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Abstract

Amid escalating environmental pressures and dynamic socio-economic changes, current research on 
ecological security often needs to provide comprehensive predictive models that effectively incorporate 
multivariate relationships and long-term trends. This study aims to fill this gap by employing the 
Pressure-State-Response(PSR) framework, utilizing 18 indicators derived from meteorological, remote 
sensing, soil, terrain, and socio-economic datasets to evaluate the ecological security of the West 
Liao River Basin from 2010 to 2021. A transformer-based artificial intelligence model was developed 
to predict time-series indicators from 2022 to 2070, enhancing the accuracy of trend, seasonality, 
multi-scale, and multivariate relationship predictions. Our findings reveal that the Ecological Security 
Index(ESI) remained within the “Generally secure” category, exhibiting a slightly declining trend with 
values ranging between 0.478 and 0.499. Key obstacle factors identified include the proportion of the 
non-agricultural population, power of agricultural machinery, effective irrigated area, GDP per capita, 
and the proportion of cultivated land to land area. Compared to state-of-the-art models such as Informer, 
LightTS, TimesNet, and Dlinear, our model demonstrates significant improvements in Mean Absolute 
Error(MAE) of 1.04%, 4.09%, 3.22%, and 4.54%, respectively. This research provides critical insights 
into the region’s management and enhancement of ecological security.

Keywords: ecological security, pressure-state-response (psr) model, artificial intelligence prediction, time-
series analysis, West Liao River Basin
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Introduction

The West Liao River Basin serves as a critical 
ecological barrier, underpinning regional economic 
development and influencing the ecological security 
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of the Yellow River, Haihe River basin, and Beijing-
Tianjin-Hebei region. Located upstream of the Liao 
River, it traverses the Horqin Sandy Land, playing a 
vital role in combating desertification in the Horqin and 
Hunshandak sandy land. The basin includes remediated 
and unremediated areas, such as the Horqin Desert, 
Naiman, and Jarud mining region, with ongoing illegal 
forest and grassland occupation challenges. In 2023, 
water quality in sections like Erdaohezi and Dawafang 
declined to below ClassV [1], with significant wastewater 
discharge violations. In response, the Chinese Ministry 
of Ecology and Environment issued the “Implementation 
Opinions on Accelerating the Establishment of a 
Modern Ecological Environment Monitoring System” 
[2] in March 2024, emphasizing the need for advanced 
technologies, such as artificial intelligence, to enhance 
environmental quality prediction and risk monitoring.

The concept of “ecological security”, first recognized 
in 1987 amid rising environmental pressures, highlights 
the critical importance of ecological security [3-5] and 
the need for accurate early warning systems to predict 
potential short- and long-term risks from natural and 
anthropogenic hazards [6, 7]. Early warning systems 
hinge on prediction, which can be driven by mathematical 
methods (e.g., fuzzy mathematics [8, 9], rough set [10], 
and gray system theory [11]) or by artificial intelligence 
techniques (e.g., random forest [12], ARIMA [13], 
RNN [14-17], and transformers [18, 19]). Transformer-
based models have demonstrated remarkable accuracy 
in time-series forecasting, including precipitation [20-
23], PM2.5 [24, 25], temperature [26, 27], gross primary 
productivity [28], gross domestic product [29] and 
evapotranspiration predictions [30, 31].

At present, there is little research on prediction 
and ecological security early warning, especially 
focusing solely on river basins. The neural network-
based approach dates back to 1999. Shao etc. [32] 
studied ecological early warning of the arid inland river 
basin, using artificial neural networks to predict green 
equivalent areas as an early warning index to analyze the 
ecological environment from 2000 to 2020. In 2013, Li et 
al. [33] proposed a multi-model approach by integrating 
cellular automata (CA) and artificial neural networks 
(ANN) to predict the warnings of illegal development 
for 2015, 2020, and 2025, respectively. The integrated 
model is calibrated using empirical information from 
remote sensing and handheld global positioning systems. 
In 2017, Chen et al. [34] introduced a PSR-based land 
ecological security early warning index system, which 
used an RBF neural network to predict the ecological 
security index from 2013 to 2017. In 2022, Zou etc. [35] 
constructed a cultivated ecological security assessment 
index system based on the PSR model and utilized 
random forest (RF) and multilayer perceptron (MLP) 
models to predict evaluation indices from 2019 to 2028 
in order to calculate warning results. In 2023, Wang 
etc. [36] studied coastal wetland ecosystems in the 
eastern Fujian province employing DPSIR and BP-ANN 
models. They evaluated the potential ecological hazard 

posed by invasion through an early warning indicator 
system, exhibiting a graded distribution pattern ranging 
from significant risk in the central inland urban areas 
to progressively lower risk in neighboring regions. Also, 
in 2023, the work [37] constructed a new ecological 
security early warning integrated system by the 
Bayesian network and DPSIRM (Driver-Pressure-State-
Impact-Response-Management) model. Then they set 
up a comprehensive index to assess the early warning 
system in the East Liao River Basin, China, from 2000-
2020. 

