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Abstract

As the largest developing country, China faces significant air pollution challenges despite rapid

socio-economic progress. This paper focuses on thirty-five cities in the three northeastern provinces of

China — Heilongjiang, Jilin, and Liaoning — analyzing air quality trends from January 2015 to March

2024 and providing a forecast for the period from April 2024 to April 2025. We utilize an improved

TOPSIS method combined with Set Pair Analysis and a Prophet model for forecasting, enabling

comprehensive air quality assessment and trend prediction. The findings show significant improvements

in air quality across thirty-two cities, particularly in the provincial capitals, largely attributed to

effective pollution control policies. However, spatial and seasonal variations persist, with air quality

declining during winter heating seasons, especially in cities heavily reliant on coal. This paper

concludes with policy recommendations, emphasizing the need for further energy structure adjustments

and strengthened regional pollution control mechanisms to sustain these improvements.
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Introduction

China, as the largest developing country in the world,
has experienced rapid socio-economic development in
recent years but faces severe air pollution challenges
[1-3]. Air pollution not only affects public health and
quality of life but also hinders sustainable socio-
economic development [4-6]. According to statistics from
the World Health Organization, nearly 7 million people
worldwide die each year from diseases related to air
pollution [7]. Among them, China is one of the countries

*e-mail: gaohao0302@outlook.com;
Tel.: +86-21-5596-0082.

with the highest number of deaths caused by outdoor air
pollution, with approximately 2 million deaths annually
attributed to air pollution [8]. Furthermore, air pollution
leads to a series of environmental issues, including
reduced crop yields, ecosystem degradation, and climate
change [9-11]. As a result, controlling and mitigating air
pollution to improve air quality has become a common
goal and an urgent task for both the Chinese government
and society [12].

This study focuses on 35 cities in the three
northeastern provinces of China (Heilongjiang, Jilin,
and Liaoning), analyzing and evaluating the changes in
their air quality from January 2015 to March 2024 and
forecasting air quality trends from April 2024 to April
2025. The goal is to scientifically assess the effectiveness
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of air pollution control measures and provide
corresponding policy recommendations. The Northeast
region, historically known as China’s old industrial
base, is also one of the most important industrial areas
in the world. Its industrial history dates back to the late
Qing Dynasty when Japan established the puppet state
of Manchukuo, utilizing the region’s rich resources
and favorable geography to develop heavy industries
such as steel, coal, machinery, and chemicals, making
Northeast China one of the major industrial centers in
Asia [13]. After the founding of the People’s Republic of
China, the Northeast continued to provide the country
with a vast amount of industrial goods and energy,
earning it the title of “the eldest son of the Republic.”
The industrialization level in the Northeast once led
the nation and even surpassed that of many developed
countries.

However, with advancements in technology and
changes in market dynamics, old industrial bases
around the world, including Northeast China (along
with the Rust Belt in the United States, the Black
Country in the United Kingdom, the Ruhr Area in
Germany, and the Kanto region in Japan), have faced
numerous challenges and difficulties [14]. On one hand,
overexploitation and pollution have severely damaged
the resources and environment of these regions, leading
to ecological degradation and social issues. On the other
hand, intensifying competition and shifting demand
have diminished the traditional industries’ competitive
advantages, resulting in overcapacity and declining
profitability, which has caused economic downturns
and unemployment [15, 16]. Thus, these old industrial
bases require transformation and upgrading by adjusting
industrial structures and reducing environmental
pollution to achieve sustainable development.

Among these iconic old industrial regions,
Northeast China stands out due to several unique
factors. Firstly, compared to southern China, the
Northeast’s heavy industry has been developing for
a longer period, especially during the ecarly years
of the People’s Republic, when it was a key focus
of national industrial development. This prolonged
and intensive development has resulted in significant
environmental pollution and damage [17, 18]. Secondly,
Northeast China is a major resource base for the country,
with extensive coal mining, oil extraction, and steel
production. While these industries provided substantial
resources for national construction during the early
years, rapid industrialization and urbanization have
led to severe air pollution in the region [19, 20]. Lastly,
situated in northern China, the Northeast experiences a
temperate continental climate with limited monsoonal
influence. The annual average precipitation is around
500 mm, and the region endures longer and colder
winters compared to other parts of the country. The
extended heating season, coupled with low precipitation
and a coal-dominated energy structure, exacerbates the
challenges of air pollution control in Northeast China
[21].

Since 2013, many parts of China have experienced
severe smog problems. In response, the State Council
issued the “Air Pollution Prevention and Control Action
Plan”, which called for comprehensive governance
efforts and an improved energy utilization structure
[22]. Although there has been some improvement in air
quality assessments in the three northeastern provinces,
large-scale haze events continued to occur in Jilin
and Heilongjiang after 2020 [23]. In the air quality
rankings of 168 key cities published by China’s Ministry
of Ecology and Environment, cities like Shenyang,
Huludao, and Harbin consistently ranked among the
bottom 20 [24].

