
Introduction

With the intensification of global climate change 
and the continuous deterioration of the ecological 

environment, the protection and management of 
vegetation resources have become focal issues in the 
field of ecological conservation [1, 2]. As a biodiversity 
hotspot in China, Sichuan Province boasts rich and 
unique vegetation resources, playing a critical role in 
maintaining regional ecological balance, enhancing 
carbon sink functions, and promoting sustainable 
development [3]. However, with the increasing 
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Abstract

With the intensification of global climate change and ecological degradation, the protection  
and sustainable management of vegetation resources in Sichuan Province have become critical research 
areas. This paper, leveraging multi-source information fusion technology, integrates remote sensing 
data, Geographic Information System (GIS) data, meteorological data, and ground observation data  
to propose a high-resolution spatiotemporal prediction model for vegetation resources across  
the province. Using an XGBoost algorithm combined with high-precision spatial grid data,  
the study accurately predicts the distribution of vegetation resources and provides an in-depth analysis 
of the impact of urbanization on vegetation cover across various cities in Sichuan. For example, plateau 
areas such as Ganzi Prefecture (MEAN = 68.03, STD = 12.23) and Aba Prefecture (MEAN = 49.81, 
STD = 10.93) exhibit rich and uniform vegetation cover. In contrast, urbanized regions like Chengdu 
(MEAN = 26.18, STD = 21.77) show significantly lower vegetation coverage, although the suburban 
areas around Chengdu still maintain considerable natural resource richness. The model achieved an 
RMSE of 8.7 and an R² of 0.82, demonstrating high accuracy and robustness. The results offer crucial 
insights for improving ecological management and promoting sustainable development in Sichuan 
Province while also serving as a technical foundation for environmental protection in other regions with 
similar ecological challenges.
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complexity of climate and environmental changes, 
traditional vegetation resource monitoring and 
management methods, due to their low spatiotemporal 
resolution and outdated data, can no longer meet the 
growing demand for refined and dynamic management 
[4, 5]. Therefore, developing high spatiotemporal 
resolution prediction technology for Sichuan Province’s 
vegetation resources based on multi-source information 
fusion has become one of the key challenges that 
urgently needs to be addressed.

Multi-source information fusion technology 
integrates a variety of data sources, such as remote 
sensing data, Geographic Information System (GIS) 
data, meteorological data, and ground observation 
data, providing more comprehensive and accurate 
environmental information, thus overcoming the 
limitations of single data sources [6-8]. Particularly 
with the advancement of artificial intelligence and 
machine learning technologies, the potential of multi-
source information fusion in dynamic monitoring and 
prediction of vegetation resources has significantly 
increased [9]. This approach also holds potential for 
application in other ecologically vulnerable regions, 
fostering broader advancements in environmental 
conservation [10].

In recent years, vegetation resource prediction 
technology has made important progress in several 
aspects, including prediction methods based on 
statistical models for vegetation indices, ecosystem 
dynamic simulation based on physical models, and 
prediction of vegetation cover changes using machine 
learning algorithms [11]. These methods can simulate 
the dynamic changes of vegetation resources at various 
temporal and spatial scales, improving prediction 
accuracy and timeliness to some extent [12]. However, 
traditional statistical models, often based on linear 
regression or time series analysis of historical data, 
are simple to calculate but struggle to handle complex 
environmental changes, leading to relatively limited 
prediction accuracy [13]. While physical models based on 
ecosystem processes have a solid theoretical foundation 
and can simulate complex ecological processes, they 
rely on high-quality data, involve complex calculations, 
and are difficult to apply on a large scale with high 
resolution [14]. Machine learning algorithms, especially 
deep learning, have been widely applied in recent 
years for vegetation resource prediction, improving the 
accuracy and efficiency of vegetation type identification 
and change prediction by automatically extracting 
features from remote sensing images and environmental 
data [15, 16].

Despite these advancements, significant challenges 
remain in current research. First, the issue of data 
diversity and heterogeneity is particularly prominent: 
different data sources vary significantly in spatial 
resolution, temporal resolution, and data formats [17]. 
Effectively integrating these heterogeneous data to 
fully leverage their synergistic effects is one of the 
difficulties in achieving high spatiotemporal resolution 

prediction [18]. Second, prediction models’ accuracy and 
generalization ability need further improvement: while 
certain models perform well in specific regions and time 
periods, their accuracy often decreases when applied to 
larger areas or under different environmental conditions. 
Thus, building models with stronger robustness and 
generalization capabilities has become a critical research 
direction in this field.