Few countries outside of China have published studies 
on ecological security assessment and early warning 
systems, with the majority of the research concentrated 
in developing countries like Iran and India. This focus 
is likely due to the heightened ecological pressures 
these nations experience, which drives government and 
research priorities toward assessing ecological security. 
In 2018, Bahraminejad et al. [38] utilized the PSR model 
to develop an early warning system for the Darmiyan 
protected area, analyzing key indicators—such as a 
thirty-year precipitation average, vegetation cover, and 
soil brightness—with a 95% confidence level for each. 
In India, Das et al. [39] applied the PSR model to West 
Bengal’s wetlands (2013–2020), highlighting population 
density, urbanization, and road density degradation. 
Similarly, Subhasis et al. [40] employed the PSR model 
and the Analytical Hierarchy Process (AHP) to examine 
the Malda district's wetlands at the block level, revealing 
a slight health decline from 2011 to 2018. Further, 
in 2022, Sadeghi et al. [41] evaluated Shiraz City’s 
Darwazeh Qur'an Watershed using the PSR framework 
to examine check dam impacts on flood mitigation. The 
finding indicated minimal effects, with health indices 
of 0.55 (with dams) and 0.53 (without dams). Recently, 
Chamani et al. [42] assessed the ecological security of 
subwatersheds in the Sharghonj Watershed. Using 20 
PSR-based indicators, they found significant impacts 
from flood-related variables, with health indices ranging 
from 0.53 to 0.83 and ecological security indices from 
0.27 to 1.01.

However, current research on the West Liao 
River Basin is limited, often overlooking ecosystem 
complexity and lacking in-depth analysis of multi-scale 
obstacle factors. Existing early warning methods also 
suffer from low accuracy in time-series predictions, 
failing to fully explore complex patterns like seasonality 
and multi-scale correlations. In response to the above 
issues, we developed an ecological security (ES) 
model for the West Liao River Basin based on the 
PSR framework, incorporating meteorological, remote 
sensing, soil, topographic, and socio-economic data. 
We identified key obstacle factors at various scales 
and utilized transformer-based AI technology for time-
series prediction. This integrated approach aims to 
enhance intelligent monitoring and prevention measures 
for ecological security, offering a comprehensive 
data preprocessing, assessment, prediction, and early 
warning system. 
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Materials and Methods

Overview of the Study Area

The West Liao River, a tributary of the Liao River, 
is located in the northern part of Liaoning Province and 
the southeastern part of the Inner Mongolia Autonomous 
Region in China. This river is a typical ecotone area for 
agriculture and animal husbandry, as illustrated in Fig. 
1. The region is situated in a semi-arid area, belonging 
to the grassland, sandy, agricultural, and pastoral 
ecological zone. This study focuses on 18 counties 
and cities in this region. The annual mean temperature 
increased from northwest to southeast, and the average 
annual precipitation was 381 mm. The per capita water 
resources are 851 m3, indicating a typical water shortage 
and ecologically fragile area.

Data Sources

Our research utilizes a multi-source dataset, detailed 
in Table 1. Meteorological data, including temperature 
and precipitation, were obtained from the National 
Meteorological Science Data Center covering the 
period from January 1, 2010, to December 31, 2021 
[43]. The NDVI (normalized vegetation index) data 
were sourced from the NDVI sequence data of remote 
sensing products fused by the Moderate Resolution 
Imaging Spectroradiometer (MODI13A3) of NASA [44]. 
Topographic data were selected from the Geospatial 
Data Cloud 30 m resolution DEM dataset. Soil data 
were acquired from the Cold and Arid Regions Science 
Data Center of the Chinese Academy of Sciences [45]. 
Socioeconomic data were obtained from the statistical 
yearbooks of Chifeng, Tongliao, and the Inner Mongolia 
Autonomous Region.

Ecological Security Evaluation System

The PSR model is utilized to construct a risk 
assessment system for ES in the study area. The 
components of pressure, state, and response are 
intricately interconnected, exerting mutual influence 
and constraint on each other. Among them, the pressure 
indicators reflect the causes and potential impacts of 
ecological problems, focusing mainly on the impact 
of human activities on the ecosystem. State indicators 
imply changes in the natural environmental conditions 
caused by human activities and assess the status and 
resilience of the ecosystem. Response indicators reflect 
the ability and actions of humans or nature to overcome 
ecological and environmental problems. The ESI system 
is constructed as shown in Table 1.

Data Processing 

Different indicators possess distinct units and 
dimensions, making it impossible to compare them 
within a single system. Therefore, all the units and 
dimensions in the system should be removed, and 
the data should be standardized so that all the data is 
between [0,1] [34]. The data standardization formulas 
are shown below. 