In the existing literature, scholars have also explored
the air quality issues in Northeast China. The current
research primarily focuses on the following aspects:

First, the temporal and spatial distribution of air
pollutants. A number of studies have analyzed the
spatial and temporal distribution characteristics of air
pollution in Northeast China using monitoring data.
For example, Fang et al. investigated PM, . pollution
in Northeast China from 2016 to 2020, analyzing its
spatial distribution and transmission patterns. They
found that PM,  pollution decreased significantly by
2018 but rebounded slightly by 2020 [25]. By analyzing
data from 2013 to 2017, Chen et al. have explored the
spatiotemporal distribution of air quality and the
causes of severe pollution. Their findings indicate that
the “Shenyang-Changchun-Harbin” urban belt suffers
from the worst air pollution, especially in winter [26].
Focusing on PM, ; and ozone concentrations from 2015
to 2020, Fan et al. studied the long-term air pollution
trends in China. They have identified significant
seasonal and regional variations, with northern China
experiencing higher pollution levels during winter due
to heating and industrial activities [27]. Du et al. have
investigated air pollution transmission networks in
northeastern China. They argued that air pollution in
this area, with PM, _ being a major contributor, spreads
through a complex network with seasonal variations
[28].

Second, source apportionment. Some studies have
utilized source apportionment techniques to identify the
major sources of pollution in the region. For example,
Sun et al. studied ammonia and ammonium pollution in
urban Harbin, showing that ammonium concentrations
spike during the heating season, driven by biomass
burning, while vehicle emissions dominate in the non-
heating season [29]. Dong et al. have analyzed the
chemical composition of PM,, and PM,; in a specific
city in Northeastern China. They found that secondary
aerosols were the largest source of PM [30]. Moreover,
Ding et al. examined the seasonal characteristics of
BC (black carbon), CO, and PM, pollution during
haze episodes in Benxi City, Northeastern China. They
found that solid fuel contributions increased during haze
events across all seasons. While BC wet scavenging
rates were higher in long-range air masses, substantial
BC transport persisted due to limited precipitation [31].
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Wang et al. have examined the effects of COVID-19
lockdown measures on PM, . levels and their chemical
components in Shenyang during January to May 2020.
They identified six primary pollution sources, of which
secondary sulfate and vehicle emissions were the two
largest contributors to PM,  [32].

Lastly, the effectiveness of control measures
and policies. Researchers have also evaluated the
effectiveness of various pollution control measures
and policies. For example, Yang et al. have examined
the significant role of open-field biomass burning in
contributing to PM, . levels during post-harvest seasons
in Northeastern China. They have demonstrated the
effectiveness of a 2018 burning ban, which reduced
PM, . concentrations by up to 67% in some provinces,
highlighting the impact of fire emissions on regional
air quality [33]. Zhang et al. studied the impact of
environmental regulations on haze pollution in China
between 2006 and 2016. They found that command-
control and economic-incentive regulations have
nonlinear effects on haze, while voluntary regulations
are not statistically significant. Specifically, the
industrial ~structure coefficient is positive and
significant in Northeast China, suggesting that the
dominance of the secondary industry significantly
contributes to increased haze pollution [34]. Based
on the implementation of the Air Pollution Prevention
and Control Action Plan (APPCAP) in 2013, Zhao et
al. examined the improvements in air quality across
China. They discovered noticeable pollutant reductions
in Northeast China, particularly for PM,.. Although
the success of APPCAP in reducing particulate matter
highlights the effectiveness of China’s air pollution
control policies, coordinated efforts targeting both PM,,
and O, are increasingly necessary to address evolving
air quality challenges [35].

While previous studies have provided valuable
insights into air quality trends and pollutant sources in
Northeast China, several key gaps remain. First, much
of the existing research has focused on individual
pollutants or short-term temporal analysis, overlooking
comprehensive evaluations of multiple pollutants using
integrated forecasting models. Second, few studies
have assessed the effectiveness of air pollution control
policies across multiple pollutants over an extended
period. Moreover, seasonal and regional variations in
air quality, especially during the winter heating season,
are often underexplored. In light of these gaps, this
paper builds upon the existing research and further
investigates the air quality in the three northeastern
provinces by using six major pollutants (PM, ., PM
S0O,, NO,, O,, and CO) according to China’s official Air
Quality Index (AQI) regulations [36, 37] and existing
research [38, 39], to provide a holistic assessment of air
quality and its forecasted trends, aiming to make the
following marginal contributions:

First, this paper makes several significant
contributions to both policy and academic discourse. It
provides a systematic evaluation of the air quality in an

under-researched region of China that is critical to the
country’s industrial and energy sectors. The findings
offer insights into the effectiveness of existing air
pollution control policies and their long-term impacts,
which can inform future policymaking. Furthermore, by
focusing on multiple pollutants and applying advanced
forecasting models, this study presents a robust
framework that other scholars can use to assess air
quality in similar industrialized regions.