The research on high spatiotemporal resolution 
prediction technology for vegetation resources in 
Sichuan Province based on multi-source information 
fusion holds significant theoretical innovation and 
practical application value. This research not only 
provides a scientific basis for dynamic monitoring 
and management of vegetation resources in 
Sichuan Province but also explores new pathways  
for ecological protection and sustainable development 
across the country, driving further advancements in 
ecological environment monitoring and management 
technologies.

The research on high spatiotemporal resolution 
prediction technology for vegetation resources in 
Sichuan Province based on multi-source information 
fusion holds significant theoretical innovation and 
practical application value. This research not only 
provides a scientific basis for dynamic monitoring 
and management of vegetation resources in Sichuan 
Province but also explores new pathways for ecological 
protection and sustainable development across the 
country, driving further advancements in ecological 
environment monitoring and management technologies.

Research Objectives: The primary objective of 
this study is to develop a high-precision, data-driven 
model that integrates various multi-source data to 
predict and analyze the spatiotemporal distribution of 
vegetation resources in Sichuan Province. By utilizing 
state-of-the-art machine learning algorithms, the study 
aims to generate accurate predictions that will inform 
ecological conservation efforts, guide natural resource 
management, and support sustainable urbanization 
policies.

Main Tasks: First, the study focuses on the acquisition 
and preprocessing of multi-source data, such as remote 
sensing, meteorological, and geographic information, 
to ensure the quality and reliability of the dataset used 
for vegetation prediction. Next, a machine learning-
based XGBoost model is developed and optimized for 
handling high-resolution data and accurately predicting 
the spatiotemporal distribution of vegetation resources. 
The model is then rigorously validated through 
techniques to ensure its robustness and generalizability 
across diverse environmental and urban contexts. 
Additionally, the study conducts an in-depth analysis of 
the impact of urbanization on vegetation cover across 
different cities in Sichuan Province, shedding light on 
regional differences in natural resources. Ultimately, the 
results of this study are intended to support ecological 
management, resource planning, and policy formulation, 
offering data-driven insights that aid in sustainable 
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urban development and contribute to achieving carbon 
neutrality goals.

Materials and Methods

Research Area

Sichuan Province is located in southwest China, 
covering an area of over 480,000 Km2 [19]. It lies in 
the transition zone between the northern and southern 
climates, with a mild and humid climate, an average 
annual temperature of approximately 15.7ºC, and 
an average annual precipitation of 1,075 mm. As an 
important water conservation area in China and an 
ecological barrier in the upper reaches of the Yangtze 
River, Sichuan plays a critical ecological role. The 
temperate monsoon climate and the unique mountainous 
and basin topography provide favorable natural 
conditions for abundant vegetation cover. The natural 
vegetation primarily comprises subtropical evergreen 
broadleaf forests and mixed evergreen-deciduous 
broadleaf forests. The province’s terrain is higher in 
the northwest and lower in the southeast, and it can be 
divided into three main regions: western Sichuan, central 
Sichuan, and southern Sichuan, with Chengdu and 
Luzhou as key nodes. Western Sichuan, characterized 
by mountainous terrain and deep valleys, features 
diverse vegetation types and serves as an important 
water conservation area. Central and southern Sichuan, 
dominated by the Chengdu Plain and basin areas, are 
major agricultural production zones in southwest China 
and are the regions experiencing significant urban 
expansion [20].

With the intensification of industrial and agricultural 
activities, rapid socio-economic development, and 
continuous population growth, Sichuan’s ecosystem 
faces numerous challenges, particularly in the 
weakening of ecological functions and the increasing 
depletion of natural resources, which have become 
pressing environmental issues. 

To address these challenges, this study selected  
21 cities in Sichuan Province for analysis (see Fig. 1). 
By using high-resolution data, the study aims to predict 
and analyze the vegetation resources in these cities, 
providing scientific data and support for regional 
ecological protection and sustainable development 
and offering reliable decision-making references for 
policymakers in environmental management and 
conservation.

