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Abstract

Intensive human activities and climate change have led to the degradation of regional ecosystem 
functions. Accurately assessing the dynamics of ecosystem services and their driving factors is 
essential for developing differentiated ecological management strategies and supporting regional 
sustainable development. However, understanding the responses of ESs’ drivers across different spatial 
scales in various geographic contexts remains limited. This study focuses on the Hefei Metropolitan 
Area, utilizing the InVEST model to evaluate changes in four ESs: water yield, soil retention, carbon 
storage, and habitat quality from 2000 to 2022. The Optimal Parameter Geodetector (OPGD) model 
was employed to quantify the driving factors at different spatial scales. The results reveal a general 
decline in water yield, soil retention, and carbon storage, while habitat quality has improved. The spatial 
distribution of ESs exhibits a pattern of "high in the west, low in the east; high in the south, low in the 
north." Natural factors predominantly influence the changes in water yield and soil retention, while 
human activities significantly impact the spatial variation of carbon storage and habitat quality. The 
optimal spatial scale for detecting driving factors is 7~8 km. The findings provide a theoretical basis for 
optimizing ecological space in rapidly urbanizing areas.

Keywords: ecosystem services, driving factors, land use/cover change, time and space evolution, optimal 
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Introduction

Ecosystem services (ESs) refer to the benefits 
provided to humans by ecosystems through their 
structures, functions, and operational processes [1-
3]. The sustainable development of human society 
is inseparable from the essential support provided 
by ecosystems [4, 5]. In recent decades, under the *e-mail: yuhr@njfu.edu.cn 
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combined effects of complex climate changes and 
intensifying human activities, global ecosystems have 
been experiencing varying degrees of degradation, 
posing an increasing threat to human well-being [6, 7]. 
Therefore, to ensure the sustainable development and 
effective management of ESs, it is crucial to investigate 
the spatiotemporal characteristics of ESs and quantify 
the driving factors.

Since the 21st century, the study of ESs has become 
a focus across multiple academic disciplines. Scholars 
both domestically and internationally have explored 
ESs from different perspectives, including research on 
various regions, scales, and types of ESs. Their efforts 
have led to significant academic achievements in 
understanding spatiotemporal evolution patterns [8, 9], 
interaction relationships [10, 11], assessment techniques 
and methodologies [12-14], and optimization strategies 
[15, 16]. Assessments of ESs are primarily based on 
models such as emergy evaluation [17], value assessment 
[18], ARIES [19], SoIVES [20], and InVEST [21]. 
Currently, the InVEST model is most widely applied 
for the dynamic evaluation and spatiotemporal analysis 
of ESs due to its high efficiency in data processing and 
ease of use [22].

Common methods for identifying and quantifying 
the driving factors of ESs include multiple regression 
models [23], structural equation models [24], and the 
geographical detector [25]. The Geographical Detector 
model is widely used to examine spatial heterogeneity 
in geographical phenomena and analyze the interactions 
among driving factors, and it has been frequently 
employed to detect ES drivers [26, 27]. However, the 
traditional Geographical Detector model often relies 
on subjective experience to manually determine the 
discretization methods and the number of classifications 
for spatial data, which can reduce accuracy [28, 29]. 
In contrast, the OPGD model automatically selects 
the most suitable discretization method and number of 
classifications based on the characteristics of spatial 
data and combines them with specific spatial scale 
parameters to yield more accurate and reliable results 
[30, 31]. Therefore, we have chosen the OPGD model to 
perform the quantitative analysis of driving factors.

ESs exhibit significant spatial heterogeneity. Due to 
the influence of the natural geographical environment, 
there are considerable differences in how drivers at 
various spatial scales respond to ESs. Currently, the 
analysis of driving factors has developed into a research 
paradigm that uses grid scales, administrative divisions, 
and watersheds as basic units, combined with models 
for quantitative analysis [32-34]. However, further 
exploration of the scale effects of ES drivers is needed. 
Moreover, the multi-scale evaluation of these factors 
can help assess the appropriateness of various policies 
and measures for regulating ecosystems [2], providing 
important reference value for optimizing the precise 
management of ecosystems.

In 2001, the United Nations launched the Millennium 
Ecosystem Assessment project, which proposed a 

conceptual framework that clarifies the interactions 
between ESs and human well-being. It pointed out that 
ecosystems primarily provide humans with benefits 
through provisioning services, regulating services, 
supporting services, and cultural services. Based on 
this framework, and considering the actual development 
of the Hefei Metropolitan Area as well as relevant 
research findings [35, 36], this study selects four ESs 
for evaluation: water yield (WY), carbon sequestration 
(CS), soil retention (SR), and habitat quality (HQ). The 
goals of this study are: (1) to reveal the spatiotemporal 
heterogeneity of the four types of ESs; (2) to analyze 
the differences in influencing factors at different spatial 
scales and identify the optimal parameters; and (3) to 
determine the primary factors driving changes in ESs 
based on the optimal parameters.