Second, the novelty of this paper lies in its
methodological approach. We optimize the traditional
TOPSIS method by incorporating Set Pair Analysis
(SPA) to improve the accuracy of air quality
assessments. Additionally, the application of the Prophet
model for forecasting represents an innovative approach
to handling missing data and predicting future trends
based on historical patterns [40]. This combination
of methods allows for more precise and reliable
evaluations, making this study one of the first to apply
such advanced techniques to the specific context of
Northeast China.

Lastly, although China has introduced several
national-level policies targeting air pollution, such as the
Air Pollution Prevention and Control Action Plan (2013),
there remains a policy void in addressing the unique
challenges faced by Northeast China. The region’s heavy
reliance on coal for winter heating and its outdated
industrial infrastructure make it particularly vulnerable
to air pollution spikes during the winter months. This
paper highlights the need for region-specific policies
that address these unique factors, such as promoting
cleaner energy alternatives and strengthening seasonal
pollution control measures.

The structure of the remaining sections is as
follows: Section 2, Materials and Methods, introduces
the data used in this paper and constructs the Set Pair
Analysis-TOPSIS evaluation model and the Prophet
forecasting model; Section 3 presents the air quality
evaluation results for 35 cities in Northeast China from
January 2015 to March 2024, along with the forecast
of air quality for these cities from April 2024 to April
2025 based on the aforementioned data and models.
Then, these results are discussed in the context of air
pollution control policies implemented in the Northeast
region during the study period, analyzing the actual
effectiveness of these policies. Section 4 concludes the
paper and outlines directions for future research.

Materials and Methods

This paper improves upon the traditional air quality
evaluation system by selecting six pollutant indicators
— monthly averages of PM,,, PM , SO, NO,, O,
and CO — as the metrics for evaluating urban air quality.
The Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) method was enhanced
using the Set Pair Analysis approach [41, 42], where

the connection vector distance replaces the Euclidean
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distance traditionally used in TOPSIS [43, 44]. This
allows for the calculation of the proximity of each sample
to the ideal solution, which serves as the evaluation
value for air quality. Subsequently, the Prophet model
was employed to forecast the air quality of 35 cities in
Northeast China, providing a depiction of air quality
conditions over the next year based on current trends.

Original Sample Data

This paper selects the monthly average values of six
pollutants as the basis for evaluating urban air quality.
The number of samples in the evaluation model is
denoted as n, and the value of the /* indicator for the i**
sample is represented as eij(i =12, .,mj=12,..,06).
The specific meanings of each indicator are shown in
the Table 1.

Set Pair Analysis-TOPSIS Method
(SPA-TOPSIS)

The Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) is a multi-criteria decision-
making method used for sample evaluation based on
multiple features. In this paper, we apply this method to
evaluate the air quality of 35 cities in Northeast China.
The evaluation involves six sample indicators. For each
indicator, the optimal and worst values from the sample
are selected, and the ideal solution is constructed from
the optimal values, while the worst values are used to
construct a negative ideal solution. Due to the limitations
of Euclidean distance in traditional TOPSIS [45, 46],
which cannot fully reflect the positional relationships
between solutions, there is a possibility that a solution
might be close to both the ideal and the negative ideal
solutions. To address this, we optimize TOPSIS using
the Set Pair Analysis (SPA) approach. Each sample is
paired with the ideal and negative ideal solutions, and
the relationships between them are transformed into
“identity”, “difference”, and “opposition” relationships.
This results in a connection vector representing the
relationship from which the connection vector distance
is calculated. This replaces the Euclidean distance
and effectively resolves the aforementioned problem.

Table 1. Meaning of Indicators in the Original Data.

For each sample, we calculate its connection vector
distance from both the ideal and negative ideal solutions.
The closer the sample is to the ideal solution and the
farther it is from the negative ideal solution, the higher
its evaluation score.

Step 1: Compute the Mean Value of Each Indicator

For each indicator j, calculate the sample mean and
construct the vector Xj = {xlj, Xys oo xnj}, where X, is
calculated as shown in Equation (1):

Yhieij

xlj =x2j = ... =xnj =_,j = 1,2,...,6

n (1
Step 2: Calculate Cosine Similarity

Calculate the cosine similarity between X and the
vector Ej = {elj, €y o e”j.} as CSj(j =1, 2, .., 6) using
Equation (2), and then normalize CS. according to
Equation (3) to obtain the weights for the six indicators

W(=1,2,..6)

CS;=—11_j=12,..6
[XjI1%|Ej] )
CS; A

Wi == j = 1,2,...,6
j=1C5j 3)

where X, - E; represents the inner product of the vectors.
Step 3: Determine Ideal and Negative Ideal Solutions

