
Introduction

China, as the largest developing country in the world, 
has experienced rapid socio-economic development in 
recent years but faces severe air pollution challenges  
[1-3]. Air pollution not only affects public health and 
quality of life but also hinders sustainable socio-
economic development [4-6]. According to statistics from 
the World Health Organization, nearly 7 million people 
worldwide die each year from diseases related to air 
pollution [7]. Among them, China is one of the countries 

with the highest number of deaths caused by outdoor air 
pollution, with approximately 2 million deaths annually 
attributed to air pollution [8]. Furthermore, air pollution 
leads to a series of environmental issues, including 
reduced crop yields, ecosystem degradation, and climate 
change [9-11]. As a result, controlling and mitigating air 
pollution to improve air quality has become a common 
goal and an urgent task for both the Chinese government 
and society [12].

This study focuses on 35 cities in the three 
northeastern provinces of China (Heilongjiang, Jilin, 
and Liaoning), analyzing and evaluating the changes in 
their air quality from January 2015 to March 2024 and 
forecasting air quality trends from April 2024 to April 
2025. The goal is to scientifically assess the effectiveness 
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Abstract

As the largest developing country, China faces significant air pollution challenges despite rapid  
socio-economic progress. This paper focuses on thirty-five cities in the three northeastern provinces of 
China – Heilongjiang, Jilin, and Liaoning – analyzing air quality trends from January 2015 to March 
2024 and providing a forecast for the period from April 2024 to April 2025. We utilize an improved 
TOPSIS method combined with Set Pair Analysis and a Prophet model for forecasting, enabling 
comprehensive air quality assessment and trend prediction. The findings show significant improvements 
in air quality across thirty-two cities, particularly in the provincial capitals, largely attributed to 
effective pollution control policies. However, spatial and seasonal variations persist, with air quality 
declining during winter heating seasons, especially in cities heavily reliant on coal. This paper 
concludes with policy recommendations, emphasizing the need for further energy structure adjustments 
and strengthened regional pollution control mechanisms to sustain these improvements.
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of air pollution control measures and provide 
corresponding policy recommendations. The Northeast 
region, historically known as China’s old industrial 
base, is also one of the most important industrial areas 
in the world. Its industrial history dates back to the late 
Qing Dynasty when Japan established the puppet state 
of Manchukuo, utilizing the region’s rich resources 
and favorable geography to develop heavy industries 
such as steel, coal, machinery, and chemicals, making 
Northeast China one of the major industrial centers in 
Asia [13]. After the founding of the People’s Republic of 
China, the Northeast continued to provide the country 
with a vast amount of industrial goods and energy, 
earning it the title of “the eldest son of the Republic.” 
The industrialization level in the Northeast once led 
the nation and even surpassed that of many developed 
countries.

However, with advancements in technology and 
changes in market dynamics, old industrial bases 
around the world, including Northeast China (along 
with the Rust Belt in the United States, the Black 
Country in the United Kingdom, the Ruhr Area in 
Germany, and the Kanto region in Japan), have faced 
numerous challenges and difficulties [14]. On one hand, 
overexploitation and pollution have severely damaged 
the resources and environment of these regions, leading 
to ecological degradation and social issues. On the other 
hand, intensifying competition and shifting demand 
have diminished the traditional industries’ competitive 
advantages, resulting in overcapacity and declining 
profitability, which has caused economic downturns 
and unemployment [15, 16]. Thus, these old industrial 
bases require transformation and upgrading by adjusting 
industrial structures and reducing environmental 
pollution to achieve sustainable development.

Among these iconic old industrial regions, 
Northeast China stands out due to several unique 
factors. Firstly, compared to southern China, the 
Northeast’s heavy industry has been developing for 
a longer period, especially during the early years  
of the People’s Republic, when it was a key focus 
of national industrial development. This prolonged 
and intensive development has resulted in significant 
environmental pollution and damage [17, 18]. Secondly, 
Northeast China is a major resource base for the country, 
with extensive coal mining, oil extraction, and steel 
production. While these industries provided substantial 
resources for national construction during the early 
years, rapid industrialization and urbanization have 
led to severe air pollution in the region [19, 20]. Lastly, 
situated in northern China, the Northeast experiences a 
temperate continental climate with limited monsoonal 
influence. The annual average precipitation is around 
500 mm, and the region endures longer and colder 
winters compared to other parts of the country. The 
extended heating season, coupled with low precipitation 
and a coal-dominated energy structure, exacerbates the 
challenges of air pollution control in Northeast China 
[21].

Since 2013, many parts of China have experienced 
severe smog problems. In response, the State Council 
issued the “Air Pollution Prevention and Control Action 
Plan”, which called for comprehensive governance 
efforts and an improved energy utilization structure 
[22]. Although there has been some improvement in air 
quality assessments in the three northeastern provinces, 
large-scale haze events continued to occur in Jilin 
and Heilongjiang after 2020 [23]. In the air quality 
rankings of 168 key cities published by China’s Ministry 
of Ecology and Environment, cities like Shenyang, 
Huludao, and Harbin consistently ranked among the 
bottom 20 [24].

