1 for details.

Methodology

The Block Spatial Form Indicator System

As the smallest control unit of the urban 
microclimate, a block’s spatial structure composition and 
configuration have a significant impact on the thermal 
environment. This study references conclusions related 
to factors influencing thermal environments [35-37] and, 
drawing on the data foundation of this research, selects 
eight spatial morphological indicators for cities based 
on the principles of generalizability, applicability, and 
representativeness, aiming to comprehensively reflect 
the structural composition and spatial configuration of 
the study blocks (Table 2). In terms of the 2D land cover, 
the types and proportions of the underlying surfaces are 
closely related to differences in the urban microclimate; 
these indicators include the impervious surface fraction 
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(ISF) and the pervious surface fraction (PSF). The ISF 
represents the proportion of impervious surfaces (hard 
paving such as asphalt, marble, brick, etc.). The PSF 
represents the proportion of pervious surfaces (soil, 
vegetation, water, etc.). In terms of 3D spatial forms, the 
indicators include the spatial crowding degree (SCD), 
average building volume (AV), building evenness index 
(BEI), height of roughness elements (HRE), height 
coefficient of variation (CH), and sky view factor 
(SVF). The SCD and BEI, respectively, represent the 
crowding and evenness of buildings in 3D space, the AV 
represents the average volume of buildings, the HRE 
and CH are important parameters for characterizing 

height characteristics, and the SVF is the ratio of the 
visible sky area to the total sky area at a point in space 
[38].

LCZ Mapping

According to Stewart and Okay's definition, LCZs 
can be categorized into 17 standard types, including 10 
"building types" (LCZ1–10) and 7 "land-cover types" 
(LCZA–G) [24]. The reference basis for LCZ mapping 
is relatively complex. In order to avoid errors in the 
building density, height, and surface coverage causing 
incorrect LCZ classifications, this article adopts physical 

Fig. 1. Study area.
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parameter thresholds [39] combined with manual 
calibration methods to classify LCZ categories; these 
physical parameters include the SVF, HRE, PSF, and 
ISF. The calculation steps are as follows: (1) divide the 
study area into blocks of different sizes based on road 
network data. (2) Using 3D building and surface cover 
data, calculate the urban spatial form and preliminarily 
establish the LCZ type based on physical parameter 
thresholds. (3) Verify the findings through manual visual 
methods and correct the classification types of urban 
blocks to obtain the final LCZ classification results.

The LCZ classification results are shown in Fig. 2 
The study area is mainly composed of building-based 
LCZ types, with a proportion of up to 81.22%. Among 

them, the type with the highest proportion is open high-
rise LCZ4, followed by open middle-rise LCZ5 and 
open low-rise LCZ6. The proportion of dense building 
areas (LCZ1~LCZ3) is only 4.60%, and other building 
types are scattered among them. The proportion of 
LCZs with the surface-cover type is 18.78%, with 
the highest proportion comprising LCZE, which is 
composed of exposed rocks or hard pavement and is 
mainly distributed in the road square areas of the study 
area. The second most common type is the dense forest 
landscape area LCZA, which is mainly distributed 
in forest parks in the southern part of the study area. 
LCZC/D accounts for a relatively small proportion and 

Name Date Data role Data source

Landsat8 image 2021.8.15 Land surface temperature retrieval Geospatial Data Cloud 
(www.gscloud.cn)

ZY-3 image 2021.5.17 Land-use classification Environmental Monitoring 
Station

Google Earth image 2021 LCZ drawing reference Google Earth 
(earth.google.com)

DEM data 2021 Urban spatial form parameter calculation Geospatial Data Cloud 
(www.gscloud.cn)

3D building data 2021 Contains building contour and height information 
for obtaining the 3D shape data of buildings

Water Flow Micromap Software 
(www.rivermap.cn)

Road network data 2021 Dividing block units based on road network data 
for LCZ mapping

Shandong Provincial Sky Map 
(www.sdmap.gov.cn)

Administrative division data 2021 Study area division and remote sensing image 
cropping

Shandong Provincial Sky Map 
(www.sdmap.gov.cn)

Table 1. Data source information description.