Based on the data el./.(i =1,2,..mj=12,.,0),
determine the ideal solution S* = 58,5 ..., s} and

the negative ideal solution S~ = {s,~, 5,, ..., 5.}, where:
s;" = min {e;;|i = 1,2,...,n} 4)
sj = max {e;|i =1,2,..,n} (5)

Pollutant indicators are negative factors, meaning
that higher values are detrimental to the evaluation.
According to SPA theory, the ideal solution S*

Variable Meaning

. Represents the value of the j* pollutant indicator for the i* city
A Represents the monthly average of PM, | for the i city

e, Represents the monthly average of PM, | for the i” city

e, Represents the monthly average of SO, for the i” city

e, Represents the monthly average of NO, for the i city

e, Represents the monthly average of O, for the i city
" Represents the monthly average of CO for the i* city




Has China'’s Air Quality Improved...

445

and the negative ideal solution S~ are considered to be in
opposition to the system.

Step 4. Calculate the Connection Degree 1
between Sample A, and Ideal Solution S

The sample 4, and ideal solution S form a set pair
H" = (4, S). The connection degree x~ is calculated
using Equations (6) and (7):

i =af + bk + cfl = wyh + wou,
+ - W6iu:—6 = Z?:l le.ll-;,l = 1;21 -, (6)

ui =af + bk +cili=12,..,nj=12,..6
@)

Where a” represents the identity degree, b’
represents the difference degree, and ¢ represents the
opposition degree between sample A4, and the ideal
solution S*. The vector (a;", b, ¢) is the connection
vector for 4, and S7, denoted as p,” = (a;", b, ¢;). When
e, = s];z al./.+ = b7 =0, and cl‘./.+ = 1; when e, € [sj*, sj’),
a;} = jj,, b{.l.+ =1- a[j*, and c{.l.+ =0.

Step 5: Calculate the Connection Degree u~ between
Sample A, and Negative Ideal Solution S

The sample 4, and negative ideal solution S~ form a
set pair H = (4, §"), and the connection degree u; is
calculated using Equations (8) and (9):

wi =a; +bik+cil=wipg +wonp
+ ot W6Ml_6 = 216'=1 W])ul_]ll = 1;21 o n (8)

wj=aj+bjk+cjli=12,..,nj=12..6
©)

Here, @, represents the identity degree between
scheme A4, and the negative ideal solution §°, b~
represents the difference degree, and ¢, represents the
opposition degree. Together, these form the connection
vector (@, b, ¢) between scheme 4, and the negative
ideal solution S, denoted as x4~ = (a;, b, ¢;). When

i

e =s'ya =b =0andc =1, whene_ € (s, s'],
voooey ‘ i ij 72
% =5 b =1-a ,andc; =0.

Step 6. Calculate the Connection Vector Distance
between Sample A, and Ideal Solution S

The connection vector for the ideal solution S is
u = (1,0,0), and the corresponding connection
vector for sample 4, is u,” = (a7, b, ¢;"). The connection
vector distance between 4, and S” is calculated using
Equation (10):

D} =\J(1=aD)2+ B2+ (2 (1)

Step 7: Calculate the Connection Vector Distance
between Sample A, and Negative Ideal Solution S

The connection vector for the negative ideal solution
S~ is = = (1,0,0), and the corresponding connection
vector for sample 4, is ;= (a;, b, ¢;). The connection
vector distance between 4, and S~ is calculated using
equation (11):

Df =JA-a P+ B2+ @) ()

Step 8: Calculate the Relative Closeness C*
between Sample A, and Ideal Solution §*

The relative closeness C is calculated using
Equation (12):

+_ _ D :_
¢ = (Di++Di_)'l =12,..,n )

Here, C" is the evaluation value of the sample, where
0<C;<1. The closer C" is to 1, the closer sample 4, is to
the ideal solution and the higher its evaluation value. In
practical applications, C;" = 1 is rarely observed.

Prophet Model

Prophet is a time series forecasting model developed
by Meta (formerly the Facebook company), designed to
analyze various time series features, such as long-term
trends, seasonal cycles, and holiday effects. It processes
effective data and performs forecasting by fitting the
analyzed features. The main advantage of the Prophet
model lies in its robust performance in handling missing
values, trend shifts, and outliers, making it suitable for
robust forecasting [47]. In this paper, the daily average
values of six air pollutants from January 2015 to March
2024 were preprocessed to form the time series p(f),
and the Prophet model was then used to predict future
data. The structure of the Prophet model is shown
in Equation (13):

p(©) = g@) +s(&) +h(t) + & (13)

Where g(f) represents the trend component, which fits
the trend variations of the time series; s(7) is the seasonal
or cyclical component, fitting periodic variations
(usually on a weekly or yearly basis); A(f) accounts for
the impact of holidays on the time series; and ¢, is the
error term, representing factors not considered by the
model.