Materials and Methods

Study Area

The Hefei Metropolitan Area consists of seven 
prefecture-level cities and one county-level city, 
covering a total area of 63,500 Km2 (Fig. 1). It serves 
as a crucial hub for the Yangtze River Delta's expansion 
toward central and western China, playing an important 
role as a connecting link. This region has a subtropical 
monsoon climate with distinct seasons, and its 
topography is primarily composed of hills and plains. 
From 2000 to 2022, the GDP of the Hefei Metropolitan 
Area increased from 134.60 billion yuan to 2.87 trillion 
yuan, representing nearly 20-fold growth. During the 
same period, the area of developed land nearly doubled, 
and the population grew by 5.33 million, making it a 
representative case of rapid urbanization. However, 
as more people flock to cities, the region's ecosystem 
is experiencing increasing disturbances, and its high-
quality development faces growing ecological risks. The 
functional optimization and enhancement of ESs in the 
metropolitan area are urgently needed.

Data Sources and Processing

All data were unified under the WGS1984-UTM-
Zone-50N coordinate system with a spatial resolution of 
1 km.

Selection and Treatment of Driving Factors

Changes in ESs are mainly influenced by a 
combination of complex factors, such as topography 
and geomorphology, climatic conditions, land use types, 
and anthropogenic activities. Referring to previous 
studies [40-42], and based on the data for 2020 (Table 
1), we selected natural environmental factors, including 
elevation (X₁), slope (X₂), average annual precipitation 
(X₃), average annual temperature (X₄), potential 
evapotranspiration data (X₅), NDVI (X₆), and soil type 
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(X₇). Anthropogenic activity factors include GDP (X₈), 
population density (X₉), nighttime lighting data (X₁₀), 
land use data (X₁₁), and carbon emissions (X₁₂), totaling 
12 indicators as driving factors. Then, data resolution 
was unified to 100×100 m, with the coordinate system 
set to WGS1984-UTM-Zone-50N. The water yield 
(WY), habitat quality (HQ), carbon sequestration 
(CS), and soil conservation (SR) of the 2020 Hefei 
Metropolitan Area were used as dependent variables for 
spatial differentiation driving analysis.

Research Methodology and Technical Route

Water Yield

The WY module of the InVEST model was used to 
assess the amount of water produced in the metropolitan 
area, and the equation [43] is shown below:

  (1)

  (2)

  (3)

  (4)

where Yxj is the annual WY of land use type j and 
raster x; AETxj is the annual actual evapotranspiration 
of land use type j and raster x; Px is the annual 
precipitation of raster x; Wx is a non physical parameter 
of climate-soil properties. Rx is the dryness index of land 
use type j and raster x, which is equal to the ratio of 
potential evapotranspiration and precipitation; ETOx is 
the annual potential evapotranspiration of raster x; Kxj is 
the evapotranspiration coefficient of vegetation; PAWCx 
is the water content of plants; and z is the seasonal 
constant. Combined with the actual situation and 
concerning related studies [44], z was assigned to 6.5 
(2000), 5.8 (2005), 5.3 (2010), 4.5 (2015), 5.6 (2020), and 
6.3 (2022) for the water yield of each period from 2000 
to 2022, respectively.

Carbon Storage

The carbon sequestration module in the InVEST 
model was used to quantify the carbon sequestration 
services in the Hefei Metropolitan Area, and the carbon 

Fig. 1. Geographical location maps and land use type of the study area.
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pool data required by the model are empirical, and 
this study draws on the results of previous research to 
determine the parameters of carbon pools in different 
land classes [45]. The calculation formula [46] is shown 
below:

  (5)

where Ctot is total carbon sequestration; Cabove is 
carbon sequestration by above-ground organisms; Cbelow 
is carbon sequestration by below-ground organisms; Csoil 
is carbon sequestration in soil; and Cdead is CS in dead 
organic matter.

Habitat Quality

The HQ Evaluation Module of the InVEST model 
was used to quantify HQ in the Hefei Metropolitan Area 
using the following formulae [47]:

  (6)

where Qxj is the HQ index of x raster in landscape 
type j; Hj represents the habitat suitability score of 
a landscape type, with a value range of [0,1]; k is the 

half-saturation constant; z is the scale constant, which 
was set to 0.5 in this study. Referring to related studies 
[48, 49], the module parameters were set and the HQ 
level was classified into five grades: excellent, good, 
moderate, poor, and worst.