Indicator Formula Data methods Description

PSF ArcGIS, pervious 
surface vector data

Areaprevious represents the coverage area of the 
impervious surface, Areatotal represents the total area 

of the study area.

ISF ArcGIS, impervious 
surface vector data

Areaiprevious represents the coverage area of the 
pervious surface.

AV

ArcGIS, 3D building 
data

Vi represents the volume of the ith building in the 
study area, n represents the number of buildings in 

the study area.

SCD Hmax represents the maximum height of the buildings 
in the study area.

BEI AV represents the average building volume within 
the study area.

HRE Hi represents the height of the ith building in the 
study area.

CH HRE represents the average building height of the 
study area.

SVF SAGA-GIS, DEM, 
3D building data Areasky represents the visible sky area.

Table 2. Urban spatial form indicator system.
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is mainly distributed in the grassland landscape areas at 
the edges of roads. 

Land Surface Temperature Inversion

This study uses the radiation equation algorithm to 
invert the land surface temperature [40]. The principle 
is to subtract the total amount of radiation received 
by the sensor from the amount of radiation affected 
by the atmosphere to obtain the surface heat radiation 
intensity; then, we convert the heat radiation intensity 
into the true surface temperature. The thermal infrared 
radiation transfer equation is expressed as:

  
(1)

where L(λ) is the radiation brightness on the star 
(W×m-2×μm-1×sr-1), τ is the spectral atmospheric 
transmittance, ε is the surface specific emissivity, Ts 
is the land surface temperature (K), B is the Planck 
function, and Latm↑ and Latm↓ are the atmospheric 
upward radiation and atmospheric downward radiation, 
respectively (W×m-2×μm-1×sr-1).

When the surface emissivity has been determined, 
the land surface temperature Ts is obtained according to 
Planck's formula: 

  (2)

where K1 and K2 are radiation constants. For 
Landsat8 TIRS data, K1 = 774.89 (W×m-2×μm-1×sr-1), 
K2 = 1321.08K.

Correlation Analysis

(1) Spatial autocorrelation analysis
This study used spatial autocorrelation analysis 

to test the spatial correlation of the LST, including 
the Global Moran's I and Local Moran's I. The Global 
Moran's I is used to test the spatial aggregation degree 
and spatial dependence of LST [41], represented by 
equation (3) as:

  (3)

where n represents the number of pixels in the study 
area, xi and xj represent the LSTs of pixels i and j, 
respectively,  is the mean of all pixels in the study area, 
wij is the spatial weight matrix, and S is the standard 
deviation. The I range is between -1 and 1. When I > 0, 
it indicates a positive spatial correlation, with larger 
values representing a more significant spatial correlation. 
When I < 0, it indicates a negative spatial correlation, 
with smaller values indicating greater spatial differences. 
When I = 0, it indicates a random distribution. 

The Local Moran's I was used in this study to further 
test the hot spots, cold spots, and spatial outliers with 
statistical significance in the local region [42]. It is 
expressed by equation (4):

  (4)

Fig. 2. LCZ mapping reference example. (a) Example of LCZ types; (b) LCZ mapping results.
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(2) Spatial regression analysis
Spatial regression analysis considers the spatial 

relationships of the research object. It can eliminate the 
problem of spatial dependency between data samples 
and allow us to accurately analyze the correlation 
between the LST and its influencing factors [35]. The 
spatial regression model includes the spatial error model 
(SEM) and the spatial lag model (SLM). The SEM is 
represented by Equation (5) as:

  (5)

where y represents the dependent variable matrix, x 
represents the independent variable matrix, ꞵ represents 
the parameter matrix, λ represents the regression 
coefficient of the spatial residual term, wu represents the 
spatial adjacency weight matrix, and ε represents the 
vector of the spatial error term.

SLM is represented by Equation (6) as:

  (6)

Where y represents the dependent variable matrix, 
x represents the independent variable matrix, wy 
represents the spatial weight matrix, ρ represents the 
autoregressive parameter, ꞵ represents the coefficient 
vector, and ε  represents the vector of the spatial error 
term.