The trend component g(f) is the core of the Prophet
model, incorporating different assumptions and
smoothness parameters to fit the non-periodic changes in
the time series. The model selects change points from the
data to detect trend shifts. There are two key functions
for the trend: one based on a logistic regression function
and the other based on a piecewise linear function.
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In this paper, the piecewise linear function is adopted,
and its calculation is shown in equation (14):

g@) = +d®"Ot+ m+dO)y) (14

Where r represents the base growth rate, and m is
the base offset parameter. Change points are introduced
into the model to account for trend shifts, and both the
growth rate and offset parameter change at these points.
Suppose there are O change points, distributed at time
points ¢ = q, =1..,0.6=1{6,0, ..., 5Q} is the
vector of growth rate changes, where 5}_ represents the
change in the growth rate at the change point ¢ = J,.
Therefore, the growth rate at time ¢ is the base growth
rate plus all changes, ie., » + X _ )d. The vector
d() € {0,1}2 is defined as: !

Bo={1 ez
0, otherwise (15)

Thus, the growth rate at time ¢ can be expressed as
r + d@®". While the growth rate changes, the offset
parameter must also be adjusted to ensure the continuity
of the function. y = {y, 7,, ..., yQ} is the vector of offset
parameter changes, where y, = —g x . Change points
can be manually specified or automatically selected. In
this paper, the automatic selection of change points is
achieved by setting a sparse prior on 9, éy ~ Laplace(0,7),
in Equation (14).

In the Prophet model, the seasonal component
s(f) is modeled using the Fourier series, as shown in
Equation (16):

5(8) = iy cos (7) + busin C79)

Where 7T is the length of the time series period,
with 7 = 365.25 representing an annual cycle and
T = 7 representing a weekly cycle. The parameters
a, b, ..., a,, b, are estimated, and increasing the
number of terms N can improve the fitting accuracy,
though it may also increase the risk of overfitting.
Typically, for an annual cycle, N = 10, and for a weekly
cycle, N = 3. In this paper, the holiday component /4(f) is
not considered in the analysis of the time series.

Results and Discussion

This study is based on official air pollutant
monitoring data for 35 cities in the three northeastern
provinces of China, published by the China National
Environmental Monitoring Center and the China
Environmental Protection Ministry Data Center,
covering the period from January 2015 to March 2024.
The dataset includes daily concentration data for six
major air pollutants: PM,,, PM,, SO,, NO,, O,, and
CO. Using the daily data, we calculated the monthly
average concentrations of these six pollutants for each

city during the study period. Based on the official air
pollutant statistics and the evaluation method described
earlier.

We calculated the air quality assessment scores for
each city between January 2015 and March 2024 (for
specific evaluation results, please refer to Tables Al
through A10 in the Appendix). On this basis, further
predictions were made regarding the air quality of the
aforementioned 35 cities for the period from April 2024
to April 2025 (for specific prediction results, please refer
to Table A1l in the Appendix).

Fig. 1. summarizes the aforementioned air quality
assessment scores and predicted air quality values.

Based on the evaluation results, it was found that,
after years of comprehensive control efforts, air quality
in 32 out of 35 cities improved to varying degrees by
the end of the observation period, except for Baicheng,
Benxi, and Panjin. Notably, the air quality in the capital
cities of the three northeastern provinces showed
significant improvement. In Harbin, the air quality
index improved from 0.3107 at the beginning of the
observation period to 0.4798 at the end, reflecting
a 54.43% improvement. Shenyang’s air quality improved
from 0.2898 to 0.4380, marking a 51.14% improvement.
Although Changchun’s improvement was relatively
low, it still reached 40.64%, improving from 0.3408 to
0.4793. For the forecast period from April 2024 to April
2025, air quality across the cities tends to stabilize, with
significantly reduced fluctuations compared to previous
periods and noticeable improvements in air quality.

Based on the evaluation and forecast results, the
study found significant differences in air quality
improvement among the cities in the three northeastern
provinces, with clear seasonal variations in air quality in
the region. Specifically:

Significant Improvements

Most cities in the Northeast region saw significant
improvements in air quality. As noted, the capital
cities of Harbin, Shenyang, and Changchun exhibited
substantial improvements during the observation period.
Other cities, such as Huludao (improving from 0.2746
to 0.4422), Suihua (from 0.3394 to 0.5126), and Heihe
(from 0.3956 to 0.5806), also showed improvement
rates exceeding 45%. According to the forecast data, all
cities’ air quality evaluation results remained above 0.4,
reflecting a significant improvement compared to the
beginning of the study period (January 2015).