Soil Retention

The rainfall erosive force R in the Hefei Metropolitan 
Area was calculated using the simple equation [50] for 
rainfall erosive force proposed by Fujian Zhou.

  (7)

where Pi is the monthly rainfall, mm; R is the rainfall 
erosive force, (J·cm)/(m2·h).

Soil erodibility factor K was calculated using the 
Erosion-Productivity Impact Calculator Model (EPIC) 
to calculate with the following equation [51]:

Data types Spatial 
resolution Data sources

CLCD data [32] 30 m China's Land-Use/Cover Datasets (https://doi.org/10.5281/
zenodo.8176941)

Monthly potential evapotranspiration dataset 
[33] 1 km

1-km monthly potential evapotranspiration dataset in China (1901-
2022) 

(http://loess.geodata.cn)

Monthly precipitation dataset [34] 1 km 1-km monthly precipitation dataset for China (1901-2022) 
(http://loess.geodata.cn)

Annual average temperature [35] k ERA5-Land dataset 
(https://cds.climate.copernicus.eu)

ASTER GDEM 30 m Geospatial data cloud 
(https://www.gscloud.cn/)

Normalized difference Vegetation index 
(NDVI) dataset [36] 1 km

MODIS/Terra Vegetation Indices Monthly L3 Global 1km SIN 
GridV006 

(https://lpdaac.usgs.gov)

Gross domestic product (GDP) dataset [37] 1 km (https://github.com/thestarlab/ChinaGDP)

Soil type dataset, Soil dataset [38] 1 km Harmonized World Soil Database version 2.0
(https://www.iea.org/data-and-statistics)

Population density dataset, nighttime lighting 
dataset [39]

1 km An extended time-series (2000-2023)of global NPP-VIIRS-like 
nighttime light data

(https://dataverse.harvard.edu/)500 m

CO2 emissions dataset [40] 0.1° EDGAR-Emissions Database for Global Atmospheric Research 
(https://www.iea.org/data-and-statistics)

Table 1. List of data sources.
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(8)

where KEPIC denotes the soil erodibility factor and 
mc, msilt, ms and orgC are the percentage content (%) 
of clay grains (<0.002 mm), chalk grains (0.002 mm to 
0.05 mm), sand grains (0.05~2 mm) and organic carbon, 
respectively.

The sediment transport ratio module of the InVEST 
model was applied to calculate the soil conservation 
services in the Hefei Metropolitan Area. Equations [52] 
are given below:

  (9)

  (10)

  (11)

where RKLSn is the potential soil erosion (t); USLEn 
is the actual soil erosion (t); SKn is the SR (t); Rn is the 
erosive power of rainfall; Kn is the soil erodibility; Ln is 
the slope length factor; Sn is the slope gradient factor; Cn 
is the vegetation cover and management factor; and Pn 
is the factor of soil and water conservation measures. Cn 
and Pn are assigned regarding the related studies [53-55], 
as shown in Table 2.

Driving Factor Analysis

Geodetector, as an analysis method used to identify 
the spatial differentiation of geographic features and 
potential influencing factors, is influenced by the 
discrete method of spatial data, partition effect, and 
spatial scale effect, all of which have an important 
impact on detection accuracy. Referring to the existing 
studies [56] and combining the scope of the study area, 
a spatial grid of 10 scales was constructed for detection 
analysis. The OPGD model was used to process the 
driving factors at different spatial scales. Referring to 
the previous study [28, 29], the classification number of 
the driving factors was set to be 3-7 categories, and five 
discrete methods, namely, the equal breaks, the natural 
breaks, the quantile breaks, the geometric breaks, and 
the standard deviation breaks, were used to detect the 

explanatory power q-value of each driving factor. 
Finally, the 90% quantile of the explanatory variables 
q of each driving factor at the 10 spatial scales was 
compared. When the quantile reached its maximum, it 
represented the optimal parameter combination for data 
discretization, and the corresponding spatial grid was 
identified as the optimal scale.  

The effects of influencing factors on the spatial 
differentiation of ESs in the Hefei Metropolitan Area 
were analyzed using the factor detection and interaction 
detection of the Optimal Parameter Geodetector (OPGD) 
model with the following equation [57].

  (12)

where q is the detection value of the influence of the 
driving factor on the spatial differentiation of ESs; q is 
within the [0,1] range, with larger q values indicating a 
stronger influence of the factors on explaining changes 
in ESs. N and Ni are the number of units in stratum i 
and the whole region, respectively. σi² and σ² represent 
the variance of the data for each level of the unit and the 
change in the dependent variable of all research units, 
respectively. L is the Y or X of the stratification.