Morphological Spatial Pattern Analysis

MSPA is an image processing method based on 
mathematical morphology; it is used to measure, 
recognize, and describe raster images [43]. In this 
study, the MSPA model was applied to urban heat island 
analysis. First, ArcGIS was used to classify the heat 
island intensity [44] and convert it into binary TIFF 
data, taking the heat island area as the foreground and 
the non-heat island area as the background; then, MSPA 
analysis was performed on binary TIFF images using 

GTB software. The MSPA type definition is shown in 
Table 3. 

Framework Description of this Study

We divided the study area into two types of 
geographical units—LCZs and fishnets—and used 
the GIS spatial analysis method to explore the impact 
mechanism of urban spatial form on LST at the block 
scale. The basic steps are as follows: (1) extracting urban 
spatial form indicators based on the units of the LCZ 
and the fishnet. Based on image resolution and existing 
research conclusions [45, 46], the optimal spatial scale 
for fishnets was set to 150m × 150m. (2) We used Pearson 
correlation analysis and a multicollinearity test to screen 
eight urban spatial form indicators to establish the best 
indicator system. (3) We tested the global correlation 
between the LST and the spatial form indicators based 
on the OLS model and calculated Moran's I for the 
residuals in the model operation results. If Moran's I 
was significant, we used spatial regression models to 
continue exploring the spatial relationship between 
them. If Moran's I was not significant, we used the OLS 
model to analyze the global relationship. (4) Based on 
the R2, LM test, Robust LM test, Log Likelihood, and 
AIC parameter information in the model, the optimal 
study unit (LCZ or fishnet) and spatial regression model 
(SEM or SLM) were selected for a correlation analysis 
of the block-scale thermal environment spatial features 
(Fig. 3).

Results and Discussion

Pearson Correlation Analysis

This study employed the Pearson correlation 
coefficient to examine the relationship between urban 
spatial form indicators and LST, as depicted in Fig. 
4. The analysis reveals notable variability in these 
correlations across different geographical units. 

MSPA type Ecological implications

core The pixel set with foreground pixels larger than the specified edge width, as the "source" of various 
ecological processes, plays an important role in maintaining the urban ecological environment.

islet Plaques that are not connected to any foreground area have a lower possibility of internal material and 
energy exchange and transmission.

loop The foreground data connected to the core area have corridor properties, which can enhance the material 
circulation and energy flow inside the core area.

bridge The channel connecting adjacent core areas, with corridor properties, is a channel for energy flow and 
material exchange.

perforation The transition zone between the core area and its internal non-core area has edge effects.

edge The edge outside the foreground is the transition area between the periphery of the core area and different 
landscape elements.

branch The area where only one end of the branch line is connected to the edge, bridge, loop, or perforation.

Table 3. Definition of landscape types in MSPA.
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Fig. 3. Study framework.
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Generally, stronger correlations between urban spatial 
morphology indicators and LST were observed in LCZ 
units. PSF exhibited a negative correlation with LST in 
both LCZ and fishnet units. This underscores the role 
of permeable surfaces in reducing LST by enhancing 
latent heat loss through surface moisture evaporation 
and increased water evaporation and heat exchange. 
Conversely, ISF characterizes the proportion of urban 
impervious surface coverage and showed a strong 
correlation with LST in fishnet units but did not achieve 
significance in LCZ. This discrepancy may be attributed 
to LCZ classification accounting for construction and 
human activities, which can diminish ISF explanatory 
power regarding LST. BEI positively correlated with 
LST in LCZ and fishnet units, indicating that a uniform 
distribution and orientation of buildings facilitate 
air convection, thus dissipating heat and lowering 
LST. SCD and SVF demonstrated significant positive 
correlations with LST in both LCZ and fishnet units. 
These indicators influence wind speed, heat circulation, 
and surface radiation intensity, exacerbating UHI 
effects. HRE and AV exhibited significant correlations 
with LST in LCZ (negative for HRE and positive for 
AV), but these correlations were not significant in 
fishnet units (p>0.1). This disparity may arise from grid 
boundaries affecting building fragmentation and thereby 
weakening the explanatory power of these factors on 
thermal environment effects. Moreover, CH displayed 

a significant positive correlation with LST in fishnet 
units but did not pass the significance test in LCZ. This 
distinction could be due to the finer spatial division of 
fishnet units, enabling greater differentiation in building 
heights within the same grid and facilitating stronger 
correlations. In contrast, LCZ covers larger geographic 
areas with more complex variations in building heights, 
resulting in a lower and more varied correlation. In 
summary, these findings emphasize the subtle impact 
of urban spatial forms in different geographic units on 
LST, therefore, localized methods are needed in urban 
planning to effectively mitigate the effects of heat 
islands.