In the existing literature, scholars have also explored 
the air quality issues in Northeast China. The current 
research primarily focuses on the following aspects:

First, the temporal and spatial distribution of air 
pollutants. A number of studies have analyzed the 
spatial and temporal distribution characteristics of air 
pollution in Northeast China using monitoring data. 
For example, Fang et al. investigated PM2.5 pollution 
in Northeast China from 2016 to 2020, analyzing its 
spatial distribution and transmission patterns. They 
found that PM2.5 pollution decreased significantly by 
2018 but rebounded slightly by 2020 [25]. By analyzing 
data from 2013 to 2017, Chen et al. have explored the 
spatiotemporal distribution of air quality and the 
causes of severe pollution. Their findings indicate that 
the “Shenyang-Changchun-Harbin” urban belt suffers 
from the worst air pollution, especially in winter [26]. 
Focusing on PM2.5 and ozone concentrations from 2015 
to 2020, Fan et al. studied the long-term air pollution 
trends in China. They have identified significant 
seasonal and regional variations, with northern China 
experiencing higher pollution levels during winter due 
to heating and industrial activities [27]. Du et al. have 
investigated air pollution transmission networks in 
northeastern China. They argued that air pollution in 
this area, with PM2.5 being a major contributor, spreads 
through a complex network with seasonal variations 
[28].

Second, source apportionment. Some studies have 
utilized source apportionment techniques to identify the 
major sources of pollution in the region. For example, 
Sun et al. studied ammonia and ammonium pollution in 
urban Harbin, showing that ammonium concentrations 
spike during the heating season, driven by biomass 
burning, while vehicle emissions dominate in the non-
heating season [29]. Dong et al. have analyzed the 
chemical composition of PM2.5 and PM10 in a specific 
city in Northeastern China. They found that secondary 
aerosols were the largest source of PM [30]. Moreover, 
Ding et al. examined the seasonal characteristics of 
BC (black carbon), CO, and PM2.5 pollution during 
haze episodes in Benxi City, Northeastern China. They 
found that solid fuel contributions increased during haze 
events across all seasons. While BC wet scavenging 
rates were higher in long-range air masses, substantial 
BC transport persisted due to limited precipitation [31]. 
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Wang et al. have examined the effects of COVID-19 
lockdown measures on PM2.5 levels and their chemical 
components in Shenyang during January to May 2020. 
They identified six primary pollution sources, of which 
secondary sulfate and vehicle emissions were the two 
largest contributors to PM2.5 [32].

Lastly, the effectiveness of control measures 
and policies. Researchers have also evaluated the 
effectiveness of various pollution control measures 
and policies. For example, Yang et al. have examined 
the significant role of open-field biomass burning in 
contributing to PM2.5 levels during post-harvest seasons 
in Northeastern China. They have demonstrated the 
effectiveness of a 2018 burning ban, which reduced 
PM2.5 concentrations by up to 67% in some provinces, 
highlighting the impact of fire emissions on regional 
air quality [33]. Zhang et al. studied the impact of 
environmental regulations on haze pollution in China 
between 2006 and 2016. They found that command-
control and economic-incentive regulations have 
nonlinear effects on haze, while voluntary regulations 
are not statistically significant. Specifically, the 
industrial structure coefficient is positive and 
significant in Northeast China, suggesting that the 
dominance of the secondary industry significantly 
contributes to increased haze pollution [34]. Based 
on the implementation of the Air Pollution Prevention 
and Control Action Plan (APPCAP) in 2013, Zhao et 
al. examined the improvements in air quality across 
China. They discovered noticeable pollutant reductions 
in Northeast China, particularly for PM2.5. Although 
the success of APPCAP in reducing particulate matter 
highlights the effectiveness of China’s air pollution 
control policies, coordinated efforts targeting both PM2.5 
and O3 are increasingly necessary to address evolving 
air quality challenges [35].

While previous studies have provided valuable 
insights into air quality trends and pollutant sources in 
Northeast China, several key gaps remain. First, much 
of the existing research has focused on individual 
pollutants or short-term temporal analysis, overlooking 
comprehensive evaluations of multiple pollutants using 
integrated forecasting models. Second, few studies 
have assessed the effectiveness of air pollution control 
policies across multiple pollutants over an extended 
period. Moreover, seasonal and regional variations in 
air quality, especially during the winter heating season, 
are often underexplored. In light of these gaps, this 
paper builds upon the existing research and further 
investigates the air quality in the three northeastern 
provinces by using six major pollutants (PM2.5, PM10, 
SO2, NO2, O3, and CO) according to China’s official Air 
Quality Index (AQI) regulations [36, 37] and existing 
research [38, 39], to provide a holistic assessment of air 
quality and its forecasted trends, aiming to make the 
following marginal contributions: 

First, this paper makes several significant 
contributions to both policy and academic discourse. It 
provides a systematic evaluation of the air quality in an 

under-researched region of China that is critical to the 
country’s industrial and energy sectors. The findings 
offer insights into the effectiveness of existing air 
pollution control policies and their long-term impacts, 
which can inform future policymaking. Furthermore, by 
focusing on multiple pollutants and applying advanced 
forecasting models, this study presents a robust 
framework that other scholars can use to assess air 
quality in similar industrialized regions.