In the case of the three capital cities, they were
among the most polluted in Northeast China at the
beginning of the observation period but had shown clear
improvements in air quality by the end. These cities are
major economic and industrial centers in their respective
provinces, concentrating large populations and industrial
resources. According to the seventh national census, the
populations of Harbin and Changchun account for more
than 30% of their respective provinces, while Shenyang
has a population of 9.03 million, representing 21.2%
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Fig. 1. Assessment scores (from January 2015 to March 2024) and forecast results (from April 2024 to April 2025) of air quality for
35 cities in the three northeastern provinces: a) Changchun, Harbin, Shenyang, Anshan, Baicheng, Baishan, Benxi, Chaoyang, Dalian,
Dandong, Daqing, and Fushun; b) Fuxin, Hegang, Heihe, Huludao, Jiamusi, Jilin, Jinzhou, Jixi, Liaoyang, Liaoyuan, Mudanjiang, and
Panjin; c) Qiqihar, Qitaihe, Shuangyashan, Siping, Songyuan, Suihua, Tieling, Tonghua, Yanbian, Yichun, and Yingkou.

of Liaoning’s total population [48]. In the Northeast,
population concentration has increased the demand for
winter heating, and coal, as an affordable and accessible
energy source, has become the primary heating
option. The large-scale burning of coal and relatively
outdated treatment technologies have led to a decline
in air quality [49]. Additionally, these cities’ secondary
industries, particularly high-energy-consuming and
highly polluting sectors such as machinery processing,
steel, and equipment manufacturing, remain prominent
[50]. In the early stages of China’s reform and opening
up, the pace of equipment upgrades in these industries
was relatively slow, limiting improvements in air
pollutant treatment capacity and indirectly contributing
to poor air quality.

Since 2015, China has significantly increased
its focus on environmental quality, and the three
northeastern provinces have accelerated efforts to
improve air quality. Heilongjiang Province introduced

relevant environmental laws in 2016, such as the
“Regulations on Air Pollution Prevention and Control in
Heilongjiang Province” and the “Heilongjiang Province
Special Action Plan for Air Pollution Prevention and
Control (2016-2018)”, and these have been continuously
revised in subsequent sessions of the People’s Congress
based on technological developments [51]. Jilin Province
promoted wind power projects and encouraged the use
of cleaner, more efficient energy, providing financial
and personnel support for targeted pollution control
[52]. Liaoning Province established mechanisms for
rectifying heavily polluted areas, simultaneously
tackling coal, vehicle emissions, and straw burning,
adopting targeted measures, and strictly managing
industries such as steel and coal power with ultra-
low emission transformations, significantly reducing
their impact on air quality. Policies like the “Measures
for the Evaluation and Reward of the Elimination of
Small Coal-Fired Boilers in Liaoning Province” were
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introduced [53]. Guided by these policies, governments
at all levels in the three northeastern provinces have
paid increasing attention to air pollution issues and
made significant efforts to address them, leading to
notable improvements in urban air quality.

Discrepancies in Air Quality Improvements

Beyond the capital cities, Huludao, Suihua, and
Heihe also showed significant air quality improvements
during the observation period. Huludao improved
from 0.2746 to 0.4422, an increase of 61.03%, ranking
first among the 35 cities; Suihua and Heihe improved
by 51.03% (from 0.3394 to 0.5126) and 46.76% (from
0.3956 to 0.5806), respectively. The reasons for these
improvements are due to a series of comprehensive
governance measures that have effectively enhanced air
quality. These measures include strengthened policies
and regulations, optimization of industrial and energy
structures, control of industrial and coal pollution,
mitigation of vehicle and dust pollution, and scientific
responses to severe pollution events. Specifically:

Huludao: The city government placed high priority
on air quality, investing in particulate matter and
volatile organic compounds (VOCs) monitoring
stations to enhance environmental regulation capacity.
Several special actions were undertaken, including law
enforcement inspections of 281 industrial enterprises,
upgrading inefficient pollution control facilities, and
regulating VOC emissions. To address air pollution
caused by coal heating, the city implemented “small-
to-large” heating conversions in major urban areas
before each winter, achieving over 95% clean heating
and phasing out coal-fired boilers. Additionally, the
city aggressively eliminated high-emission vehicles
and conducted “city washing” campaigns to tackle dust
pollution [54].

Suihua: The city government actively adjusted the
industrial structure, enforcing strict environmental
access requirements, phasing out outdated capacity,
and promoting the upgrading of traditional industrial
clusters while fostering green industries. The city
also accelerated the consumption of non-fossil energy,
strictly controlled total coal consumption, phased out
coal-fired boilers, and advanced clean fuel alternatives
for industrial furnaces. The government enhanced
atmospheric monitoring and established regional joint
prevention and control mechanisms, promoting source
pollution control, strengthening straw utilization
and burning bans, and addressing VOCs through
comprehensive treatment measures for key industries
[55].

Heihe: The city continued efforts to control coal
pollution by upgrading aging heating pipelines and
implementing coal-fired boiler transformation projects.
The city targeted the Heihe Thermal Power Company
for ultra-low emission retrofitting. Dust pollution control
was also a key focus, with detailed implementation of
dust control measures on construction sites and increased

mechanized street cleaning. For vehicle emissions, the
city strengthened oversight of vehicle emission testing
facilities and conducted roadside inspections and remote
sensing monitoring [56].