Model Performance Parameter Analysis

Multicollinearity Test

According to the PCCs shown in Fig. 4, we selected 
indicators that pass the significance test (p ≤ 0.1) 
to construct a multiple regression analysis model. 
Before building the model, multicollinearity tests were 
conducted on the significant indicators in the LCZ and 
fishnet models to ensure the stability of coefficient 
estimation in the regression model and the reliability 
of the hypothesis testing. First, we conducted the 
bivariate autocorrelation test on the indicators in SPSS 
[47]. Fig. 5a shows that no multicollinearity exists in 

Fig. 4. Correlation analysis between spatial indicators and LST. (a)PSF, ISF, HRE, SCD in LCZ; (b)AV, CH, BEI, SVF in LCZ; (c)PSF, 
ISF, HRE, SCD in Fishnet; (d)AV, CH, BEI, SVF in Fishnet.
Note: ***p<0.01, **p<0.05, *p<0.1
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the indicators in LCZ units (|PCCs|<0.7), while Fig. 5b 
shows the significant negative correlation between PSF 
and ISF in the fishing net unit (|PCCs|>0.7), indicating 
that there is a possibility of multicollinearity. Second, 
we used the variance inflation factor (VIF) in SPSS to 
conduct the multicollinearity test [48]. The threshold 
value was set to 10, and significant outlier factors (VIF 
≥ 10) were removed until the VIF value was stable and 
there was no large outlier (VIF<10). The test results are 
shown in Table 4. The spatial form indicators in the 
LCZ units all passed the multicollinearity test, while the 
PSF in the fishnet units is significantly correlated with 
the ISF, indicating that there is strong multicollinearity. 
We deleted the PSF indicator with the largest VIF value 
and performed the multicollinearity test again. The VIF 
values of all indicators are less than 10. According to 
the test results, we constructed multiple regression 
models for the LCZ and fishnet units for the subsequent 
correlation analysis.

Comparative Analysis of Regression Models 
in Different Geographical Units

This study used different regression models for the 
correlation analysis of the LCZ and fishnet units, and 
the results are shown in Table 5. First, by comparing 
the impact of the geographical unit division methods 
on the analysis results, it can be seen that there are 
significant differences in the model’s accuracy between 
the different geographical units. The LCZ has a stronger 
LST, which manifests as a higher R2 and Log Likelihood 
and a lower AIC. This is because the LCZ unit can 
preserve the complete landscape types within the 
block and partition the thermal environment response 

capacity based on the surface characteristics, fully 
reflecting the spatial heterogeneity between different 
LCZ types, thus producing more accurate analysis 
results. Next, comparing the impact of the regression 
models on the analysis results, the results show that 
the fitting accuracy of the spatial regression models is 
significantly better than that of the OLS models. At the 
same time, a significant spatial dependence was found 
in the OLS model analysis results (Moran's I=0.360), 
while SEM and SLM eliminated the autocorrelation of 
LST residuals through spatial autocorrelation modeling, 
with Moran's I values of 0.053 and 0.008, respectively. 
To determine which spatial regression model performs 
best, we comprehensively compared the performances of 
SLM and SEM from the perspectives of five parameters. 
The larger the R2, Log Likelihood, LM, and Robust LM 
values, the smaller the AIC, indicating better model 
performance. The results show that the parameters of 
SEM are better than those of SLM overall and are more 
suitable for the interpretation of the spatial differentiation 
of the surface temperature, which is consistent with the 
results of previous studies [49]. Therefore, we chose 
the LCZ as the research unit and the SEM model as the 
research method for analyzing the spatial correlation of 
thermal environmental characteristics at the block scale.

Correlation Analysis of the Spatial 
Characteristics of Block-Scale Thermal 

Environments Based on the LCZ

Spatial Characteristics Analysis of the LST

The LST distribution within the study area (Fig. 
6a) exhibits significant spatial heterogeneity, with 

Fig. 5. Bivariate autocorrelation test results. (a) LCZ; (b) Fishnet.