High-Resolution Prediction Method for 
Sichuan Province’s Natural Resources Based 

on Multi-Source Information Fusion

In the high-resolution prediction process of this 
study, key steps included multi-source data acquisition 
and cleaning, feature engineering, model building  
and optimization, model training and validation,  

and the generation and application of the final prediction 
results. The focus was on the natural resources of 
Sichuan Province, fully accounting for the region’s 
diverse ecological environments, such as forests, 
grasslands, and wetlands as the main land use types. 
The study conducted a high-resolution prediction of 
Sichuan’s natural resources by integrating remote 
sensing data, meteorological data, and geographic 
information data from various sources.

Additionally, the research included rigorous error 
analysis and accuracy assessments through cross-
validation and comparison with actual observation data 
to ensure the reliability of the prediction results across 
different application scenarios. The model offers critical 
data for informed ecological management decisions in 
Sichuan Province, and its methodology can be adapted 
for use in other regions with varying environmental 
conditions, contributing to broader resource monitoring 
efforts. Through in-depth analysis of the prediction 
results, the study further reveals the spatial distribution 
characteristics of natural resources, thereby providing 
data support for policymakers in formulating precise 
environmental protection policies.

Data Acquisition and Cleaning

The data in this study is sourced from the global 
30-meter resolution land cover classification product 
(GLC_FCS30-2015) generated for the years 2015-2020 
by combining the time-series of Landsat imagery and 
high-quality training data from the GSPECLib (Global 
Spatial Temporal Spectra Library) on the Google Earth 
Engine computing platform. The GLC_FCS30-2015 
product is considered the first global land cover dataset 
to provide a fine classification system (including  
16 global LCCS land cover types and 14 detailed 
regional land cover types) with high classification 
accuracy at a 30-meter resolution [21].

Fig. 1. High-resolution distribution of vegetation resources 
(primarily forest) in Aba, Sichuan Province, 2020.
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In addition to this dataset, the study also used 45 data 
classes (as detailed in Table 1), including environmental 
covariates and socio-economic covariates. Prior to 
import, these data underwent rigorous preprocessing, 
including value range distribution checks, outlier 
removal, and confidence interval filtering, to minimize 
noise and errors and ensure data quality. The study 
utilized programming languages such as R and Python 
to develop efficient batch data import and processing 
programs, ensuring the smoothness and accuracy of the 
data analysis process.

Integrating and cleaning multi-source data provided 
solid foundational support for the high-resolution 
prediction of Sichuan Province’s natural resources.  
This data allowed the study to deeply explore the spatial 
and temporal characteristics of different data sources.

Multi-Source Data Fusion Modeling 
Based on Machine Learning

In the modeling process, a high-resolution spatial 
grid (1 km × 1 km) for Sichuan Province was first 
constructed as the foundational framework for analysis 
and prediction. Various multi-source data were 
resampled and embedded into the corresponding grid 
to ensure spatial accuracy. The study used the XGBoost 
(Extreme Gradient Boosting) algorithm for modeling, 
a powerful ensemble decision tree algorithm that is 
particularly effective at capturing nonlinear relationships 
between complex variables [26]. By employing 
regularization techniques, XGBoost effectively reduced 
the risk of model overfitting and ensured efficient 
predictive performance.

Mathematically, XGBoost optimizes the following 
objective function:
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Where ŷi
(t) represents the predicted value of the 

i-th sample, fk is the output of the k-th decision tree, 
Ω( fk) is the regularization term used to control model 
complexity and prevent overfitting, and L(φ) is the loss 
function used to measure the gap between the predicted 
values and the true values.

Using the XGBoost algorithm, the study successfully 
constructed a highly accurate prediction model capable 
of handling large-scale, high-resolution data and 
capturing complex spatial and temporal relationships 
among multi-source data (see Fig. 2).

To clarify the relationship between the dependent 
and independent variables, we can express the model as 
follows:

	 1 2( , ,..., )ny f x x x=  	 (2)

Where y represents the forest type in the GLC_
FCS30-2015 product, and x1, x2, ..., xn correspond to the 
independent variables in Table 1.

Model Accuracy Validation

To ensure the model’s generalization ability, the 
study employed the K-fold cross-validation method to 
comprehensively test the model and reduce the risk of 
overfitting. The training data was divided into K subsets, 
with each subset used for training and validation.  
The results from each iteration were combined to ensure 
robust model performance across different datasets.

The evaluation metrics included the coefficient of 
determination (R²) and root mean square error (RMSE) 
[27]:
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Table 1. Data information summary of the basic database.