Research Framework

The study will be implemented in three distinct 
phases. (1) Data preparation phase: Processing 
of multiple sources of data and harmonization of 
coordinates and data types. (2) ESs assessment stage: 
Based on the current situation of the Hefei Metropolitan 
Area, a quantitative evaluation of four types of ESs 
was conducted using the InVEST model. The supply 
capacity and spatial differentiation characteristics of 
various types of ESs were analyzed in terms of land-
use types and administrative districts. (3) Driver factor 
identification stage: Initially, 12 influencing factors 
were selected and 10 different spatial probing scales 
were established. Thereafter, the Optimal Parameter 
Geodetector (OPGD) model was employed for single-
factor detection and interactive detection with each of 
the four types of ESs. Then, the 90% quartiles of the 12 
influencing factors were compared among the four types 
of ESs across the 10 types of spatial scales. In the end, 
the optimal parameter combinations for discretization 
and the optimal spatial scales for detection will be 
identified. 

Land Use 
Type Cropland Forests Shrub Grassland Water Barren Impervious

P 0.15 1 1 1 0 0 0

C 0.18 0.006 0.017 0.06 0 0 0.2

Table 2. P value and C value of different land use types.
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Results

Land Use Dynamics

Table 3 indicates that arable, forest, and building land 
constitute the majority of land in the Hefei metropolitan 
region. Between 2000 and 2022, land use changes 

included a significant increase in forest and building 
land, accompanied by declines in arable land, grassland, 
watersheds, bare land, and shrubland. Arable land 
experienced the largest area decline, 2338.92 km², while 
bare land saw the highest percentage decrease at 94.76%. 
Grassland and water bodies saw moderate declines, with 
shrubland experiencing the least decrease. Building land 

Fig. 2. Technical routes.
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exhibited the highest growth during the study period, 
signaling a significant expansion in construction areas.

According to the Sankey diagram of land use 
transfer (Fig. S1), mutual shifts between farmland, 
forestland, waterways, and construction land dominate 
land use transfer in the Hefei metropolitan region 
between 2000 and 2022. Among these, the transfer of 
watershed and forestland diminishes over time, whereas 
the transfer of arable land and building land increases 
over time. Less than 1% of shrubs, grassland, and 
bare ground were converted to forestland, farmland, 
and construction land, respectively. Over 22 years, the 
Hefei metropolitan region underwent a total land-use 
transition encompassing 7448.91 km². Of this, 4763.21 
km² of arable land transferred primarily to forestland, 
representing the largest change. The largest influx 
involved construction land, totaling 3248.57 km², a 
transfer ratio of 43.61%, primarily from cultivated land, 
forest, and water bodies. The transferred area of 864.24 
km² demonstrates a notable expansion trend.

Spatiotemporal Variations in ESs

Water Yield

WY in the Hefei Metropolitan Area during the 
periods from 2000 to 2022 recorded at 1.61x10¹⁰ m³, 
2.67x10¹⁰ m³, 1.75x10¹⁰ m³, 3.98x10¹⁰ m³, and 1.22x10¹⁰ 
m³, respectively. The long-term average was 2.25x10¹⁰ 
m³. This service demonstrated a decreasing trend, 
culminating in a decrease of 0.39x10¹⁰ m³. According to 
Fig. 3a) and Fig. 4, low-water yield areas, predominantly 
arable lands with scant precipitation and lakes, contrast 
with high-yield areas dominated by forested and 
constructed lands. The higher water yield in constructed 
areas primarily results from their significantly hardened 
subsurfaces, affecting water flow variability, including 
infiltration, evaporation, and surface runoff [58, 59]. 
Conversely, river waters exhibit lower yields mainly due 
to elevated evapotranspiration. The spatial distribution 
of water yield, as shown in Fig. 4, illustrates a gradual 
reduction from south to north over 2000 to 2022, with 
mountainous regions outperforming hills and plains. 
Fig. 3b) and Fig. 4 reveal that areas like Jinzhai County, 
Huoshan County, Shucheng County, and Tongcheng City 
in Lu'an, located in the southwestern Ta-pieh Mountains, 
where dense forests and high rainfall prevail, constitute 