Conversely, air quality improvements were poor in
Baicheng, Benxi, and Panjin, with air quality evaluation
scores showing declines compared to the beginning of
the observation period. The reasons include unfavorable
meteorological conditions in these cities and insufficient
efforts to control industrial pollution, vehicle emissions,
and dust pollution, leading to a relative deterioration in
air quality. Specifically:

Baicheng: Located in a region prone to severe
drought, Baicheng frequently experiences spring,
summer, and autumn droughts, with uneven seasonal
distribution of precipitation, making it difficult for
pollutants in the air to effectively disperse or settle.
Additionally, Baicheng’s industrial pollution control
has been insufficient. Despite efforts by the municipal
government, some enterprises continue to exceed
emissions standards, particularly in the chemical and
metallurgical industries. The city’s significant increase
in the number of vehicles during the observation period
also contributed to air pollution, with vehicle emissions
becoming a major source of pollution. Moreover,
insufficient control of dust from construction sites and
roads has led to persistently high O, concentrations [57].

Benxi: The city’s industrial structure has long been
dominated by heavy industry, with high-pollution
sectors such as steel and chemicals occupying a large
proportion of the economy. The difficulty in adjusting
the industrial structure, combined with continued
reliance on coal as the primary energy source for the
secondary industry, has resulted in high emissions of
SO, and NO_[58]. The rapid increase in the number
of vehicles and weak enforcement of vehicle emission
standards, coupled with frequent occurrences of severe
pollution weather and insufficient response measures,
have also contributed to the city’s difficulty in dispersing
pollutants under unfavorable meteorological conditions.

Panjin: The city is significantly affected by dust
storms, which frequently lower air quality. Additionally,
Panjin’s petrochemical industry is well-developed, but
some enterprises have inadequate pollution control
facilities, leading to frequent incidents of emissions
exceeding standards. Similar to Baicheng, vehicle
emissions and dust pollution are major concerns, with
persistently high concentrations of PM, , and PM,  in the
atmosphere [59].

Significantly Influenced by Seasonal Factors

Based on the evaluation results from January 2015 to
March 2024, air quality in these cities typically reaches
its best levels in August and September each year,
followed by a decline to its lowest point in January and
February of the following year. This is primarily due
to the widespread heating during the winter months.
The heating period in the three northeastern provinces
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generally lasts from October to April, and in some high-
latitude areas, it begins as early as September. During
the heating period, large amounts of coal and other
fossil fuels are burned, leading to a rapid increase in
atmospheric pollutants, which severely impacts air
quality. Moreover, after mid-September, rice harvesting
begins in this region, and before the government
implemented regulations prohibiting in-field burning of
straw, residents would often burn large amounts of straw
in a short period, causing a sharp rise in particulate
matter, further exacerbating local air pollution [60].
Coupled with weaker winds and reduced precipitation
during the winter, the large amounts of pollutants
produced are not easily dispersed in the short term,
making air quality particularly poor in January and
February each year.

In contrast, during the summer, the use of coal and
fossil fuels in Northeast China decreases significantly.
Combined with relatively abundant rainfall and the
influence of summer monsoons, the accumulation
of particulate matter in the air is greatly reduced
[61]. Additionally, higher temperatures and lower
atmospheric pressure during the summer promote air
circulation, which significantly improves the region’s air
quality, typically reaching its best levels in August and
September each year.

Concerning Forecast Values

First, the overall air quality in the three northeastern
provinces is expected to continue showing clear
seasonal fluctuations during the period from April
2024 to April 2025. Air quality in most cities will be
relatively better in the spring and summer months (April
to September), while it is expected to decline during
the autumn and winter months (October to March).
This seasonal variation is consistent with the climatic
conditions and historical trends previously discussed.
For example, in the provincial capital city of Changchun,
air quality is predicted to gradually improve from May
to August 2024, peaking at 0.5735 in August 2024
before beginning to decline in October, reaching a low
of 0.4784 in January 2025. Similar seasonal fluctuations
have been observed in cities like Harbin and Shenyang.

Second, according to the overall forecast data,
cities located in the northern part of the region, such
as Hegang, Qiqihar, and Heihe, are expected to have
relatively better air quality. For instance, Hegang and
Qigihar’s average air quality evaluation scores between
April 2024 and April 2025 are predicted to be 0.5716
and 0.5869, respectively, while Heihe is expected to
have even better air quality, with a score of 0.6810 in
August 2024—the highest value among all cities during
this period. Geographically, Heihe’s border location,
lower population density, minimal industrial activity,
and favorable natural environment contribute to its
consistently high air quality. In contrast, industrial cities
such as Anshan and Benxi are expected to have poorer
air quality, with several months during the forecast

period showing evaluation scores below 0.45. Their
lowest values in December 2024 are expected to hover
around 0.44. This indicates that industrial cities in the
region may struggle to reduce air pollution in the short
term through industrial restructuring, while the use of
traditional energy sources like coal for winter heating
further exacerbates pollution.