Category Data Source Temporal Resolution Spatial Resolution

GLC_FCS30-2015 [21] The global 30-meter resolution land cover classification product year 30 m

Temperature [22] China’s Meteorological Data Network Daily 0.5°

Precipitation [22] China’s Meteorological Data Network Daily 0.5°

Slope [22] US SRTM Terrain Product One-time 30 m

Elevation [22] US SRTM Terrain Product One-time 30 m

Terrain Type [23] Resource and Environmental Science Data Center, Chinese 
Academy of Sciences One-time 1:1,000,000

Land Use Type [23] European Space Agency Climate Change Initiative Annual 300 m

Population Density [24] NASA World Gridded Population Dataset Every 5 years 1 km

Gross Domestic 
Product [25]

Resource and Environmental Science Data Center, Chinese 
Academy of Sciences Every 5 years 1 km
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color coding used to reflect the density of different 
points. The color gradient transitions from blue (sparse 
points) to red (dense points), illustrating the distribution 
characteristics across different regions.

1) Root Mean Square Error (RMSE) = 8.5: This 
indicates that the average deviation between the predicted 
vegetation values and the actual values is 8.5. A low 
RMSE demonstrates that the model has minimal error.

2) Coefficient of Determination (R²) = 0.82:  
The R² value indicates that the model explains 82% of 
the variance in vegetation values, showing its superior 
performance in reconstructing vegetation distributions. 
With an R² value close to 1, the model shows a good 
fit and a high correlation between predicted and actual 
values.

3) Slope = 0.78: A slope of 0.78 indicates that  
the trend of the predicted values is consistent with  
the observed values, though it slightly underestimates 
higher vegetation values. An ideal slope should be 1, 
suggesting that the current model may slightly 
underestimate high vegetation values.

4) Scatter Distribution: The scatter points are mostly 
concentrated along the y = x diagonal, indicating a high 
degree of alignment between the predicted and observed 
values. However, there is a higher density of points near 
lower vegetation values, with the colors concentrated  

Where yi represents the actual value, ŷi represents the 
predicted value, and y̅ i is the mean of the actual values. 
R² reflects the model’s ability to explain the data, with 
values closer to 1 indicating better model fit.
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RMSE measures the deviation between predicted 
and actual values, with smaller values indicating lower 
prediction error.

Using these metrics, the study evaluated the 
prediction accuracy and stability of the model, ensuring 
its reliability for real-world applications. After multiple 
rounds of validation and optimization, the final model 
demonstrated excellent performance, providing accurate 
data support for ecological management and decision-
making in Sichuan Province.

Results and Discussion

Model Validation and Evaluation

Fig. 3 shows the scatter plot of the predicted 
vegetation values against the observed values, with 

Fig. 2. Multi-source data fusion modeling process.
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in the blue-green range, indicating that prediction errors 
increase as vegetation values rise.

These results demonstrate that the model is highly 
efficient in handling large-scale data and shows superior 
performance in reconstructing the spatiotemporal 
distribution of vegetation values. The RMSE and R² 
metrics attest to the model’s high predictive accuracy, 
providing strong data support for ecological monitoring 
and management.

Analysis of High-Resolution Prediction 
Data for Sichuan’s Natural Resources under 

Multi-Source Information Fusion

Using multi-source information fusion technology, 
this study predicted the distribution of natural resources 
across various regions of Sichuan Province for 2022; see 
Table 2. The predicted data provide clearer insights into 
the characteristics of natural resources in different areas 
and highlight the key factors influencing vegetation 
health.

Overall, Ganzi Prefecture has the richest vegetation 
cover, with an average vegetation value of 68.03, the 
highest among all regions. The maximum vegetation 
value is 121.99, with a standard deviation of 12.23, 
indicating widespread and relatively uniform vegetation. 
The high-altitude natural environment and abundant 
forest and grassland resources contribute to Ganzi’s 
healthy ecosystem and lush vegetation. Similarly, Aba 
Prefecture also has good vegetation coverage, with 
an average vegetation value of 49.81 and a maximum 
value of 120.19. Although the vegetation value in Aba 
is slightly lower than in Ganzi, the vegetation is evenly 
distributed, and the ecological conditions remain stable.