Year Type Cropland Forest Shrub Grassland Water Impervious Barren

2000
Area 45827.48 9335.81 0.79 25.86 3988.11 4200.78 8.28

Proportions 72.30 14.73 0.001 0.04 6.29 6.63 0.01

2005
Area 44599.86 9954.51 0.69 21.32 4330.11 4476.14 4.48

Proportions 70.36 15.70 0.001 0.03 6.83 7.06 0.01

2010
Area 43808.14 10029.24 0.51 20.65 4394.59 5132.57 1.41

Proportions 69.11 15.82 0.0008 0.03 6.93 8.10 0.002

2015
Area 43207.48 9861.26 0.41 16.21 4428.08 5873.15 0.53

Proportions 68.16 15.56 0.0006 0.03 6.99 9.27 0.0008

2022
Area 43488.57 9528.72 0.35 8.16 3838.98 6587.82 0.4336

Proportions 68.54 15.02 0.00 0.01 6.05 10.38 0.0007

2000-2005
Quantity of change -1227.62 618.70 -0.10 -4.54 342.00 275.36 -3.80

Rate of change -2.68 6.63 -12.86 -17.55 8.58 6.56 -45.89

2005-2010
Quantity of change -791.72 74.74 -0.18 -0.67 64.48 656.43 -3.07

Rate of change -1.78 0.75 -26.35 -3.14 1.49 14.67 -68.55

2010-2015
Quantity of change -600.66 -167.99 -0.10 -4.44 33.49 740.58 -0.88

Rate of change -1.37 -1.67 -20.23 -21.49 0.76 14.43 -62.57

2015-2022
Quantity of change 281.09 -332.53 -0.05 -8.05 -589.09 714.66 -0.09

Rate of change 0.65 -3.37 -13.03 -49.65 -13.30 12.17 -17.78

2000-2022
Quantity of change -2338.92 192.91 -0.44 -17.70 -149.13 2387.04 -7.85

Rate of change -5.10 2.07 -55.47 -68.43 -3.74 56.82 -94.76

Table 3. Land use changes in the Hefei Metropolitan Area from 2000 to 2022 (km2, %).
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the highest yield zones. The Yangtze River Basin, 
including cities like Hefei, Wuhu, and Ma'anshan, 
represents the secondary high-yield zone, while the 
northern plains of Anhui, such as Bengbu, Huainan, and 
Chuzhou, are identified as low-yield areas.

Carbon Sequestration

From 2000 to 2022, the average annual CS in the 
Hefei metropolitan area shows a general decreasing 
trend, from 44.23 to 36.58. Fig. 5a) indicates that 
forestland holds the highest mean CS, succeeded by 
shrubs, grassland, cropland, and finally water, which 
records the lowest values. Significant variations in the 

Fig. 4. Spatial pattern of WY in the Hefei Metropolitan Area from 2000 to 2022.

Fig. 3. Characteristics of spatial and temporal changes in WY from 2000 to 2022. a) WY for each land-use type; b) Regional differences 
in WY.
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total annual CS across different categories were noted, 
with construction land showing the largest increase 
from 1.16×107 t in 2000 to 1.99×107 t in 2022, an increase 
of 71.72%. Conversely, bare land experienced the most 
substantial reduction, decreasing by 94.51%. Spatially, 
CS in the Hefei Metropolitan Area is higher in the south 
than in the north, and mountainous areas surpass the 
plains. Fig. 5b) and Fig. 6 reveal that high values of CS 

predominantly occur in the central region of Chuzhou 
City, the southern areas of Lu'an City, the northwestern 
segments of Tongcheng City, and the southern reaches 
of Wuhu City, areas characterized by dense forest cover. 
Low-value areas mainly lie in the plains, where arable 
land, water bodies, and construction sites are prevalent.

Fig. 6. Spatial pattern of CS in the Hefei Metropolitan Area from 2000 to 2022.

Fig. 5. Characteristics of spatial and temporal changes of CS, 2000-2022. a) CS per unit area for each land-use type; b) Regional 
differences in CS.
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Habitat Quality

The HQ of the Hefei Metropolitan Area is classified 
into five grades: excellent (0.8–1), good (0.6–0.8), 
moderate (0.4–0.6), poor (0.2–0.4), and worst (0–0.2). 
From 2000 to 2022, the average indices of habitat 
quality (HQI) in the Hefei metropolitan area were 
0.303, 0.364, 0.354, 0.334, and 0.328, respectively, 
showing a general upward trend. According to Fig. 7b), 
the areas with excellent and good HQ decreased over 
time, while moderate quality areas initially increased 
and then decreased; poor quality areas decreased and 
then increased, and worst quality areas consistently 
increased. Between 2000 and 2022, the most substantial 

changes in HQ percentages occurred in the moderate 
and poor classes, whereas the excellent, good, and worst 
classes saw less fluctuation. Spatially, as depicted in Fig. 
7, excellent and good habitat qualities are predominantly 
situated in the Ta-pieh Mountains, the hilly regions of 
Chuzhou City, and riverside areas. Conversely, poor-
quality habitats are primarily located in urban and 
transportation corridor proximities. Fig. 7a) and Fig. 8 
suggest that habitats in woodland and water-rich areas 
generally exhibit higher quality indices, often exceeding 
0.6, with some areas achieving values as high as 0.9.