Second, the novelty of this paper lies in its 
methodological approach. We optimize the traditional 
TOPSIS method by incorporating Set Pair Analysis 
(SPA) to improve the accuracy of air quality 
assessments. Additionally, the application of the Prophet 
model for forecasting represents an innovative approach 
to handling missing data and predicting future trends 
based on historical patterns [40]. This combination 
of methods allows for more precise and reliable 
evaluations, making this study one of the first to apply 
such advanced techniques to the specific context of 
Northeast China.

Lastly, although China has introduced several 
national-level policies targeting air pollution, such as the 
Air Pollution Prevention and Control Action Plan (2013), 
there remains a policy void in addressing the unique 
challenges faced by Northeast China. The region’s heavy 
reliance on coal for winter heating and its outdated 
industrial infrastructure make it particularly vulnerable 
to air pollution spikes during the winter months. This 
paper highlights the need for region-specific policies 
that address these unique factors, such as promoting 
cleaner energy alternatives and strengthening seasonal 
pollution control measures.

The structure of the remaining sections is as 
follows: Section 2, Materials and Methods, introduces 
the data used in this paper and constructs the Set Pair 
Analysis-TOPSIS evaluation model and the Prophet 
forecasting model; Section 3 presents the air quality 
evaluation results for 35 cities in Northeast China from 
January 2015 to March 2024, along with the forecast 
of air quality for these cities from April 2024 to April 
2025 based on the aforementioned data and models. 
Then, these results are discussed in the context of air 
pollution control policies implemented in the Northeast 
region during the study period, analyzing the actual 
effectiveness of these policies. Section 4 concludes the 
paper and outlines directions for future research.

Materials and Methods

This paper improves upon the traditional air quality 
evaluation system by selecting six pollutant indicators 
– monthly averages of PM2.5, PM10, SO2, NO2, O3,  
and CO – as the metrics for evaluating urban air quality. 
The Technique for Order Preference by Similarity 
to Ideal Solution (TOPSIS) method was enhanced 
using the Set Pair Analysis approach [41, 42], where 
the connection vector distance replaces the Euclidean 
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distance traditionally used in TOPSIS [43, 44]. This 
allows for the calculation of the proximity of each sample 
to the ideal solution, which serves as the evaluation 
value for air quality. Subsequently, the Prophet model 
was employed to forecast the air quality of 35 cities in 
Northeast China, providing a depiction of air quality 
conditions over the next year based on current trends.

Original Sample Data

This paper selects the monthly average values of six 
pollutants as the basis for evaluating urban air quality. 
The number of samples in the evaluation model is 
denoted as n, and the value of the jth indicator for the ith 
sample is represented as eij(i = 1, 2, ..., n; j = 1, 2, ..., 6). 
The specific meanings of each indicator are shown in 
the Table 1.

Set Pair Analysis-TOPSIS Method  
(SPA-TOPSIS)

The Technique for Order Preference by Similarity 
to Ideal Solution (TOPSIS) is a multi-criteria decision-
making method used for sample evaluation based on 
multiple features. In this paper, we apply this method to 
evaluate the air quality of 35 cities in Northeast China. 
The evaluation involves six sample indicators. For each 
indicator, the optimal and worst values from the sample 
are selected, and the ideal solution is constructed from 
the optimal values, while the worst values are used to 
construct a negative ideal solution. Due to the limitations 
of Euclidean distance in traditional TOPSIS [45, 46], 
which cannot fully reflect the positional relationships 
between solutions, there is a possibility that a solution 
might be close to both the ideal and the negative ideal 
solutions. To address this, we optimize TOPSIS using 
the Set Pair Analysis (SPA) approach. Each sample is 
paired with the ideal and negative ideal solutions, and 
the relationships between them are transformed into 
“identity”, “difference”, and “opposition” relationships. 
This results in a connection vector representing the 
relationship from which the connection vector distance 
is calculated. This replaces the Euclidean distance 
and effectively resolves the aforementioned problem.  

For each sample, we calculate its connection vector 
distance from both the ideal and negative ideal solutions. 
The closer the sample is to the ideal solution and the 
farther it is from the negative ideal solution, the higher 
its evaluation score.

Step 1: Compute the Mean Value of Each Indicator

For each indicator j, calculate the sample mean and 
construct the vector Xj = {x1j, x2j, …, xnj}, where xij is 
calculated as shown in Equation (1):

	 	(1)

Step 2: Calculate Cosine Similarity

Calculate the cosine similarity between Xj and the 
vector Ej = {e1j, e2j, …, enj} as CSj( j = 1, 2, ..., 6) using 
Equation (2), and then normalize CSj according to 
Equation (3) to obtain the weights for the six indicators 
Wj( j = 1, 2, ..., 6):

	 	 (2)

	 	 (3)

where Xj ∙ Ej  represents the inner product of the vectors.