Finally, based on the forecast air quality evaluation
data for the upcoming year, the fluctuation in air quality
across the three northeastern provinces is expected
to be relatively small. This suggests that while there
is room for further improvement in air quality, the
scope for significant improvement is limited without
additional control measures. Therefore, promoting the
use of clean energy, strengthening industrial pollution
control, and advancing green transportation initiatives
could help more cities in the region achieve sustained
improvements in air quality.

Conclusions

This study optimizes the traditional TOPSIS
method using Set Pair Analysis, establishing a
comprehensive evaluation system that includes six
major pollutants — PM, ., PM,, SO,, NO,, O,, and CO
— to assess the air pollution status of cities in the three
northeastern provinces from January 2015 to March
2024. Additionally, the Prophet model was employed to
forecast air quality for the upcoming year. The results
indicate that, overall, the air quality in Northeast China
has significantly improved during the observation
period, particularly in the provincial capital cities of
Harbin, Changchun, and Shenyang, where pollutant
concentrations have substantially decreased, reflecting
the effectiveness of air pollution control policies in these
areas. However, there are clear spatial disparities in air
quality improvement, and the degree of improvement
varies across different provinces and cities. Some
cities still face severe air pollution problems during the
winter heating period. Based on the above analysis, the
following key conclusions are drawn:

First, air quality in the three northeastern provinces
showed a trend of improvement amidst fluctuations from
2015 to 2024. This trend is largely attributed to national
and local efforts in industrial emission reduction, energy
structure optimization, and clean energy substitution
in recent years. However, seasonal pollution rebound
during the winter heating period remains a prominent
issue in many cities, especially in Baicheng, Benxi,
and Panjin, where air quality remains poor during this
period.

Second, the extent of air quality improvement
varies significantly between cities. Provincial capitals
such as Harbin, Changchun, and Shenyang have seen
more significant progress due to strong policy support,
while industrial cities like Anshan and Benxi have
experienced more challenges in improving air quality
due to their reliance on coal-heavy energy structures
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and single-industry economies, which make pollution
control more difficult. Geographic and climatic factors
have also exacerbated pollution issues in these cities,
particularly in the winter when pollutants are less likely
to disperse.

Lastly, the forecast results from the Prophet model
suggest that without further control measures, the scope
for air quality improvement over the next year is limited.
The concentrations of major air pollutants are expected
to remain significantly affected by climatic conditions
and the structure of energy consumption. While existing
control measures have yielded positive short-term
results, achieving sustained air quality improvement will
require more systematic and comprehensive strategies.

Based on the findings of this study, the following
policy recommendations are proposed:

Optimize Energy Structure: Given the high reliance
on coal, especially during the winter heating period,
efforts should be intensified to accelerate the shift toward
cleaner energy sources. Policies should promote the
use of natural gas, geothermal energy, wind, and solar
energy, particularly in urban heating systems. Increased
financial incentives and subsidies should be provided
to encourage both local governments and industries to
adopt cleaner technologies, which will reduce pollution
levels significantly.

Enhance Regional Cooperation on Pollution
Control: Since air pollution in northeastern China has
strong regional characteristics, a coordinated joint
prevention and control mechanism across the provinces
should be implemented. This would include real-time
data sharing, joint law enforcement, and coordinated
responses to transboundary pollution issues, particularly
among neighboring cities. Strengthened monitoring
of emissions from key industries is crucial to ensure
compliance with national pollution standards.

Upgrade Industrial Pollution Control Technologies:
Northeastern China’s industrial base should prioritize
technological upgrades in sectors that are major
pollution contributors, such as steel, chemicals, and
energy. Investing in cleaner, more efficient technologies
will help reduce emissions. Additionally, strengthening
air quality monitoring through advanced systems will
improve the region’s capacity to detect and address
pollution issues swiftly and more effectively.

Strengthen  Seasonal  Pollution = Management:
Policies should specifically target the winter heating
season when coal usage spikes. Increasing investment
in retrofitting heating systems and transitioning away
from coal toward renewable energy alternatives will
mitigate seasonal pollution peaks. Local governments
should implement stricter controls on emissions from
both industrial and residential sources during this
period.

There are still several limitations to consider. First,
this paper does not account for the effects of climate
change on air quality, which could impact pollution
levels. Second, we focus on six major pollutants,
excluding others like VOCs, which are becoming

increasingly important. Lastly, while the Prophet model
provides a short-term forecast, it does not consider
potential future policy changes that could alter air
quality trends.

Despite these limitations, this paper offers a novel
methodological approach using improved TOPSIS,
SPA, and the Prophet model, which can be adapted by
scholars to assess air quality in other regions. It also
identifies gaps in current policies, helping researchers to
focus on policy effectiveness and interventions.
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