	 	 (1)

	 	 (2)

Where X
ij and X

ij are the initial and normalized 
values of the jth indicator in the ith evaluation unit(year), 
respectively. 

Fig. 1. Geographic location of the study area.
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Index Weights Calculation

In our paper, we used an objective method called the 
entropy method to calculate weights, which is mainly 
based on the index data itself. The entropy method 
is adopted to determine the weight of the indicator 
by constructing a judgment matrix. This matrix can 
reflect the hidden information in the data, enhance the 
discrepancies and differences among various indicators, 
and avoid analysis difficulties and other drawbacks 
caused by slight differences between selected indicators. 
The specific steps are as follows: 

1. Standardization of data:

	 	 (3)

Where Xij is the attribute value of the jth indicator in 
the ith evaluation unit. 

2. Calculation of information entropy Hj for each 
indicator: 

	 	 (4)

Where Hj is the entropy value of the jth indicator, 
n represents the number of evaluation units, and it is 
assumed that if Pij = 0, then Pij ln Pij = 0. 

3. Calculation of weight Wj of each indicator:

	 	 (5)

Where m represents the number of evaluation 
indicators.

Ecological Security Evaluation

The comprehensive index method is used to obtain 
the ESI, or early warning index, of the evaluation 
object through weighted summation of the index data to 
complete the quantitative evaluation. The expression of 
this method is as follows: 

	 	 (6)

Where Pij is the normalization of the jth indicator data 
in the ith evaluation unit, Wj is the weight coefficient of 
the jth ecological security indicator, and n is the total 
number of indicators.

Ecological Security Standards

Due to different study areas, large differences in 
selected indicators, and complex index systems, the 
range of the ecological security index calculated by 
traditional methods cannot effectively reflect the internal 
differences in the West Liao River Basin. Therefore, the 
nature break method reclassifies the ESI and adjusts the 
results. The natural discontinuity method reduces the 
intra-class differences and maximizes the inter-class 
differences, better reflecting the internal differences in 
ES. The ESL is demonstrated in Table 2. The values for 

Criterion Layer Index Layer Correlation Weight Abbreviation

Pressure(P)

Population density (person/km2 ) - 0.068328 P1
GDP per capita (yuan/person) + 0.063314 P2

Total chemical fertilizer (t) - 0.05144 P3
Power of agricultural machinery (mkw) - 0.11507 P4

Proportion of cultivated land to land area (%) - 0.10029 P5

State (S)

Precipitation (mm) + 0.04394 S1
Annual temperature (° C ) + 0.02514 S2

Topographic relief height (° ) - 0.03745 S3
Soil organic carbon (g/kg) + 0.02456 S4

Net Primary Productivity (gC/m2 ) + 0.02933 S5
PM2.5 concentration (µg /m3 ) - 0.03851 S6

Luminous intensity - 0.07211 S7

Response (R)

Proportion above high school (%) + 0.01996 R1
Urban green space per capita (person/km2 ) + 0.01793 R2

Proportion of tertiary industry (%) + 0.01648 R3
Technology level (%) + 0.02487 R4

Effective irrigated area (km2 ) + 0.16289 R5
Proportion of non-agricultural population (%) + 0.08841 R6

Table 1. Ecological security index of the study area.
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different stages of the warning system were determined 
by calculating ΔESI (changes of ESI) between adjacent 
years and grading ESI, as shown in Table 3.

Prediction Method of Ecological Security Index 

Given a chronologically ordered sequence with 

a length of L, },...,{ 2
2

1
1

xd
i

N
Lin RxxxxX ∈= , N is the 

number of variables. Our target is to predict the future H 
time steps of the data sequences. The framework of our 
prediction model is shown in Fig. 2(a). The prediction 
model comprises two core modules: multi-dimensional 
information extraction and transformer-based sequential 
prediction. 

Multi-Dimensional Information Extraction

Seasonal Information Extraction

The Fourier transform model was utilized for 
seasonal trend information extraction 0. Fs is calculated 
as follows: 

	 	 (7)

Where s
inx  is the sth dimensional variables of 

input Xin, s represents the index between 0 and N-1,
110 ,....,, −N

ininin xxx , N is the total feature number of Xin , 

11
2

Nk + ≤ ≤   
.

Evolutionary Information Extraction

Considering its simplicity and low computational 
resources, we use a linear transformation model to 
capture evolutionary information. The calculation 
formula is as follows: 

	 	 (8)

Where Wt is learnable weight parameters, and bi is a 
learnable bias term. 