Step 3: Determine Ideal and Negative Ideal Solutions

Based on the data eij(i = 1, 2, ..., n; j = 1, 2, ..., 6), 
determine the ideal solution S+ = {s1

+, s2
+, …, s6

+} and 
the negative ideal solution S– = {s1

–, s2
–, …, s6

–}, where:

	 	 (4)

	 	 (5)

Pollutant indicators are negative factors, meaning 
that higher values are detrimental to the evaluation. 
According to SPA theory, the ideal solution S+  

Table 1. Meaning of Indicators in the Original Data.

Variable Meaning

eij Represents the value of the jth pollutant indicator for the ith city

ei1 Represents the monthly average of PM2.5 for the ith city

ei2 Represents the monthly average of PM10 for the ith city

ei3 Represents the monthly average of SO2 for the ith city

ei4 Represents the monthly average of NO2 for the ith city

ei5 Represents the monthly average of O3 for the ith  city

ei6 Represents the monthly average of CO for the ith city



Has China’s Air Quality Improved... 445

Step 7: Calculate the Connection Vector Distance 
between Sample Ai and Negative Ideal Solution S–

The connection vector for the negative ideal solution 
S– is μ– = (1,0,0), and the corresponding connection 
vector for sample Ai is μi

– = (ai
–, bi

–, ci
–). The connection 

vector distance between Ai and S– is calculated using 
equation (11):

	 	 (11)

Step 8: Calculate the Relative Closeness Ci
+  

between Sample Ai and Ideal Solution S+

The relative closeness Ci
+ is calculated using 

Equation (12):

	 	 (12)

Here, Ci
+ is the evaluation value of the sample, where 

0<Ci
+<1. The closer Ci

+ is to 1, the closer sample Ai is to 
the ideal solution and the higher its evaluation value. In 
practical applications, Ci

+ = 1 is rarely observed.

Prophet Model

Prophet is a time series forecasting model developed 
by Meta (formerly the Facebook company), designed to 
analyze various time series features, such as long-term 
trends, seasonal cycles, and holiday effects. It processes 
effective data and performs forecasting by fitting the 
analyzed features. The main advantage of the Prophet 
model lies in its robust performance in handling missing 
values, trend shifts, and outliers, making it suitable for 
robust forecasting [47]. In this paper, the daily average 
values of six air pollutants from January 2015 to March 
2024 were preprocessed to form the time series p(t),  
and the Prophet model was then used to predict future 
data. The structure of the Prophet model is shown  
in Equation (13):

	 	 (13)

Where g(t) represents the trend component, which fits 
the trend variations of the time series; s(t) is the seasonal 
or cyclical component, fitting periodic variations 
(usually on a weekly or yearly basis); h(t) accounts for 
the impact of holidays on the time series; and εt is the 
error term, representing factors not considered by the 
model.

The trend component g(t) is the core of the Prophet 
model, incorporating different assumptions and 
smoothness parameters to fit the non-periodic changes in 
the time series. The model selects change points from the 
data to detect trend shifts. There are two key functions 
for the trend: one based on a logistic regression function 
and the other based on a piecewise linear function.  

and the negative ideal solution S– are considered to be in 
opposition to the system.

Step 4: Calculate the Connection Degree μ+ 
between Sample Ai and Ideal Solution S+

The sample Ai and ideal solution S+ form a set pair 
H+ = (Ai, S+). The connection degree μ+ is calculated 
using Equations (6) and (7):

	 	   (6)

	 	
(7)

Where ai
+ represents the identity degree, bi

+  
represents the difference degree, and ci

+ represents the 
opposition degree between sample Ai and the ideal 
solution S+. The vector (ai

+, bi
+, ci

+) is the connection 
vector for Ai and S+, denoted as μi

+ = (ai
+, bi

+, ci
+). When 

eij = sj
–​, aij

+ = bi
+ = 0, and cij

+ = 1; when eij ∈ [sj
+, sj

–), 
, bij

+ = 1 – aij
+, and cij

+ = 0.

Step 5: Calculate the Connection Degree μi
– between 

Sample Ai and Negative Ideal Solution S–

The sample Ai and negative ideal solution S– form a 
set pair H– = (Ai, S–), and the connection degree μi

– is 
calculated using Equations (8) and (9):

	 	 (8)

	 	
(9)

Here, ai
– represents the identity degree between 

scheme Ai and the negative ideal solution S–, bi
– 

represents the difference degree, and ci
– represents the 

opposition degree. Together, these form the connection 
vector (ai

–, bi
–, ci

–) between scheme Ai and the negative 
ideal solution S–, denoted as μi

– = (ai
–, bi

–, ci
–). When  

eij = sj
+​, aij

– = bi
– = 0 and cij

– = 1; when eij ∈ (sj
–, sj

+], 
, bij

– = 1 – aij
–, and cij

– = 0.