Fig. 7. Characteristics of spatial and temporal changes of HQ from 2000 to 2022. a) Mean value of HQ for each land-use type; b) Area 
of each class of HQ and the HQI; c) Regional differences in HQ.

Fig. 8. Spatial pattern of HQ in the Hefei Metropolitan Area from 2000 to 2022.
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Soil Retention

From 2000 to 2022, SR in the Hefei Metropolitan 
Area recorded values of 1.92×108 t, 2.27×108 t, 2.31×108 

t, 2.57×108 t and 1.81×10 8t, respectively. The multi-
year average was 2.18×108t, displaying an initial 
increase followed by a decrease. According to Fig. 9a), 
shrublands and woodlands exhibit high SR capacities, 
surpassing those of grasslands, while croplands and 
built-up areas show lower capacities. Over the 2000–
2022 period, the soil conservation capacity per unit area 
of forest land decreased by 12.69 t/hm², experiencing 
the most substantial reduction at 36.50%, with bare land 
following, and minimal changes observed in other land 
types. Fig. 10 illustrates that high soil conservation areas 
are predominantly located in the hilly and mountainous 
western regions, characterized by dense forest cover and 
steep terrain gradients, where soil conservation services 
are more effective. Integrating data from Fig. 9b), it is 
apparent that Lu'an City and Tongcheng City feature 
the highest soil conservation rates, followed by Hefei, 
Ma’anshan, and Wuhu City, while Bengbu, Chuzhou, 
and Huainan display comparatively lower rates. This 
pattern indicates that increased land use intensity in 
the plains correlates with reduced ecosystem service 
provision.

Analysis of Drivers of Ecosystem Service Changes

Optimal Parameter Identification

The same driving factors exhibit varied effects on the 
four types of ESs across different spatial regions. The 
analysis indicated that each of the 12 factors influenced 

the spatial dynamics of the ESs to varying degrees (Fig. 
S2). As the spatial grid cells used for detection increased 
in size, the q-values of most driving factors generally 
rose and then stabilized. An analysis of ten sets of grid 
cells, designed for factor detection, showed that the 
90% quantile of the explanatory variable q-values for 
WY, CS, HQ, and SR reached their maximum at grid 
sizes of 8 km, 7 km, 8 km, and 7 km, respectively. 
Consequently, these grid sizes are identified as the 
optimal spatial resolutions for assessing the drivers of 
spatial differentiation in these ESs.

The explanatory power, as measured by q-values, 
varies significantly across different combinations 
of discretization methods and the number of driver 
breakpoints (Fig. S3 and Fig. S4). According to Fig. 
S3a) and Fig. S4a), slope and GDP displayed the 
highest q-values when the data was divided into 7 
intervals using geometric breaks. Similarly, potential 
evapotranspiration and soil type were segmented into 
7 intervals with natural breaks, while precipitation and 
nighttime light used equal breaks. Elevation, NDVI, and 
carbon emissions were categorized into 6 intervals using 
geometric, equal, and quantile breaks, respectively. The 
optimal parameters for population density and land use 
type combined geometric breaks with 5 intervals, and 
the air temperature was discretized into 5 intervals 
using natural breaks. The driver discretization of CS, 
HQ, and SR followed the same approach as WY.

Drivers Analysis

Single-factor detection shows that both natural 
conditions and anthropogenic activities influence 
the spatial heterogeneity of the four ESs to varying 

Fig. 9. Characteristics of spatial and temporal changes of SR from 2000 to 2022. a) SR per unit area for each land-use type; b) Regional 
differences in SR.
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Fig. 10. Spatial pattern of SR in the Hefei Metropolitan Area from 2000 to 2022.

Fig. 11. Detecting the impact of a single factor on ESs change using the OPGD model.
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extents. Fig. 11a) reveals that annual precipitation 
(X3), temperature (X4), land use type (X11), potential 
evapotranspiration (X5), and elevation (X1) are the 
predominant factors affecting the spatial variability 
in water yield, with explanatory powers of 54.84%, 
42.14%, 29.70%, 29.42%, and 28.70%, respectively. In 
contrast, GDP (X8) and nighttime lighting (X10) show 
no significant correlation. Fig. 11b) demonstrates that 
all twelve factors impact the spatial differentiation of 
carbon stocks differently. Land use type (X11), elevation 
(X1), slope (X2), temperature (X4), and population 
density (X9) are significant, with q-values of explanatory 
power above 30%, and land use type alone contributes 
up to 80.51%, indicating a dominant influence. Fig. 11c) 
highlights that nighttime lighting (X10) and land use type 
(X11) are critical in influencing the spatial heterogeneity 
of HQ, with explanatory powers of 65.91% and 22.15%, 
respectively, significantly impacted by human activities. 
Fig. 11d) details how the spatial distribution of SR is 
primarily determined by elevation (X1), slope (X2), 