Multi-Scale Information Extraction

The multi-scale correlation information between 
variables is extracted according to the following 
formula: 

	 	 (9)

Where xi and xj represent two different variables, 

denotes the association value between distinct 

variables f (·) and 1f − (·), which designate the Fourier 
transform and its reverse transformation, respectively. 
Thereafter, the Softmax function highlights the 
relationship values of higher importance to the prediction. 
The higher the importance, the greater the weight is set. 
The weight CrW for  can be obtained by: 

	 	 (10)

Table 2. Classification of ESI in the study area.

Rank ESI Security level Ecosystem Function
I [0,0.36) Extremely insecure Serious damage
II [0.36,0.44) Relatively insecure High difficulty
III [0.44,0.5) Generally secure Appearance of destruction
IV [0.5,0.57) Relatively secure Robust
V [0.57,1) secure Sound

ESI Level of ES ΔESI Analysis Level of ESEW

ESI < 0.36 Insecure ΔESI>0 
ΔESI<0

Serious warning, Improvement trend 
Serious warning, Degradation trend

I
II

0.36 ≤ ESI < 
0.44

Relatively 
insecure

ΔESI>0
 ΔESI<0

Warning, Improvement trend 
Warning, Degradation trend

III
IV

0.44 ≤ ESI < 0.5 Generally secure ΔESI>0
ΔESI<0

Early warning, Improvement trend Early 
warning,  Degradation trend

V
VI

ESI ≥ 0.5 Secure ΔESI>0
 ΔESI<0

Non-warning
Non-warning, Degradation trend

VII
VIII

Table 3. Classification of ecological security early warning (ESEW) in the study area.
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Then, extracting multi-scale information, it is 
calculated as follows:

	 	 (11)

Where S∆ represents multi-scale time variable 
information, Ws and bs

 denote the learning parameters 

and bias, respectively, k( )S ′∆  designates the transpose 

of kS∆ , ( )Sb ′  is the transpose of Sb , KSx represents the 
values of different data variables at different timescales, 
with scale s including hour, day, month, and year. 
Finally, the multi-scale data correlation formula is as 
follows: 

	 	 (12)

Transformer-Based Sequential Prediction

The prediction part of this model mainly used the 
decoder module of the transformer [46], which includes 
six identical modules, each of which mainly contains 
the Multi-Head Self-Attention mechanism and Feed-
Forward Network(FFN) [47, 48] parts, as shown in Fig. 
2(b). 

Results

Evaluation Metrics and Compared Methods

The experiments were conducted in a Python 
environment with the deep learning framework PyTorch 
1.12.1; the hardware environment Intel(R) Core(TM) 
i9 CPU 5.8 GHZ; memory 24 GB; and GPU NVIDIA 
GeForce RTX 4090. The batch size was set to 32, the 
learning rate was set to 1e-4 and between 1e-2, the 
sliding window of the sequence was set to 96, the 
prediction length was set to 96, the number of training 
rounds was set to 10, the early stopping mechanism was 
used and its parameter was set to 3, and the optimizer 

Fig. 2. (a) The overall framework of the prediction model. (b) The detailed part of the transformer decoder includes: (1) The structure of 
the multi-head self-attention mechanism. (2) The structure of the FFN.
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used was the ADAM optimizer. In this paper, four 
SOTA time series data prediction methods, namely 
Informer [49], LightTS [50], Dlinear [51], and TimesNet 
[52], are compared to demonstrate the effectiveness of 
our proposed model. In order to verify the accuracy of 
the model, mean square error (MSE) and mean absolute 
error (MAE) are used as evaluation metrics. The smaller 
value of MSE and MAE indicates the more accurate 
prediction, which is defined as: 

	 	 (13)

	 	 (14)

Ecological Safety Results and Analysis

From the temporal scale, according to the 
classification of ES (Table 2), the comprehensive index 
method was used to calculate ES indexes of the West 
Liao River region from 2010 to 2021. As depicted in 
Fig. 3(a), the ESI fluctuated within the “Generally 
secure” range, showing a decreasing trend (“up-down-
up-down-up”), that is, likely a W-shaped curve, with the 
range between 0.478 and 0.499. The pressure, response, 
and state layer index slightly decreased, increased, and 
hovered, respectively.

The pressure layer, which declined by 0.014, is 
mainly due to the growth of total chemical fertilizer, 
the power of agricultural machinery, and the proportion 
of cultivated land to land area. The slight growth of the 
response layer, which grew by 0.012, is primarily due 
to the growth of the proportion of the non-agricultural 
population and effective irrigated area. The state layer 

Fig. 3. (a) The variation of the ecological security index from 2010 to 2021. (b) Results of ecological security at the township scale from 
2010 to 2021.
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fluctuated between 0.142 and 0.16. It denotes that the 
security status and resilience of the ecosystem fluctuate, 
meaning that pollution and destruction still exist, and 
protection and supervision need to be strengthened.