LCZ PSF HRE SCD AV BEI SVF

VIF 1.236 3.375 1.671 2.479 2.366 2.277

Fishnet PSF ISF SCD BEI CH SVF

VIF 14.235 11.658 4.429 1.519 1.992 1.183

Fishnet PSF ISF SCD BEI CH SVF

VIF -- 1.108 1.329 1.513 1.238 1.183

Table 4. Multicollinearity test of spatial morphological indicators.
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a maximum temperature difference of 9.68 ℃. The 
high-temperature areas are primarily concentrated in 
the industrial and commercial-intensive zones in the 
northeast, central, and western regions of the study area, 
with the main types being large, low-rise buildings. They 
consume a large amount of building energy and generate 
artificial heat sources, causing an increase in the surface 
temperature and an imbalance in thermal environmental 
regulation. The low-temperature areas are mainly 
concentrated in forest park scenic areas in the south, 
where large trees and other vegetation can produce 
cooling effects through transpiration and shading. The 
LISA aggregation map (Fig. 6b) is somewhat similar to 
the LST in terms of spatial distribution. A high–high 
cluster occurs in the northeast of the study area, and 
the surface is mainly covered by impervious surfaces 
such as asphalt and masonry. Due to the lack of shelter 
from high-rise buildings, the surface is directly exposed 
to strong solar radiation, forming a heat island cluster. 
In contrast, the high-rise building areas and vegetation-
rich scenic forest areas in the south exhibit significant 

low–low clusters, with the shadows of tall buildings and 
green vegetation effectively reducing the LST. 

Based on MSPA, we further analyzed the 
distribution characteristics of the heat island cluster, and 
the results are shown in Fig. 7. The core area accounts 
for 54.77% of the heat island patch area, with an 
average LST of 36.75 ℃, which is mainly concentrated 
in the central and northern regions of the study area, 
showing a trend of clustering and spreading in terms 
of the spatial distribution. The heat island area of the 
peripheral area is second only to that of the core area, 
with a proportion of 40.95%, with an average LST of 
35.42 ℃. This is because the edge area is a transition 
area between the periphery of the core area and different 
landscape elements, so the morphological distribution of 
the edge area is strongly affected by the spillover effect 
of the core area. The proportion of the heat island area 
comprising islets, bridges, perforations, branches, and 
loop types is only 4.28%. Based on the above research, 
we found that the core area and edge area account for 
the majority of the heat island patches in all types of 

Fig. 6. LST spatial characteristics (a) Spatial distribution of LST; (b) LISA cluster map of LST.

Geographic unit  . LCZ Fishnet

Model OLS SLM SEM OLS SLM SEM

R2 0.366 0.519 0.586 0.207 0.290 0.294

LM --- 57.777*** 58.238*** --- 45.264*** 40.654***

Robust LM --- 5.169** 5.630** --- 4.722** 0.113

Log-likelihood -234.694 -211.065 -210.673 -1419.430 -1397.860 -1398.028

AIC 504.462 438.13 435.347 2850.850 2809.710 2808.060

Moran’s I 0.390 0.053 0.008 0.143 -0.010 -0.002

 Note: ***p<0.01, **p<0.05, *p<0.1

Table 5. Model performance parameters for different geographical units.
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MSPA, which is an important factor that affects and 
changes the strength and stability of the UHI. As the 
"source" of urban heat island patches, the core area, 
through accumulation, diffusion, and radiation, leads 
to the increasing degree of aggregation among heat 
island patches, which has a significant impact on the 
balance of thermal environmental regulation and spatial 
distribution patterns. As the peripheral part of the core 
area edge, the edge area has the boundary attribute of 
an ecological landscape. Adjacent heat island patches 
penetrate and connect with each other through the edge 
area, promoting the circulation and transfer of heat, and 
further changing the spatial distribution patterns of the 
thermal environment.