potential evapotranspiration (X5), air temperature (X4), 
and land use type (X11), with respective explanatory 
powers of 51.12%, 45.82%, 34.07%, 33.77%, and 32.06%. 
This pattern indicates a strong correlation between SR 
and topographic relief, climatic conditions, and land use 
type. Collectively, land use patterns, topography, and 
meteorological factors are the principal drivers of spatial 
heterogeneity in ESs in the Hefei Metropolitan Area.

Interaction detection results reveal that pairwise 
interactions among factors significantly influenced the 
spatial differentiation of ESs in the Hefei Metropolitan 
Area, more so than individual factors alone. These 
interactions also varied considerably in their 
contributions to the explanatory power of different types 
of ESs. Fig. 12a) indicates that interactions included 23 
pairs of nonlinear enhancements and 43 pairs of two-
factor enhancements in water yield. Rainfall (X3) and 
temperature (X4) demonstrated the strongest interactions 
with other factors, achieving explanatory power q-values 
above 40%. Notably, interactions involving land use type 

Fig. 12. Detecting the impact of drivers on ecosystem service change using OPGD model interactions.
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(X11) and rainfall (X3) surpassed 60% strength, with the 
combination of land use type and rainfall reaching the 
highest at 70.63%. This pattern suggests that rainfall, 
potential evapotranspiration, air temperature, and land 
use type are pivotal in driving the spatial variability of 
water yield. Fig. 12b) reveals that interactions in carbon 
stock primarily involved two-factor enhancements, 
with 9 pairs showing nonlinear enhancement and 
57 pairs showing two-factor enhancement. Land 
use type exhibited the most substantial interactions, 
with q-values above 80%, where land use type (X11) 
combined with GDP (X8) yielded an explanatory 
power of 83.02%. This indicates that anthropogenic 
activities significantly affect the spatial distribution of 
carbon stocks, with notable interactions also involving 
elevation, slope, and meteorological factors. Fig 12c) 
demonstrates that HQ interaction results included 40 
pairs of two-factor enhancements, 15 pairs of nonlinear 
enhancements, and 11 pairs of one-factor nonlinear 
attenuation. The interaction involving land use type 
(X11) and nighttime lighting (X10) emerged as the 
most influential, with a q-value of 52.88%, indicating 
a substantial anthropogenic impact on HQ. Fig. 12d) 
depicts that SR interactions featured 9 pairs of nonlinear 
enhancements and 57 pairs of two-factor enhancements. 
The interactions between elevation (X1) and slope (X2) 
were particularly potent, contributing significantly to 
SR's spatial heterogeneity with a q-value of 63.52%. 
This suggests that topographic factors predominantly 
influence SR, alongside notable contributions from land 
use type, temperature, and potential evapotranspiration.

Discussion

Characterizing the Spatial and 
Temporal Evolution of ESs

Over the past 20 years, the spatial distribution of 
similar types of ESs has exhibited a high degree of 
consistency, generally displaying the pattern of "higher 
in the west and south, lower in the east and north, with 
mountainous areas higher than hills and plains", which is 
closely related to changes in land use structure. Changes 
in WY, CS, and SR show significant differences, while 
HQ has changed the least (Fig. S5). Overall, WY, SR, 
and CS have declined, while HQ has increased [60]. In 
terms of the spatial distribution of ES, there are clear 
differences at both the administrative district scale and 
land use type level. At the administrative district level, 
Lu'an City, Tongcheng City, Ma'anshan City, and Wuhu 
City are high-value areas for ES. Among these, SR 
exhibits the most significant differences between city 
and county levels, while HQ shows the least variation. 
This is mainly because SR's spatial distribution is 
primarily controlled by topographic relief [61], whereas 
HQ is more strongly related to the land use pattern 
[36]. Land use changes are mainly reflected in the 
conversion of farmland to construction land around 

urban areas, and the changes are not significant at the 
city and county level. The differences in ES across 
land use types are mainly reflected in the stronger 
ES supply capacity of forests, shrubs, and grasslands 
compared to other land types, with areas where these 
land types are concentrated naturally becoming high-
value areas for ES [21]. Therefore, in the process of 
regional development and construction, the focus should 
be on highly intensive, efficient, and high-quality land 
use functions, promoting the formation of a land use 
model that integrates production, living, and ecological 
functions in a complementary and synergistic manner, 
while avoiding the disorderly expansion of urban 
construction space.