In terms of spatial scale, as illustrated in Fig. 3(b), 
it can be seen that the ES of the northwest area was 
generally better than the southeast in the township scale 
of the West Liao River Basin from 2010 to 2021. The 
“Relatively insecure” area was mainly concentrated 
in the southern margin of the Horqin desert, including 
the Horqin East Middle Banner and Horqin Northeast 
Banner. Furthermore, it is one of the areas with severe 
desertification and a fragile ecological environment in 
China. Recently, with the continuous advancement of 
sand control projects, the ecological environment has 
continued to improve, but the ecological problem still 
needs strengthening.

In 2010, 2013, 2016, 2019, and 2021, county-level 
ecological security was mostly concentrated between 
“Relatively secure” and “Relatively insecure”. Among 
them, Jarud and Hongshan were at or near “Secure”, 

while Aohan, Horqin East Middle, and Horqin Northeast 
were stable at “Relatively insecure”. Kailu and Naiman 
declined from “Generally secure” to “Relatively 
insecure” in 2016.

As Fig. 4(a) shows, the moving scope of the gravity 
center was mainly concentrated in the Wengniute 
Banner. The gravity center shifted from southwest to 
northeast, pointing to the degradation direction, and 
the opposite direction meant ecological improvement. 
The total moving distance was 2.39 km, and the average 
annual speed was 1.2 km per year. The standard 
deviation ellipse [53] presented a slightly southeast-
moving trend and continued to expand to the south 
along the main axis.

On the whole, the main obstacles affecting ecological 
security in 2010, 2013, 2016, 2019, and 2021 were 
illustrated in Fig. 4(b). The top five obstacles were the 
proportion of the non-agricultural population (R6), 
power of agricultural machinery (P4), effective irrigated 
area (R5), GDP per capita (P2), and proportion of 
cultivated land to land area (P5). Then, we calculated 

Fig. 4. (a) Results of standard deviation ellipse and gravity center shift from 2010 to 2021. (b) The distribution of obstacle degrees in the 
index layer in 2010, 2013, 2016, 2019, and 2021. (c) Top five obstacles in 2010, 2013, 2016, 2019, 2021. (d) The variation of obstacle 
degrees of criterion layers.
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Year Rank
Hongshan Songshan Ningcheng Aohan Balinzuoqi Balinyouqi