Analysis of the LST in Different LCZ Types

To explore the differences in the LST between 
various LCZ types, we drew an LST box plot, as shown 
in Fig. 8. In the LCZs of building types, the average heat 
island intensity of high-density buildings (LCZ1~3) is 
higher than that of low-density buildings (LCZ4~LCZ6). 
High-density areas tend to form heat island clusters 
due to densely clustered buildings and reduced air 
circulation and heat transfer. High-rise buildings can 
alleviate the intensity of the heat island to a certain 
extent. Their building space structure has long and 
narrow street canyons (a small SVF) and large building 
shadows (a large HRE), which can not only reduce 
solar radiation and urban heat accumulation but also 
provide more shade, thus improving thermal comfort 
and reducing building energy consumption. Therefore, 
LCZ1 and LCZ4 exhibit lower LST values. LCZ8 and 
LCZ10 are mainly composed of large low-rise buildings 
(with higher SVF values and lower HRE values), with 
extremely low vegetation coverage; in these areas, the 
building materials are mostly reinforced concrete, stone, 
and glass curtain walls, so the heat island intensity is 

the most pronounced. However, the sparse construction 
area (LCZ9) is mainly composed of scattered small 
and medium-sized buildings, with low grass and shrub 
vegetation distributed in the area and strong ground 
permeability, which can alleviate the heat island effect 
to a certain extent. Among the land cover types of LCZ, 
LCZA, and LCZC show lower LST values, with LCZA 
having the lowest heat island intensity. Green vegetation, 
dominated by dense forest trees, has a higher leaf area 
coverage rate, which can provide sufficient shade, 
transpiration, and heat absorption, forming a "cold island 
effect" and effectively reducing the surface temperature. 
The heat island intensity in the exposed sandy soil area 
of LCZF is the most significant, and an increase in soil 
exposure will exacerbate the soil heat exchange process, 
leading to an increase in the surface temperature [50]. 
LCZD low-vegetation areas exhibit high LST values due 
to a severe lack of shade, increased absorption of solar 
heat radiation, and the limited cooling effect provided 
by low vegetation, such as grasslands. LCZE is mainly 
composed of asphalt, marble, brick, and other hard 
pavements (the ISF is large); the building materials have 
high heat-absorption characteristics, and the warming 
effect is very obvious. However, this study found that 
the heat island intensity of LCZE was not significant, 
possibly because LCZE was mainly distributed across 
the urban roads in the study area, and trees, shrubs, 
and other types of green vegetation on both sides could 
provide a certain shade and cooling effect, reducing the 
heat island intensity to a certain extent. 

The Comprehensive Impact of Urban 
Spatial Form Indicators on LST

Based on the SEM model, we analyzed the relative 
contribution of LCZ urban form indicators to the LST, 
as shown in Fig. 9. There is a significant negative 
correlation between HRE and LST, with a relative 

Fig. 7. MSPA classification results of heat island patches.
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contribution value of up to 28.62%. Tall and narrow 
building groups can provide larger shadow areas, reduce 
solar radiation, promote heat transfer and wind speed 
cycling, and effectively reduce the LST. BEI and SCD 
have a significant warming effect on the LST, with 
relative contribution values of 25.50% and 15.91%, 
respectively. The geometric shapes and street layouts of 
crowded and unevenly distributed building groups are 
relatively disordered, lacking fully connected ventilation 
corridors, affecting convective heat dissipation and 
causing an increase in the LST. SVF integrates building 
height, density, and other information, offering a more 
comprehensive representation of the city's internal 
geometric structure and sky visibility coefficient, 
so the impact on the thermal environment is more 
significant. During the day, building shading in low-
visibility areas can effectively reduce solar radiation, 
while the ground in high-visibility areas will receive 
more solar radiation, which may lead to a higher LST. 
AV has a significant positive correlation with the LST, 
with a relative contribution value of 8.18%. The larger 
the building volume, the more human activities can be 
accommodated, thus generating more artificial heat 
sources and causing the LST to rise. PSF is negatively 
correlated with the LST, but the relative contribution 
value is only 2.68%. Although increasing the proportion 
of pervious surfaces can alleviate the thermal 
environment to a certain extent, in dense and complex 
urban built-up areas, pervious surfaces such as urban 
green spaces and bodies of water are constrained by the 
artificial built environment, making the cooling effect 
insufficient to meet the needs of urban residents.