Step 6: Calculate the Connection Vector Distance 
between Sample Ai and Ideal Solution S+

The connection vector for the ideal solution S+ is  
μ+ = (1,0,0), and the corresponding connection  
vector for sample Ai is μi

+ = (ai
+, bi

+, ci
+). The connection 

vector distance between Ai and S+ is calculated using 
Equation (10):

	 	 (10)
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In this paper, the piecewise linear function is adopted, 
and its calculation is shown in equation (14):

	 	 (14)

Where r represents the base growth rate, and m is 
the base offset parameter. Change points are introduced 
into the model to account for trend shifts, and both the 
growth rate and offset parameter change at these points. 
Suppose there are Q change points, distributed at time 
points t = qy (y = 1, …, Q). δ = {δ1, δ2, …, δQ} is the 
vector of growth rate changes, where δy represents the 
change in the growth rate at the change point t = δy. 
Therefore, the growth rate at time t is the base growth 
rate plus all changes, i.e., r + ∑y:t>qy

)δy. The vector  
d(t) ∈ {0,1}Q is defined as:

	 	 (15)

Thus, the growth rate at time t can be expressed as 
r + d(t)Tδ. While the growth rate changes, the offset 
parameter must also be adjusted to ensure the continuity 
of the function. γ = {γ1, γ2, …, γQ} is the vector of offset 
parameter changes, where γj = –qy × δy. Change points 
can be manually specified or automatically selected. In 
this paper, the automatic selection of change points is 
achieved by setting a sparse prior on δ, δy ~ Laplace(0,τ), 
in Equation (14).

In the Prophet model, the seasonal component  
s(t) is modeled using the Fourier series, as shown in 
Equation (16):

	 	(16)

Where T is the length of the time series period, 
with T = 365.25 representing an annual cycle and  
T = 7 representing a weekly cycle. The parameters  
a1, b1, …, aN, bN are estimated, and increasing the 
number of terms N can improve the fitting accuracy, 
though it may also increase the risk of overfitting. 
Typically, for an annual cycle, N = 10, and for a weekly 
cycle, N = 3. In this paper, the holiday component h(t) is 
not considered in the analysis of the time series.

Results and Discussion

This study is based on official air pollutant 
monitoring data for 35 cities in the three northeastern 
provinces of China, published by the China National 
Environmental Monitoring Center and the China 
Environmental Protection Ministry Data Center, 
covering the period from January 2015 to March 2024. 
The dataset includes daily concentration data for six 
major air pollutants: PM2.5, PM10, SO2, NO2, O3, and 
CO. Using the daily data, we calculated the monthly 
average concentrations of these six pollutants for each 

city during the study period. Based on the official air 
pollutant statistics and the evaluation method described 
earlier. 

We calculated the air quality assessment scores for 
each city between January 2015 and March 2024 (for 
specific evaluation results, please refer to Tables A1 
through A10 in the Appendix). On this basis, further 
predictions were made regarding the air quality of the 
aforementioned 35 cities for the period from April 2024 
to April 2025 (for specific prediction results, please refer 
to Table A11 in the Appendix). 

Fig. 1. summarizes the aforementioned air quality 
assessment scores and predicted air quality values.

Based on the evaluation results, it was found that, 
after years of comprehensive control efforts, air quality 
in 32 out of 35 cities improved to varying degrees by 
the end of the observation period, except for Baicheng, 
Benxi, and Panjin. Notably, the air quality in the capital 
cities of the three northeastern provinces showed 
significant improvement. In Harbin, the air quality 
index improved from 0.3107 at the beginning of the 
observation period to 0.4798 at the end, reflecting  
a 54.43% improvement. Shenyang’s air quality improved 
from 0.2898 to 0.4380, marking a 51.14% improvement. 
Although Changchun’s improvement was relatively 
low, it still reached 40.64%, improving from 0.3408 to 
0.4793. For the forecast period from April 2024 to April 
2025, air quality across the cities tends to stabilize, with 
significantly reduced fluctuations compared to previous 
periods and noticeable improvements in air quality.

Based on the evaluation and forecast results, the 
study found significant differences in air quality 
improvement among the cities in the three northeastern 
provinces, with clear seasonal variations in air quality in 
the region. Specifically:

Significant Improvements

Most cities in the Northeast region saw significant 
improvements in air quality. As noted, the capital 
cities of Harbin, Shenyang, and Changchun exhibited 
substantial improvements during the observation period. 
Other cities, such as Huludao (improving from 0.2746 
to 0.4422), Suihua (from 0.3394 to 0.5126), and Heihe 
(from 0.3956 to 0.5806), also showed improvement 
rates exceeding 45%. According to the forecast data, all 
cities’ air quality evaluation results remained above 0.4, 
reflecting a significant improvement compared to the 
beginning of the study period (January 2015).

In the case of the three capital cities, they were 
among the most polluted in Northeast China at the 
beginning of the observation period but had shown clear 
improvements in air quality by the end. These cities are 
major economic and industrial centers in their respective 
provinces, concentrating large populations and industrial 
resources. According to the seventh national census, the 
populations of Harbin and Changchun account for more 
than 30% of their respective provinces, while Shenyang 
has a population of 9.03 million, representing 21.2% 
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of Liaoning’s total population [48]. In the Northeast, 
population concentration has increased the demand for 
winter heating, and coal, as an affordable and accessible 
energy source, has become the primary heating 
option. The large-scale burning of coal and relatively 
outdated treatment technologies have led to a decline 
in air quality [49]. Additionally, these cities’ secondary 
industries, particularly high-energy-consuming and 
highly polluting sectors such as machinery processing, 
steel, and equipment manufacturing, remain prominent 
[50]. In the early stages of China’s reform and opening 
up, the pace of equipment upgrades in these industries 
was relatively slow, limiting improvements in air 
pollutant treatment capacity and indirectly contributing 
to poor air quality.