index degree index degree index degree index degree index degree index degree

2010

1
2
3
4
5

R5 
P1 
S6 
P5 
S7

0.212 
0.164 
0.152 
0.122 
0.090

R6 
P5 
R5 
P4 
P2

0.267 
0.108 
0.105 
0.099 
0.089

R6 
R5 
S6  
P2 
P5

0.277 
0.134 
0.119 
0.113 
0.077

R6 
P2 
R5 
P4 
P5

0.281 
0.111 
0.106 
0.097 
0.078

R6 
R5 
P2 
S1  
P4

0.283 
0.146 
0.109 
0.083 
0.056

R6 
R5 
P2 
S5  
S1

0.241 
0.166 
0.110 
0.074 
0.073

2016

1
2
3
4
5

R5 
P1 
P5 
S6  
S7

0.221 
0.170 
0.120 
0.119 
0.093

R6 
P4 
R5 
P5 
P2

0.230 
0.138 
0.103 
0.094 
0.077

R6 
P2 
R5 
P5 
P4

0.289 
0.109 
0.108 
0.090 
0.084

R6 
P4 
R5 
P2 
P5

0.251 
0.119 
0.098 
0.093 
0.070

R6 
R5 
P2 
P4 
S1

0.311 
0.146 
0.096 
0.076 
0.064

R6 
R5 
P2 
S5  
P4

0.268 
0.178 
0.096 
0.072 
0.062

2021

1
2
3
4
5

R5 
P1 
P5 
S6  
S1

0.206 
0.159 
0.120 
0.109 
0.095

R6 
P4 
R5 
P5 
P2

0.190 
0.125 
0.103 
0.091 
0.084

R6 
S6  
P2 
P5 
P4

0.261  
0.144  
0.122  
0.0849 
0.076

R6 
P4 
P2 
R5 
P5

0.269 
0.114 
0.104 
0.101 
0.066

R6 
R5 
P2 
P4 
P5

0.293 
0.139 
0.105 
0.071 
0.067

R6 
R5 
P2 
S1  
P4

0.230 
0.160 
0.114 
0.077 
0.068

Year Rank
Ar Horqin Wengniute Linxi Keshiketeng Baoshan Kalaqin

index degree index degree index degree index degree index degree index degree

2010

1
2
3
4
5

R6
R5
P2
P4
S1

0.283 
0.141 
0.106 
0.080 
0.061

R6
P2
R5
P4
S5

0.284 
0.106 
0.094 
0.094 
0.067

R6
R5
P2
S1
P5

0.271 
0.162 
0.133 
0.061 
0.061

R6
R5
P2
S2
S7

0.312 
0.182 
0.074 
0.055 
0.053

R5
S6
P5
R6
P1

0.183 
0.165 
0.129 
0.121 
0.075

R6
R5
P2
S6
P5

0.301 
0.157 
0.113 
0.111 
0.055

2016

1
2
3
4
5

R6
R5
P4
P2
S1

0.272 
0.141 
0.096 
0.089 
0.082

R6
P4
P2
S5
R5

0.266 
0.127 
0.102 
0.073 
0.062

R6
R5
P2
P5
R4

0.273 
0.163 
0.112 
0.067 
0.050

R6
R5
P4
P2
S2

0.332 
0.190 
0.088 
0.059 
0.058

R5
P5
S6
R6
P1

0.187 
0.138 
0.126 
0.103 
0.076

R6
R5
P2
S6
P4

0.320 
0.161 
0.125 
0.077 
0.052

2021

1
2
3
4
5

R6
R5
P4
P2
S1

0.266 
0.142 
0.110 
0.107 
0.053

R6
P4
P2
S1
S5

0.245 
0.129 
0.107 
0.078 
0.071

R6
R5
P2
S1
P5

0.221 
0.152 
0.110 
0.076 
0.067

R6
R5
S1
P2
P4

0.308 
0.150 
0.084 
0.074 
0.064

R5
R6
S6
P5
S1

0.165 
0.134 
0.128 
0.103 
0.084

R6
R5
P2
S6
S1

0.228 
0.166 
0.124 
0.091 
0.089

Year Rank
Jarud Horqin East 

Middle Horqin Northeast Horqin Northeast Kailu Naiman

index degree index degree index degree index degree index degree index degree

2010

1
2
3
4
5

R6 
R5 
P4 
S1  
P2

0.232 
0.138 
0.112 
0.078 
0.075

R6 
P4 
P5 
P2 
S6

0.227 
0.196 
0.106 
0.098 
0.092

R6 
P4 
S6  
P2 
P3

0.200 
0.160 
0.125 
0.094 
0.093

P5 
P4 
S6  
R6 
P3

0.197 
0.180 
0.127 
0.105 
0.070

R6 
P4 
P5 
S6  
P2

0.214 
0.163 
0.119 
0.099 
0.077

R6 
P4 
P2 
S6  
P5

0.217 
0.124 
0.103 
0.088 
0.083

2016

1
2
3
4
5

R6 
R5 
P4 
R4 
S5

0.292 
0.140 
0.139 
0.056 
0.051

R6 
P4 
S6  
P2 
P5

0.251 
0.199 
0.103 
0.092 
0.085

R6 
P4 
S6  
P3 
P2

0.207 
0.150 
0.115 
0.087 
0.075

P5 
P4 
S6  
R6 
P3

0.199 
0.187 
0.143 
0.118 
0.075

R6 
P4 
P5 
S6  
P2

0.218 
0.199 
0.117 
0.096 
0.056

R6 
P4 
P2 
S6  
R5

0.229 
0.146 
0.089 
0.084 
0.066

2021

1
2
3
4
5

R6 
P4 
R5 
P2 
R4

0.255 
0.160 
0.136 
0.101 
0.056

R6 
P4 
P2 
P5 
S6

0.237 
0.184 
0.101 
0.098 
0.085

R6 
P4 
S6  
P2 
P3

0.209 
0.156 
0.102 
0.096 
0.084

P5 
P4 
S6  
R6 
P3

0.184 
0.134 
0.132 
0.124 
0.066

R6 
P4 
P5 
S6  
P2

0.254 
0.167 
0.106 
0.092 
0.092

R6 
P4 
P2 
P5 
S6

0.265 
0.127 
0.100 
0.079 
0.074

Table 4. Top five obstacle degrees of indicators at the township scale.
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Fig. 5. The actual and predicted precipitation of TimesNet (a), LightTS (b), Informer (c), Dlinear (d), and Ours (e) models.
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the obstacle degrees [54] in the PSR layer, as shown in 
Fig. 4(d). The obstacle values of the response layer have 
consistently illustrated a downward trajectory over the 
years; on the contrary, there was an upward trend in the 
obstacles of the pressure layer, and these two obstacles 
grew gradually closer to each other. The obstacle 
degrees of the state layer were relatively stable, around 
0.2. 

Fig. 4(c) exhibited the main obstacles in five 
distinct years. Among them, the proportion of the non-
agricultural population emerged as the primary obstacle 
factor for all five provinces. Effective irrigated area 
and agricultural machinery power ranked second and 

third in 2010, 2013, 2016, 2019, and 2021, but these two 
indicators swapped positions in 2016. GDP per capita 
was in fourth position. After 2010, PM2.5 concentration 
was replaced by the proportion of cultivated land to land 
area in the fifth place. 