Discussion

Response of Geographical Unit Division 
to Thermal Environment

In our investigation of the intricate relationship 
between urban form indicators and LST, notable 
variations in correlation strength and explanatory 
capacity were observed across distinct geographical 
delineation units. Specifically, employing a 
homogeneous grid-based methodology revealed a 
significant positive correlation between ISF and LST. 
Conversely, when transitioning to the more nuanced 
LCZ framework, which encapsulates factors such 
as building layouts, surface materials, and human 
activities, the correlation between ISF and LST became 
statistically insignificant. This observation concurs 
with previous research by Liu et al. [22], emphasizing 
that the grid's homogeneous distribution better mirrors 
the overall imperviousness within the respective unit. 
Further analysis illuminated that within the LCZ 
framework, both HRE and AV exhibited a notable 
negative correlation with LST, whereas this correlation 
was non-significant under the grid-based approach. This 
disparity stems from the fact that spatial grids tend to 
fragment entire buildings, failing to accurately capture 
the spatial heterogeneity in building height and volume. 
In contrast, the LCZ framework maintains a coherent 
spatial pattern of the landscape, affording a more 
precise lens for analyzing the impacts on the urban heat 
environment [51]. Additionally, multivariate regression 
analyses based on the LCZ framework produced more 
accurate results. This discrepancy primarily arises from 
the intricate distribution of buildings and the diverse 
land cover types within neighborhoods, necessitating 
a comprehensive consideration of the integrated effects 
of building morphology, impervious surfaces, and 
vegetative water bodies on the thermal environment. The 

Fig. 8. LST boxplot for different LCZ types. Fig. 9. Contribution of urban form indicators to LST.
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LCZ classification method, grounded in neighborhood-
specific characteristics, not only preserves the integrity 
of landscape types but also adequately reflects the 
spatial heterogeneity among distinct LCZ types [52]. 
Consequently, this approach enables more precise 
predictions and improved goodness-of-fit in regression 
analyses. In summary, by deeply integrating factors 
sensitive to thermal environments, including urban 
structure, surface characteristics, and human activities, 
the LCZ theory not only enhances the quantitative 
description of urban spatial forms but also establishes an 
intrinsic link between surface morphological parameters 
and the urban heat island effect. This framework 
presents novel perspectives and avenues for crafting 
sustainable urban development strategies and fostering 
the construction of climate-resilient cities [39, 51, 53].

The Impact Mechanism of Urban Spatial 
Form on the Thermal Environment

Delving into the intricate interplay between 
LST, land cover types, and the 3D configurations 
of urban buildings holds paramount significance in 
effectively mitigating the UHI effect. Our findings 
reveal that, in comparison to indices such as BEI and 
SCD, the HRE exerts a more pronounced influence 
on LST, echoing the conclusions drawn by Zheng 
et al. [54]. This observation underscores the pivotal 
role played by high-rise buildings in mitigating LST 
by casting expansive shadows, fostering enhanced 
wind circulation, and facilitating heat dissipation, 
thereby contributing positively to the alleviation of 
the urban thermal environment [55]. Concurrently, the 
indices of SCD and BEI, which quantify the three-
dimensional spatial distribution characteristics of 
buildings, significantly impact the distribution patterns 
of the thermal environment. Buildings that exhibit a 
uniform distribution and open spatial configurations 
facilitate air convection and heat transfer, thereby 
effectively mitigating the UHI phenomenon. SVF is an 
important parameter for characterizing the geometry, 
density, and heat balance of urban areas, and it is also 
an important factor for generating and controlling the 
heat island effect [56, 57]. This study found a significant 
positive correlation between SVF and LST, while 
Gál et al. found a strong negative correlation between 
LST and SVF [58]. This discrepancy may stem from 
the differences in spatiotemporal scales of the studies, 
as well as the intricacies associated with SVF's role 
in both solar radiation during the day and longwave 
radiation at night. While areas with lower SVF can 
provide effective shading during the day, reducing solar 
radiation absorption, they may also restrict the loss of 
longwave radiation within urban canyons during the 
night, delaying the surface cooling process, and thereby 
manifesting distinct thermal environmental effects 
[59]. Furthermore, the positive correlation between 
AV and LST reinforces the adverse effects of large-
scale buildings on the intensity of the urban heat island 