Since 2015, China has significantly increased 
its focus on environmental quality, and the three 
northeastern provinces have accelerated efforts to 
improve air quality. Heilongjiang Province introduced 

relevant environmental laws in 2016, such as the 
“Regulations on Air Pollution Prevention and Control in 
Heilongjiang Province” and the “Heilongjiang Province 
Special Action Plan for Air Pollution Prevention and 
Control (2016-2018)”, and these have been continuously 
revised in subsequent sessions of the People’s Congress 
based on technological developments [51]. Jilin Province 
promoted wind power projects and encouraged the use 
of cleaner, more efficient energy, providing financial 
and personnel support for targeted pollution control 
[52]. Liaoning Province established mechanisms for 
rectifying heavily polluted areas, simultaneously 
tackling coal, vehicle emissions, and straw burning, 
adopting targeted measures, and strictly managing 
industries such as steel and coal power with ultra-
low emission transformations, significantly reducing 
their impact on air quality. Policies like the “Measures 
for the Evaluation and Reward of the Elimination of 
Small Coal-Fired Boilers in Liaoning Province” were 

Fig. 1. Assessment scores (from January 2015 to March 2024) and forecast results (from April 2024 to April 2025) of air quality for 
35 cities in the three northeastern provinces: a) Changchun, Harbin, Shenyang, Anshan, Baicheng, Baishan, Benxi, Chaoyang, Dalian, 
Dandong, Daqing, and Fushun; b) Fuxin, Hegang, Heihe, Huludao, Jiamusi, Jilin, Jinzhou, Jixi, Liaoyang, Liaoyuan, Mudanjiang, and 
Panjin; c) Qiqihar, Qitaihe, Shuangyashan, Siping, Songyuan, Suihua, Tieling, Tonghua, Yanbian, Yichun, and Yingkou.
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introduced [53]. Guided by these policies, governments 
at all levels in the three northeastern provinces have 
paid increasing attention to air pollution issues and 
made significant efforts to address them, leading to 
notable improvements in urban air quality.

Discrepancies in Air Quality Improvements

Beyond the capital cities, Huludao, Suihua, and 
Heihe also showed significant air quality improvements 
during the observation period. Huludao improved 
from 0.2746 to 0.4422, an increase of 61.03%, ranking 
first among the 35 cities; Suihua and Heihe improved 
by 51.03% (from 0.3394 to 0.5126) and 46.76% (from 
0.3956 to 0.5806), respectively. The reasons for these 
improvements are due to a series of comprehensive 
governance measures that have effectively enhanced air 
quality. These measures include strengthened policies 
and regulations, optimization of industrial and energy 
structures, control of industrial and coal pollution, 
mitigation of vehicle and dust pollution, and scientific 
responses to severe pollution events. Specifically:

Huludao: The city government placed high priority 
on air quality, investing in particulate matter and 
volatile organic compounds (VOCs) monitoring 
stations to enhance environmental regulation capacity. 
Several special actions were undertaken, including law 
enforcement inspections of 281 industrial enterprises, 
upgrading inefficient pollution control facilities, and 
regulating VOC emissions. To address air pollution 
caused by coal heating, the city implemented “small-
to-large” heating conversions in major urban areas 
before each winter, achieving over 95% clean heating 
and phasing out coal-fired boilers. Additionally, the 
city aggressively eliminated high-emission vehicles 
and conducted “city washing” campaigns to tackle dust 
pollution [54].

Suihua: The city government actively adjusted the 
industrial structure, enforcing strict environmental 
access requirements, phasing out outdated capacity, 
and promoting the upgrading of traditional industrial 
clusters while fostering green industries. The city 
also accelerated the consumption of non-fossil energy, 
strictly controlled total coal consumption, phased out 
coal-fired boilers, and advanced clean fuel alternatives 
for industrial furnaces. The government enhanced 
atmospheric monitoring and established regional joint 
prevention and control mechanisms, promoting source 
pollution control, strengthening straw utilization 
and burning bans, and addressing VOCs through 
comprehensive treatment measures for key industries 
[55].

Heihe: The city continued efforts to control coal 
pollution by upgrading aging heating pipelines and 
implementing coal-fired boiler transformation projects. 
The city targeted the Heihe Thermal Power Company 
for ultra-low emission retrofitting. Dust pollution control 
was also a key focus, with detailed implementation of 
dust control measures on construction sites and increased 

mechanized street cleaning. For vehicle emissions, the 
city strengthened oversight of vehicle emission testing 
facilities and conducted roadside inspections and remote 
sensing monitoring [56].