In contrast, urbanized areas show significant 
differences in vegetation coverage. For example, 
Chengdu’s average vegetation value is 26.18, with  
a standard deviation of 21.77, indicating sparse 
vegetation in the urban area but higher density in the 
suburbs. Chengdu’s maximum vegetation value reaches 
185.08, suggesting large expanses of farmland, forest, or 
protected areas in the suburbs, consistent with the rich 
vegetation found in Chengdu’s outskirts. Urbanization 
has significantly impacted the distribution of natural 
resources in Chengdu, with expanded urban land use 
leading to reduced vegetation, though the suburbs 
remain resource-rich.

Bazhong and Dazhou cities show relatively balanced 
vegetation coverage. Bazhong’s average vegetation value 
is 23.46, and Dazhou’s is 25.42. Although the vegetation 
is not as dense as in Ganzi or Aba, the distribution 
is relatively stable, especially in central areas with 
dense vegetation. This stable vegetation coverage may 
be closely related to the hilly terrain and favorable 
agricultural conditions in both cities.

In contrast, Deyang and Ziyang cities exhibit sparse 
vegetation coverage. Deyang’s average vegetation 
value is 16.02, the lowest among all regions, with a 
maximum value of 60.50, highlighting the high level 

of urbanization and the lack of greenery and natural 
resources in the city center. Ziyang’s average vegetation 
value is 19.54, with a standard deviation of 8.10. 
Although the vegetation is relatively evenly distributed, 
the overall density is low, indicating significant erosion 
of natural vegetation due to urban expansion, calling for 
stronger efforts in greening and ecological protection.

Additionally, Liangshan Prefecture and Panzhihua 
City show healthy vegetation coverage. Liangshan’s 
average vegetation value is 47.80, with a maximum 
value of 103.38, indicating stable vegetation distribution 
and abundant natural resources. Panzhihua’s average 
vegetation value is 44.25, with a standard deviation of 
6.42, showing even vegetation coverage. Despite being 
known for mining, protecting ecological resources in 
Panzhihua has been relatively successful. Although 
Panzhihua does not have areas with extremely dense 
vegetation, the overall distribution is balanced, and the 
ecological environment remains stable.

In summary, this data set reveals significant 
differences in vegetation coverage across different 
regions of Sichuan Province. Plateau regions such as 
Ganzi and Aba boast the most abundant and evenly 
distributed vegetation resources, indicating good 
ecological conditions. In contrast, urbanized areas like 
Chengdu and its surrounding cities are more impacted 
by urbanization, with less vegetation in the city center 
but richer resources in the suburbs. Bazhong and 
Dazhou show moderate and stable vegetation coverage, 
while Deyang and Ziyang have experienced reduced 
vegetation coverage due to urban expansion, resulting in 
increased ecological pressure.

The high-resolution predictions generated by 
this study serve as a key resource for developing 
targeted natural resource management strategies and 
ecological protection measures across Sichuan Province.  
In regions with lower vegetation coverage or those 
heavily impacted by urbanization, efforts should 
be strengthened to restore vegetation and improve 
environmental management to promote sustainable 
development and ecological balance.

Regional Differences in Natural Resources and 
the Impact of Urbanization in Sichuan’s Cities

Fig. 4 presents the predicted vegetation results 
for various cities in Sichuan Province, with different 
colors representing the values for each city. This 
visually illustrates the distribution trends of vegetation 
coverage across the region. First, Ganzi Prefecture 
exhibits the broadest vegetation value distribution, with 
peak frequencies exceeding those of all other areas, 
surpassing 10,000. This indicates that Ganzi has the 
most abundant vegetation coverage, with the majority 
of vegetation values concentrated between 50 and 75. 
Ganzi’s favorable natural conditions support dense 
and widespread vegetation, contributing to a stable 
ecosystem and abundant resources, consistent with the 
previous data analysis.
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Table 2. Distribution of natural resources in various regions of Sichuan Province in 2022.