and thermal comfort, highlighting the significance 
of building energy consumption and anthropogenic 
heat emissions [60]. As an important parameter for 
characterizing height features, CH affects the coverage 
area and layout of building shadows and changes the 
surface roughness of mechanical turbulence, thus 
affecting the surface thermal environment. ISF and 
PSF are 2D morphological indicators that are closely 
related to the urban thermal environment; they have 
a significant impact on surface reflectance, the water 
vapor cycle, and the temperature rise and fall rates 
[61]. However, this study found that the correlation 
between ISF, PSF, and LST is weaker than that of the 
3D spatial form indicators, possibly due to the greater 
comprehensive impact of 3D information, such as 
the urban canyon effect, shading effect, and building 
materials, on the thermal environment [11]. Therefore, 
in urban planning and construction, greater emphasis 
should be placed on the rational layout and optimal 
configuration of 3D building spaces to fully harness 
their potential in mitigating the UHI effect [62].

Limitations and Prospects

At present, although this research has made progress, 
some issues still need to be addressed. First of all, 
the spatial resolution of the LST obtained via thermal 
infrared remote sensing is relatively low. In the future, 
remote sensing technology can be combined with 
thermal imagers mounted on UAVs to obtain sub-meter-
level LSTs, accurately reflecting the spatial complexity 
and details of the thermal environment at the microscale 
of blocks. Second, this study focuses on the analysis of 
factors affecting the thermal environment at the block 
scale. In the future, comparative studies at the regional, 
national, and even global scales should be conducted 
to explore the impact mechanisms of urban spatial 
morphology on the UHI at different spatial scales, in 
order to construct more comprehensive thermal relief 
measures to alleviate the LST. Third, this study only 
considers the quantitative relationship between summer 
daytime LST and urban forms and fails to fully consider 
the phased characteristics of thermal environmental 
effects in time series. In the future, it will be necessary 
to strengthen the comparative analysis of the impact 
mechanism of urban form on the thermal environment 
for different seasons and time scales. Finally, in 
the future, research on the relationship between 
thermal comfort, temperature, and human health 
should be strengthened. Using on-site measurements, 
questionnaire surveys, indicator evaluations, and other 
methods, the thermal comfort of residents should be 
quantified, and the mechanisms of the impact of urban 
spatial forms on thermal comfort should be studied.
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Conclusions

This study builds on existing research to propose 
a more targeted street-scale LCZ scheme, thoroughly 
exploring the complex relationship between spatial 
heterogeneity of geographic units and their thermal 
environment responses. Furthermore, it innovatively 
incorporates MSPA methods to accurately identify 
core heat island patches and critical nodes that have a 
significant influence on the heat island effect. The main 
conclusions are as follows:

(1) The core area and the edge area account for the 
largest proportion of the heat island landscape, and the 
accumulation, diffusion, and radiation of the two areas 
lead to the increasing degree of aggregation among the 
heat island patches, which has an important impact on 
the spatial distribution pattern of the heat island. Using 
the MSPA method to study the spatial characteristics of 
the UHI, we can accurately identify the core heat island 
patches and key nodes that have a significant impact on 
the thermal environment. By blocking the connection 
of the network structure, targeted heat evacuation 
strategies are formulated to control and mitigate the 
UHI. 

(2) Spatial heterogeneity and scale effects determine 
the different response rules of different geographical unit 
division methods in relation to thermal environmental 
effects. An LCZ based on block unit divisions can 
retain more complete landscape types and fully reflect 
the spatial heterogeneity among different LCZ types. 
Therefore, more accurate goodness-of-fit and analysis 
results can be obtained in the regression analysis. LCZ 
units are thus more suitable for quantitative descriptions 
of block-scale surface morphology parameters and 
correlation analyses of thermal environmental spatial 
characteristics.

(3) The spatial form of blocks has a significant 
influence on changes in the LST. The three indicators 
with the largest relative contribution value are HRE, 
BEI, and SVF. Tall buildings can provide larger 
shadows, an evenly distributed building layout will 
promote the formation of ventilation corridors, and the 
sky viewing angle will affect the absorption intensity 
of solar radiation. Urban spatial planning should focus 
on the influence of these indicators on LST, so as to 
mitigate the urban heat island effect as much as possible.
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