Conversely, air quality improvements were poor in 
Baicheng, Benxi, and Panjin, with air quality evaluation 
scores showing declines compared to the beginning of 
the observation period. The reasons include unfavorable 
meteorological conditions in these cities and insufficient 
efforts to control industrial pollution, vehicle emissions, 
and dust pollution, leading to a relative deterioration in 
air quality. Specifically:

Baicheng: Located in a region prone to severe 
drought, Baicheng frequently experiences spring, 
summer, and autumn droughts, with uneven seasonal 
distribution of precipitation, making it difficult for 
pollutants in the air to effectively disperse or settle. 
Additionally, Baicheng’s industrial pollution control 
has been insufficient. Despite efforts by the municipal 
government, some enterprises continue to exceed 
emissions standards, particularly in the chemical and 
metallurgical industries. The city’s significant increase 
in the number of vehicles during the observation period 
also contributed to air pollution, with vehicle emissions 
becoming a major source of pollution. Moreover, 
insufficient control of dust from construction sites and 
roads has led to persistently high O3 concentrations [57].

Benxi: The city’s industrial structure has long been 
dominated by heavy industry, with high-pollution 
sectors such as steel and chemicals occupying a large 
proportion of the economy. The difficulty in adjusting 
the industrial structure, combined with continued 
reliance on coal as the primary energy source for the 
secondary industry, has resulted in high emissions of 
SO2 and NOx [58]. The rapid increase in the number 
of vehicles and weak enforcement of vehicle emission 
standards, coupled with frequent occurrences of severe 
pollution weather and insufficient response measures, 
have also contributed to the city’s difficulty in dispersing 
pollutants under unfavorable meteorological conditions.

Panjin: The city is significantly affected by dust 
storms, which frequently lower air quality. Additionally, 
Panjin’s petrochemical industry is well-developed, but 
some enterprises have inadequate pollution control 
facilities, leading to frequent incidents of emissions 
exceeding standards. Similar to Baicheng, vehicle 
emissions and dust pollution are major concerns, with 
persistently high concentrations of PM2.5 and PM10 in the 
atmosphere [59].

Significantly Influenced by Seasonal Factors 

Based on the evaluation results from January 2015 to 
March 2024, air quality in these cities typically reaches 
its best levels in August and September each year, 
followed by a decline to its lowest point in January and 
February of the following year. This is primarily due 
to the widespread heating during the winter months. 
The heating period in the three northeastern provinces 
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generally lasts from October to April, and in some high-
latitude areas, it begins as early as September. During 
the heating period, large amounts of coal and other 
fossil fuels are burned, leading to a rapid increase in 
atmospheric pollutants, which severely impacts air 
quality. Moreover, after mid-September, rice harvesting 
begins in this region, and before the government 
implemented regulations prohibiting in-field burning of 
straw, residents would often burn large amounts of straw 
in a short period, causing a sharp rise in particulate 
matter, further exacerbating local air pollution [60]. 
Coupled with weaker winds and reduced precipitation 
during the winter, the large amounts of pollutants 
produced are not easily dispersed in the short term, 
making air quality particularly poor in January and 
February each year.

In contrast, during the summer, the use of coal and 
fossil fuels in Northeast China decreases significantly. 
Combined with relatively abundant rainfall and the 
influence of summer monsoons, the accumulation 
of particulate matter in the air is greatly reduced 
[61]. Additionally, higher temperatures and lower 
atmospheric pressure during the summer promote air 
circulation, which significantly improves the region’s air 
quality, typically reaching its best levels in August and 
September each year.

Concerning Forecast Values

First, the overall air quality in the three northeastern 
provinces is expected to continue showing clear 
seasonal fluctuations during the period from April 
2024 to April 2025. Air quality in most cities will be 
relatively better in the spring and summer months (April 
to September), while it is expected to decline during 
the autumn and winter months (October to March). 
This seasonal variation is consistent with the climatic 
conditions and historical trends previously discussed. 
For example, in the provincial capital city of Changchun, 
air quality is predicted to gradually improve from May 
to August 2024, peaking at 0.5735 in August 2024 
before beginning to decline in October, reaching a low 
of 0.4784 in January 2025. Similar seasonal fluctuations 
have been observed in cities like Harbin and Shenyang.

Second, according to the overall forecast data, 
cities located in the northern part of the region, such 
as Hegang, Qiqihar, and Heihe, are expected to have 
relatively better air quality. For instance, Hegang and 
Qiqihar’s average air quality evaluation scores between 
April 2024 and April 2025 are predicted to be 0.5716 
and 0.5869, respectively, while Heihe is expected to 
have even better air quality, with a score of 0.6810 in 
August 2024—the highest value among all cities during 
this period. Geographically, Heihe’s border location, 
lower population density, minimal industrial activity, 
and favorable natural environment contribute to its 
consistently high air quality. In contrast, industrial cities 
such as Anshan and Benxi are expected to have poorer 
air quality, with several months during the forecast 

period showing evaluation scores below 0.45. Their 
lowest values in December 2024 are expected to hover 
around 0.44. This indicates that industrial cities in the 
region may struggle to reduce air pollution in the short 
term through industrial restructuring, while the use of 
traditional energy sources like coal for winter heating 
further exacerbates pollution.