Table 4 presented the top 5 ranks of obstacle 
factors on the township scale in 2010, 2016, and 2021. 
In general, the proportion of the non-agricultural 
population accounted for 83.3% of all counties ranked 
in 1st position, the proportion of the effective irrigated 
area took up 11.1%, and the rest was the proportion 
of cultivated land to land area. In the second position, 
the number of impacting factors increased to include 

Model Informer [49] TimesNet [52] Dlinear [51] LightTS [50] Ours

MAE 0.3513 0.3731 0.3863 0.3818 0.3409

MSE 0.5126 0.5535 0.5672 0.5514 0.4721

Table 5. Comparison of TimesNet, LightTS, Informer, Dlinear, and Ours model performance.

Fig. 6. Actual data was depicted in a blue line, while the predicted values of yearly data from 2022 to 2070 are shown in an orange line.
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the power of agricultural machinery (40.7%), effective 
irrigated area (38.9%), GDP per capita (5.6%), population 
density (5.6%), proportion of cultivated land to land area 
(3.7%), PM2.5 concentration (3.7%), and proportion of 
non-agricultural population (1.9%). 

 Prediction Results and Analysis

Our proposed model predicted the future indicators 
from 2022 to 2070. We took precipitation as an example 
to illustrate the prediction process. The input dataset 
of our model was the time-series precipitation of the 
West Liao River Basin collected from the observatory 
establishment to December 2021. We divided the 
dataset into the training, testing, and validation sets, 
with a ratio of 8:1:1 to train the proposed model. The 
comparison results with the current SOTA models are 
depicted in Fig. 5, which shows the comparison between 
the predicted values of different models and the real 
values. From the table, we can observe that our model 
is better than other methods, and the quantitative results 
are shown in Table 5. In particular, the MAE values of 
our model were 1.04%, 4.09%, 3.22%, and 4.54% higher 
than those of Informer, LightTS, TimesNet, and Dlinear, 
respectively. 

Fig. 6 displays part of the county-level yearly data 
collected from the statistical yearbooks and forecasted 
bvy the proposed method. Actual yearly data is depicted 
in a blue line, while predicted values of yearly data from 
2022 to 2070 are shown in an orange line.

Early Warning and Analysis

The proposed algorithm was used to predict the 
data of time series indicators from 2022 to 2070. We 
calculated the composite index value of these 48 years 
and then conducted early warning based on the index 
that has been obtained. According to the classification 
of ecological security, the comprehensive method was 
used to calculate the variation of future ES in the West 
Liao region from 2022 to 2070. As depicted in Fig. 7, 
the security index declined with fluctuation between 
0.526 and 0.472, transferring from “Relatively secure” 
to “Generally secure”. The pressure and response layer 
index decreased, while the state layer undulated with an 
increasing trend.

In terms of spatial scale, Fig. 8 shows that the early 
warning level of the western area is still better than the 
southeast township scale of the West Liao River Basin 
from 2025 to 2070. The “No warning” area decreases 
from 2025 to 2070; the middle region transforms from 
“No warning” into “Early warning” with a degradation 
trend, while “Serious warning” expands, concentrated 
in the southern margin of the Horqin desert. In terms of 
the ecological security assessment results from 2010 to 
2021, it can be seen that the ecological environment in 
the southeast is fragile and will continue to deteriorate, 
as shown in Fig. 8, if there is no strengthened pollution 
control.Fi
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 Discussion of Results 

Main Findings

This paper overcomes the limitations of unitary 
social statistical data by utilizing comprehensive 
datasets, including meteorological, remote sensing, soil, 
terrain, and socioeconomic data, to evaluate ecological 
security based on a comprehensive ecological security 
index (ESI). In terms of index construction, a scientific 

index evaluation system is essential for ecological 
security evaluation. This study references previous 
works [55, 56] and selects 18 indicators to build a 
“pressure-state-response”(PSR) model, combined with 
the entropy method and hierarchical analysis process, to 
determine the weight of each indicator. The ESI for each 
assessment unit is determined using the comprehensive 
index method. As illustrated in Fig. 4, from 2010 to 
2021, the ecological security index fluctuated within the 

Fig. 8. Results of early warning at the township scale from 2025 to 2070.
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“Generally secure” category, showing a slight declining 
trend with a range between 0.478 and 0.499.

Most studies on the West Liao River Basin have 
been conducted at a macro scale. Considering that 
counties are the basic units for policy-making, we 
analyzed the ecological security level at the county 
level, providing operational suggestions for improving 
the ES of the river basin. Our research indicates that the 
ecological security level in the northwest is higher than 
in the southeast, with pastoral areas generally having 
a higher ESI than agricultural areas. Due to increased 
population density, the proportion of cultivated land, 
agricultural and animal husbandry machinery power, 
and total chemical fertilizer usage, ecological issues in 
agricultural areas remain serious, necessitating stronger 
ecological supervision and increased awareness of green 
agriculture.