CITY COUNT MEAN STD MIN 25% 50% 75% MAX

Aba 62867 49.81 10.93 16.82 43.26 48.88 55.45 120.19 

Bazhong 12027 23.46 7.15 9.49 19.27 21.97 25.41 77.83 

Chengdu 13916 26.18 21.77 4.40 12.17 19.85 31.18 185.08 

Dazhou 15918 25.42 8.46 8.93 19.85 23.37 28.40 76.16 

Deyang 5896 16.02 8.83 4.35 9.98 12.82 19.25 60.50 

Ganzizhou 142367 68.03 12.23 21.57 60.79 67.29 74.49 121.99 

Guangan 6207 32.03 10.63 11.20 24.41 30.24 37.53 78.03 

Guangyuan 15857 20.63 5.76 5.87 17.18 19.81 22.88 76.47 

Leshan 12318 27.89 11.37 9.78 21.07 24.54 30.60 107.55 

Liangshan 56145 47.80 10.37 13.29 41.19 49.29 55.15 103.38 

Luzhou 11349 28.58 12.34 8.54 19.90 24.61 33.84 93.03 

Meishan 7165 23.70 11.26 6.56 16.60 21.48 26.91 95.11 

Mianyang 20051 1.76 1.55 -0.91 0.33 1.47 2.98 7.46 

Nanchong 12287 25.59 9.98 6.83 19.15 23.51 29.19 78.85 

Neijiang 5290 1.53 0.98 -0.35 0.72 1.38 2.16 6.33 

Panzhihua 6980 44.25 6.42 26.10 40.02 42.87 47.22 76.12 

Suining 5238 28.59 9.49 9.15 22.55 26.73 32.30 72.44 

Yaan 14580 28.94 9.12 5.82 23.89 28.48 32.59 83.90 

Yibin 12645 28.76 11.76 9.35 20.59 26.37 33.21 100.18 

Zigong 4364 0.97 0.87 -0.42 0.39 0.72 1.37 6.31 

Ziyang 5690 19.54 8.10 4.75 13.45 18.17 23.98 45.31

Fig. 4. Predicted vegetation results for Sichuan’s cities.
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Aba Prefecture follows closely, with a similar 
vegetation value distribution, peaking around 8,000. 
This suggests that the region also enjoys excellent 
and unevenly distributed vegetation coverage, with 
characteristics similar to those of Ganzi.

In contrast to these high-vegetation areas, Chengdu’s 
vegetation distribution reveals a markedly different 
pattern. The vegetation values in Chengdu span a wide 
range, from a minimum of 4.40 to a maximum of 175, 
but are mainly concentrated in the lower range of 10 to 
40. This reflects the significant impact of urbanization 
on natural resources, with sparse vegetation in the city 
center and higher vegetation values in the suburbs, 
especially near the maximum value of 175. This indicates 
that the suburban areas have better natural resources, 
which aligns with the stark contrast in vegetation 
coverage between urban and suburban Chengdu.

Deyang and Ziyang exhibit vegetation values 
concentrated in the low range of 10 to 25, indicating 
low vegetation coverage in these regions. The significant 
influence of urban expansion has resulted in scarce and 
unevenly distributed vegetation resources.

In comparison, Liangshan Prefecture and Panzhihua 
City show healthier vegetation coverage, with vegetation 
values mostly concentrated between 40 and 60. Despite 
some areas being affected by mining development, 
overall vegetation coverage remains uniform, suggesting 
a relatively stable natural ecosystem.

Other cities, such as Bazhong, Dazhou, Nanchong, 
and Yibin, have mostly concentrated vegetation values 
between 25 and 50, indicating moderate and relatively 
stable vegetation coverage. While these areas do not 
have as rich natural resources as Ganzi and Aba, their 
ecological conditions remain healthy.

Overall, Ganzi and Aba have the richest vegetation 
coverage, while Chengdu and other cities display 

significant variations in vegetation resources, 
particularly between urban centers and suburban areas. 
Deyang and Ziyang have sparse vegetation, highlighting 
the need for enhanced ecological restoration and 
greening efforts. Meanwhile, Liangshan and Panzhihua, 
despite being impacted by development, maintain 
relatively good vegetation coverage. These findings 
provide critical data support for each city’s regional 
planning and ecological protection.

Trends in Average Vegetation 
Values for Sichuan's Cities

The trend in average vegetation values from 2016 to 
2022 for the four cities of Aba Prefecture (see Fig. 5), 
Chengdu, Ganzi Prefecture, and Panzhihua reveals clear 
differences in ecological environments across these 
regions. These differences reflect varying degrees of 
urbanization and natural environmental characteristics.