Finally, based on the forecast air quality evaluation 
data for the upcoming year, the fluctuation in air quality 
across the three northeastern provinces is expected 
to be relatively small. This suggests that while there 
is room for further improvement in air quality, the 
scope for significant improvement is limited without 
additional control measures. Therefore, promoting the 
use of clean energy, strengthening industrial pollution 
control, and advancing green transportation initiatives 
could help more cities in the region achieve sustained 
improvements in air quality.

Conclusions

This study optimizes the traditional TOPSIS 
method using Set Pair Analysis, establishing a 
comprehensive evaluation system that includes six 
major pollutants – PM2.5, PM10, SO2, NO2, O3, and CO 
– to assess the air pollution status of cities in the three 
northeastern provinces from January 2015 to March 
2024. Additionally, the Prophet model was employed to 
forecast air quality for the upcoming year. The results 
indicate that, overall, the air quality in Northeast China 
has significantly improved during the observation 
period, particularly in the provincial capital cities of 
Harbin, Changchun, and Shenyang, where pollutant 
concentrations have substantially decreased, reflecting 
the effectiveness of air pollution control policies in these 
areas. However, there are clear spatial disparities in air 
quality improvement, and the degree of improvement 
varies across different provinces and cities. Some 
cities still face severe air pollution problems during the 
winter heating period. Based on the above analysis, the 
following key conclusions are drawn:

First, air quality in the three northeastern provinces 
showed a trend of improvement amidst fluctuations from 
2015 to 2024. This trend is largely attributed to national 
and local efforts in industrial emission reduction, energy 
structure optimization, and clean energy substitution 
in recent years. However, seasonal pollution rebound 
during the winter heating period remains a prominent 
issue in many cities, especially in Baicheng, Benxi, 
and Panjin, where air quality remains poor during this 
period.

Second, the extent of air quality improvement 
varies significantly between cities. Provincial capitals 
such as Harbin, Changchun, and Shenyang have seen 
more significant progress due to strong policy support, 
while industrial cities like Anshan and Benxi have 
experienced more challenges in improving air quality 
due to their reliance on coal-heavy energy structures 
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and single-industry economies, which make pollution 
control more difficult. Geographic and climatic factors 
have also exacerbated pollution issues in these cities, 
particularly in the winter when pollutants are less likely 
to disperse.

Lastly, the forecast results from the Prophet model 
suggest that without further control measures, the scope 
for air quality improvement over the next year is limited. 
The concentrations of major air pollutants are expected 
to remain significantly affected by climatic conditions 
and the structure of energy consumption. While existing 
control measures have yielded positive short-term 
results, achieving sustained air quality improvement will 
require more systematic and comprehensive strategies.

Based on the findings of this study, the following 
policy recommendations are proposed:

Optimize Energy Structure: Given the high reliance 
on coal, especially during the winter heating period, 
efforts should be intensified to accelerate the shift toward 
cleaner energy sources. Policies should promote the 
use of natural gas, geothermal energy, wind, and solar 
energy, particularly in urban heating systems. Increased 
financial incentives and subsidies should be provided 
to encourage both local governments and industries to 
adopt cleaner technologies, which will reduce pollution 
levels significantly.

Enhance Regional Cooperation on Pollution 
Control: Since air pollution in northeastern China has 
strong regional characteristics, a coordinated joint 
prevention and control mechanism across the provinces 
should be implemented. This would include real-time 
data sharing, joint law enforcement, and coordinated 
responses to transboundary pollution issues, particularly 
among neighboring cities. Strengthened monitoring 
of emissions from key industries is crucial to ensure 
compliance with national pollution standards.

Upgrade Industrial Pollution Control Technologies: 
Northeastern China’s industrial base should prioritize 
technological upgrades in sectors that are major 
pollution contributors, such as steel, chemicals, and 
energy. Investing in cleaner, more efficient technologies 
will help reduce emissions. Additionally, strengthening 
air quality monitoring through advanced systems will 
improve the region’s capacity to detect and address 
pollution issues swiftly and more effectively.

Strengthen Seasonal Pollution Management:  
Policies should specifically target the winter heating 
season when coal usage spikes. Increasing investment 
in retrofitting heating systems and transitioning away  
from coal toward renewable energy alternatives will 
mitigate seasonal pollution peaks. Local governments 
should implement stricter controls on emissions from 
both industrial and residential sources during this 
period.

There are still several limitations to consider. First, 
this paper does not account for the effects of climate 
change on air quality, which could impact pollution 
levels. Second, we focus on six major pollutants, 
excluding others like VOCs, which are becoming 

increasingly important. Lastly, while the Prophet model 
provides a short-term forecast, it does not consider 
potential future policy changes that could alter air 
quality trends.

Despite these limitations, this paper offers a novel 
methodological approach using improved TOPSIS, 
SPA, and the Prophet model, which can be adapted by 
scholars to assess air quality in other regions. It also 
identifies gaps in current policies, helping researchers to 
focus on policy effectiveness and interventions. 
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