Influencing Factors of ESs

The study selected both natural environmental 
factors and socio-economic factors for the quantitative 
analysis of ESs’ drivers. Overall, changes in WY and 
SR were primarily driven by the natural geographic 
environment, while the spatial distribution of CS 
and HQ was more significantly influenced by human 
activities, particularly the constraints imposed by land 
use types on their spatial patterns, consistent with 
the findings of Wang’s study [36]. Among these, CS 
and SR were more sensitive to variations in terrain 
and slope [62], while climatic factors such as rainfall, 
temperature, and evapotranspiration contributed to the 
spatial heterogeneity of WY [63]. HQ, on the other hand, 
followed socio-economic changes, as the expansion 
of construction land driven by socio-economic 
development altered regional ecosystems’ climate 
conditions, vegetation cover, species distribution, and 
biodiversity, resulting in HQ degradation [34]. This 
suggests that, in addition to climate conditions and 
the natural environment, land use patterns, production 
and living practices, and policy measures closely 
tied to human activities also play a crucial role in the 
spatiotemporal evolution of ESs. Therefore, accurately 
quantifying the factors influencing regional ESs and 
understanding how ecosystems respond to human 
activities, as well as the feedback mechanisms involved, 
can better promote high-quality regional development 
[64, 65]. 

The response of ESs’ influencing factors to spatial 
scale exhibits significant variability. As the detection 
scale changes, the intensity of influencing factors on 
ESs also shifts. Across 10 different spatial grid settings, 
as the grid scale increases, the spatial aggregation of 
influencing factors grows, and the spatial distribution 
of ESs becomes more closely related to the influencing 
factors, making their driving effects more pronounced. 
When the grid scale reaches a certain threshold, the 
influence of the factors peaks, but beyond this critical 
point, the effect weakens. This indicates that there is 
an optimal spatial scale parameter for the impact of 
influencing factors. Our study, using the OPGD model, 
confirmed that the drivers of ESs exhibit a significant 



Quantitative Analysis of Drivers... 15

scale effect across different spatial scales. A more 
refined scale helps accurately identify differences in the 
spatial distribution of various ESs, allowing for more 
precise management of ESs, and ultimately achieving 
refined control of land use patterns [31, 32]. Therefore, 
the fine-scale protection and management of regional 
ecosystems should take into account the spatial scale 
effects of various influencing factors, with particular 
attention to the optimal scale of factor impact. At the 
same time, the interaction of multiple influencing factors 
across different spatial scales must also be considered. 
By fully utilizing the intensity of drivers at different 
spatial scales to regulate the supply capacity of ESs, it is 
possible to maximize the ecological service benefits in 
different regions.

Limitations and Future Research

The study employed the Optimal Parameter 
Geoprobe (OPGD) model to analyze the drivers of spatial 
differentiation in ESs and to explore the partitioning and 
scale effects of spatial data. Compared to the traditional 
Geodetector model, the OPGD model enhances the 
discretization methods, results, and the number of 
partitions in the spatial data, which leads to more 
reliable detection outcomes and more accurately reflects 
the role of the driving factors in the spatial heterogeneity 
of ESs. Ecosystems, however, are complex and vast, 
influenced by interlinked social, economic, and natural 
factors. The complexity of their interactions presents 
a significant scientific challenge in dissecting and 
quantifying the influence of multiple factors. The study's 
reliance on relevant literature for data calculations 
impacts the accuracy of the results. Furthermore, the 
analysis of driving factors is limited to the interactions 
between paired factors, failing to address the influence 
of multiple factors on the dependent variable, nor does 
it consider whether the effect of the influencing factors 
is positive or negative. Future research should employ 
a variety of methods to examine the mechanisms and 
relationships among influencing factors.

Conclusions

This study conducted a quantitative analysis of ESs 
in the Hefei Metropolitan Area with the InVEST model, 
and further explored the dominant drivers affecting their 
spatial heterogeneity through the OPGD model. The 
findings are as follows:

(1) From 2000 to 2022, WY, SR, and CS declined 
overall, while HQ increased. The spatial distribution 
showed a consistent pattern: higher in the south and 
west, lower in the north and east, with mountainous 
areas having greater values than plains and hills. 

(2) The results of the OPGD model indicate that 
a grid scale of 7~8 km is the optimal spatial scale 
for exploring the driving factors of ESs in the Hefei 
Metropolitan Area. 

(3) Single-factor detection highlighted that land use 
patterns, topography, and meteorological factors are the 
primary influencers of spatial differentiation among the 
ESs. Interactive detection revealed that natural factors 
primarily drove changes in WY and SR, while human 
activities more significantly affected CS and HQ.
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