Aba Prefecture and Ganzi Prefecture show relatively 
high and stable average vegetation values, ranging 
between 50 and 70, indicating abundant and stable 
vegetation coverage. This can likely be attributed to 
limited urban development and rich natural resources. In 
particular, Ganzi Prefecture’s average vegetation value 
has consistently been close to 70, reflecting a strong and 
healthy ecological condition.

In contrast, Chengdu’s average vegetation value is 
significantly lower, consistently around 30, highlighting 
the notable impact of urbanization on vegetation cover. 
As the capital of Sichuan Province, Chengdu’s rapid 
development and expansion have reduced the area of 
natural vegetation.

Panzhihua’s average vegetation value is around 40, 
falling between Aba Prefecture and Ganzi Prefecture 
and slightly higher than Chengdu. This suggests that 

Fig. 5. Trends in average vegetation values for Aba, Chengdu, Ganzi, and Panzhihua from 2016 to 2022.
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while Panzhihua is also a highly urbanized city, its 
vegetation coverage is somewhat better than that of 
Chengdu.

Overall, from 2016 to 2022, the vegetation value 
trends in Aba Prefecture, Ganzi Prefecture, Chengdu, 
and Panzhihua have remained relatively stable, with 
significant ecological differences between the cities. 
Aba Prefecture and Ganzi Prefecture benefit from 
abundant natural resources and stable ecosystems, 
while Chengdu and Panzhihua, as more urbanized 
areas, have comparatively limited vegetation coverage, 
especially in Chengdu, where the impact is particularly 
pronounced. This contrast between urbanization and 
natural ecosystems provides important insights into the 
long-term effects of urbanization on vegetation and the 
environment.

These analyses offer scientific data to support 
ecological conservation and urban planning in different 
cities. In future urban development, the key challenge 
will be balancing economic growth with environmental 
protection and enhancing vegetation coverage, which 
will be crucial for achieving sustainable development. 
These findings provide valuable references for cities’ 
efforts to address climate change and ecological 
protection.

Comparative Analysis of Vegetation 
Value Trends in Different Cities

In this section, we utilize multi-source information 
fusion technology to conduct high-resolution predictions 
of natural resources in six typical cities in Sichuan 
Province for 2022, displaying the spatial distribution 
of the vegetation value for each city (see Fig. 6). These 
predictions not only reflect the current state of natural 
resources but also provide crucial reference data for 
future ecological management and planning.

Ganzi Prefecture’s vegetation values range from 
0 to 120, showing significant regional variation. The 
northern region has vegetation values close to 120, 
indicating very dense vegetation, likely composed 
of high-altitude forests or natural grasslands. Due to 
Ganzi’s complex geographic conditions, especially in 
the northern plateau and mountainous areas, vegetation 
resources are abundant, and the ecosystem is healthy. 
The geographical diversity of Ganzi leads to substantial 
fluctuations in vegetation coverage between dense forests 
and sparse areas, reflecting the ecological diversity. 
The central and southern regions have relatively lower 
vegetation values, with reduced vegetation coverage 
likely influenced by climate or terrain conditions.

Aba Prefecture’s vegetation predictions show more 
uniform vegetation coverage, with values ranging 
from 0 to 80. Although there are no particularly dense 
vegetation areas, the overall vegetation distribution 
is stable. Aba’s mild climate and complex terrain help 
maintain a balanced ecosystem with evenly distributed 
vegetation resources, likely linked to stable forest 
conservation and agricultural activities.

Bazhong City’s vegetation values range from 0 
to 70, with vegetation primarily concentrated in the 
central region, reflecting the area’s rich forest resources. 
Bazhong, located in hilly and mountainous terrain, 
benefits from favorable natural conditions, resulting 
in higher vegetation density in the central region. In 
contrast, lower vegetation values in surrounding areas 
may be related to agricultural land use or urbanization. 
This vegetation distribution pattern highlights the 
impact of mountainous terrain and human activity 
on natural resources, particularly the good ecological 
protection in the central region.

Chengdu’s vegetation values range from 0 to 175, 
underscoring the significant impact of urbanization 
on natural resources. The central urban area has low 
vegetation values, with sparse vegetation, especially 
in the city center, where urban expansion has reduced 
vegetation density. However, vegetation values increase 
sharply in the suburbs, reaching 175, indicating large 
green spaces or natural vegetation in the outskirts. 
Chengdu’s vegetation distribution reveals a stark 
contrast between the city center and the suburbs, where 
urbanization significantly affects the central ecosystem, 
while suburban natural resources remain abundant.