Previous research often used regression equations 
or qualitative surveys [57] to explain ES. This paper 
uses the obstacle degree model to determine the impact 
degree and identify the main obstacles to ES in the 
West Liao River Basin. The main obstacles identified 
are the proportion of the non-agricultural population 
(R6), power of agricultural machinery(P4), effective 
irrigated area(R5), GDP per capita (P2), and proportion 
of cultivated land to total land area (P5).

Implications and Limitations

The present study, while insightful, has certain 
limitations. Firstly, no authoritative quantitative 
standard for classifying ES and early warning levels 
may lead to inconsistent research results. Establishing 
scientific and authoritative classification standards is 
necessary. Secondly, although the proposed prediction 
method based on transformers is slightly better than 
current time series prediction algorithms in artificial 
intelligence, further improvement is needed to enhance 
prediction accuracy. Thirdly, this paper conducts ES 
and early warning at the county scale, which cannot 
detail the security status of different regions within a 
county. Finally, the regional ES situation is complex 
and dynamic, influenced by multiple factors. Future 
research should gradually improve the evaluation index 
system and develop a scientific, stable, and universal ES 
prediction and early warning mechanism using multi-
source, detailed, and long-term serial index data. 

Conclusions

The West Liao River Basin, located near the 
Beijing-Tianjin-Hebei Capital Economic Circle, has 
critical ecological importance. However, as part of 
the agro-pastoral Intertwined Zone, it faces unique 
vulnerabilities. Thus, assessing and forecasting 
ecological security in this region is essential for future 
ecological protection. This study employs a transformer-
based AI model to predict 18 key ecological security 

indicators alongside a PSR model to assess, provide 
early warnings, and analyze obstacles to ecological 
security from 2010 to 2070.

Key Findings and Conclusions

Our transformer-based prediction model 
demonstrated superior performance, achieving Mean 
Absolute Error (MAE) reductions of 1.04%, 4.09%, 
3.22%, and 4.54% compared to the Informer [49], 
LightTS [50], TimesNet [52], and Dlinear models [51], 
respectively. The Ecological Security Index (ESI) 
fluctuated within the "Generally Secure" range, showing 
a gradual decline from 0.499 in 2022 to 0.472 by 2070, 
with the most significant deterioration in southeastern 
and central areas. Key obstacle factors identified include 
the non-agricultural population proportion, agricultural 
machinery power, effective irrigated area, GDP per 
capita, and cultivated land proportion.

Actual data from 2010 to 2021 shows that the ES of 
the northwestern counties is better than the southeast. 
This is because the southeastern region, particularly 
the agricultural agglomeration area near the Horqin 
Desert, has a more fragile ecosystem. The results of 
obstacle factor analysis indicate that the top five factors 
are related to agriculture and population, with the 
proportion of the non-agricultural population as the top 
rank. In southeastern counties like Horqin East Middle, 
Horqin District, Kailu, and Naiman Banner, the non-
agricultural population decreases with the agricultural 
population increasing. This shift has led to more people 
relying on the same agricultural land, resulting in higher 
agricultural machinery usage and fertilizer consumption, 
exacerbating ecological damage. If no policies are taken, 
the ecology in the Southeast will continue to deteriorate 
from 2025 to 2070, with the warning level rising from 
“warning” to “serious warning”, and the central region 
will shift from “no warning” to “early warning”.

Novelties

Our method focuses on the comprehensive extraction 
of seasonal patterns, trends, and intra- and inter-
variable relationships of the long time series dataset 
instead of considering only unilateral features [49-
52]. With the development of Large Scale Models, AI 
models will become more convenient, enabling point-
by-point predictions for each indicator, and yielding 
more accurate results than traditional methods while 
consuming less manpower and resources.

Recommendations for Sustainable Management

 Enhance agricultural ecological protection: We 
recommend promoting sustainable, technology-driven 
agriculture by government and related agencies. This 
includes enhancing food production, optimizing 
irrigation, and improving the use of fertilizers and 
agricultural machinery. Implementing soil testing and 
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tailored fertilization for different crops will reduce 
the use of chemical fertilizers and pesticides. Organic 
fertilizers should be encouraged to improve soil health, 
increasing water retention and fertility.

Broaden employment opportunities: Expanding job 
training and skill development programs for agricultural 
workers can reduce dependency on farming, enhance 
rural livelihoods, and alleviate pressure on the land.

Integrate environmental, population, and economic 
planning: Policymakers should prioritize ecological 
conservation while supporting economic and population 
growth. This includes raising public awareness, investing 
in water management, and fostering agricultural 
innovation. Additionally, real-time monitoring and early 
warning systems are essential for timely responses to 
ecological changes.
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