Dazhou’s vegetation values range from 0 to 70, with 
scattered vegetation distribution. The southwestern and 
central areas have relatively dense vegetation, likely due 
to the region’s rich mountainous and forest resources, 
while the northern and eastern areas have lower 
vegetation values, suggesting less vegetation cover, 
possibly due to flatter terrain and higher human activity.

Deyang’s vegetation values range from 0 to 60, 
with vegetation primarily concentrated in the central 
region, though overall coverage is low. Urbanization 
in Deyang has significantly impacted vegetation 
distribution, with sparse vegetation in the city center, 
while some dense vegetation areas in the central region 
may be mountainous or ecological protection zones. 
Overall, Deyang’s vegetation distribution suggests that 
urbanization and agricultural development have greatly 
affected natural resources, with limited vegetation 
coverage outside central dense areas.

In summary, Ganzi Prefecture and Aba Prefecture 
show extensive vegetation coverage, highlighting 
significant ecological diversity, while Chengdu also 
demonstrates notable suburban vegetation density and 
ecological richness in its outskirts. Ganzi’s northern 
mountainous areas and Chengdu’s suburbs have 
abundant vegetation resources. Aba Prefecture and 
Bazhong City have more uniform vegetation coverage, 
with stable ecosystems but without particularly dense 
areas. Dazhou and Deyang have more scattered 
vegetation coverage, with Deyang showing the lowest 
overall coverage, likely due to urbanization.

These high-resolution predictions generated through 
multi-source information fusion provide a clear picture 
of the distribution of natural resources in Sichuan 
Province. This data serves as an important reference for 
the formulation of ecological protection policies, land 
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use planning, and climate change mitigation strategies, 
helping relevant authorities better manage and protect 
Sichuan’s natural resources. Given Sichuan’s large 
population, accelerated industrialization, and high 

carbon emissions, accurately understanding the long-
term spatiotemporal trends in vegetation is crucial for 
achieving the province’s “carbon peak” and “carbon 
neutrality” goals.

Fig. 6. Administrative map of Sichuan Province: high-resolution prediction of natural resources in six typical cities of Sichuan Province 
for 2022. a) Aba, b) Bazhong, c) Chengdu, d) Dazhou, e) Deyang,f) Ganzi.

a)							       b)

c)							       d)

e)							       f)
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Conclusions

This paper conducts a systematic study and in-
depth analysis of the high-resolution spatiotemporal 
distribution of natural resources, particularly vegetation 
resources, in Sichuan Province, based on multi-source 
information fusion technology. By integrating remote 
sensing data, GIS data, meteorological data, and ground 
observation data, a vegetation resource prediction model 
with high precision and broad application prospects was 
developed. The aim is to provide a scientific basis for 
ecological management in Sichuan and offer references 
for future environmental protection and sustainable 
development.

The study reveals significant differences in 
vegetation coverage across various regions of Sichuan 
Province. High-altitude areas like Ganzi and Aba 
Prefectures have rich and evenly distributed vegetation 
due to their favorable natural conditions. In contrast, 
Chengdu and its surrounding cities have seen a 
marked decline in vegetation coverage in urban areas 
due to urbanization, though the suburbs still retain 
substantial natural vegetation. Deyang and Ziyang have 
experienced reduced vegetation coverage as a result 
of urban expansion, leading to increased ecological 
pressure. The machine learning-based XGBoost model 
demonstrated strong predictive capabilities, effectively 
capturing complex nonlinear relationships during  
the fusion of multi-source heterogeneous data,  
providing highly accurate spatiotemporal distribution 
predictions.

The model achieved an RMSE of 8.7 and an R² of 
0.82, further validating its efficiency and stability. 
This research significantly improves the precision 
of vegetation resource management in Sichuan and 
provides a replicable framework for similar regions. Its 
findings contribute to broader discussions on ecological 
sustainability and resource conservation.

In conclusion, this study provides scientific data 
support for ecological management, natural resource 
conservation, and urban planning in Sichuan Province. 
In the future, with broader applications of multi-
source information fusion technology, the model’s 
generalization ability and accuracy can be further 
improved, especially in addressing challenges posed 
by complex environmental changes and urbanization.  
This will provide more scientific decision-making 
support for ecological protection and carbon neutrality 
goals in Sichuan and across the country.
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