
Introduction

As global concerns about climate change intensify, 
carbon emissions have become a key factor affecting 

the ecological balance of Earth. Industrialization has 
accelerated global carbon emissions, exacerbating 
climate warming and increasing the frequency of 
extreme weather events [1, 2]. The manufacturing 
industry, a major contributor to carbon emissions in the 
industrial sector, is particularly notable in China, a world 
manufacturing powerhouse, where carbon emissions 
account for approximately 80% of the national total [3]. 
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Abstract

Enterprise carbon emissions intensity (CEI) is an important measure of corporate environmental 
responsibility management. Existing studies exploring the net effects of single factors are insufficient 
to fully reveal the complex causal relationships behind them. Taking the top 40 listed manufacturing 
enterprises in China as examples, this study adopted the technological, organizational, and 
environmental (TOE) framework and selected green technology innovation, digital transformation, dual 
carbon leadership, financial redundancy, environmental regulatory pressure, and public environmental 
concern as the key antecedents influencing CEI. This study employs necessary condition analysis (NCA) 
and fuzzy set qualitative comparative analysis (fsQCA) methods to identify the configuration path of 
CEI in manufacturing enterprises and uses machine learning to rank the importance of antecedent 
variables. The findings reveal that no single factor alone is necessary or sufficient for determining 
the CEI. This study identified five different configurational pathways associated with a low CEI and 
three different pathways with a higher CEI. Machine learning shows that green technology innovation 
is the most important antecedent factor affecting CEI. These insights provide valuable guidance for 
manufacturing companies that adopt practices that facilitate low-carbon transformations.
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Among the numerous manufacturing enterprises, listed 
companies stand out due to their large scale of operations 
and broad industry influence, making their carbon 
footprint particularly prominent. Since the signing of 
the Paris Agreement, many globally listed companies 
have committed to reducing their emissions to levels 
consistent with the agreement’s temperature targets [4, 
5], which has led to increased societal attention to the 
carbon emission intensity (CEI) of listed companies. In 
China, since 2021, Caijing magazines have published 
annual carbon emissions data from the top 100 listed 
companies. According to the latest data from 2023, the 
total carbon emissions of 100 companies will amount to 
5.046 billion tons, accounting for 44% of the national 
total. Among these industries, emissions from power, 
cement, coal, and steel amounted to 4.141 billion tons, 
accounting for 36.08% of the country’s total emissions. 
These findings clearly underscore that promoting 
carbon reduction in the manufacturing sector of listed 
companies in China is crucial for achieving national 
carbon neutrality goals [6]. Therefore, investigating 
the key factors influencing the CEI of manufacturing 
enterprises and finding effective pathways to reduce 
their CEI have become urgent management issues for 
the low-carbon transformation and development of 
manufacturing enterprises.

Recent research has underscored the pivotal 
role of various factors influencing enterprise CEI, 
including institutional pressure [7], enterprise digital 
transformation [8-10], digital technologies [11], corporate 
social responsibility [12], senior management carbon 
awareness [13], and government policies [14]. However, 
there is no consensus on the impact of these factors 
on enterprises’ carbon emissions. While some studies 
have indicated that digital transformation can decrease 
enterprise carbon emissions [15, 16], others have 
proposed a U-shaped relationship between enterprise 
carbon emissions and digital transformation [8, 9]. This 
divergence underscores the complexity of the factors 
that influence carbon emissions in manufacturing 
enterprises. Existing theories and practices suggest 
that enterprise carbon emissions should consider 
the interplay of multiple factors encompassing the 
organization, technology, and environment [17, 18]. 
Pathways to reduce carbon emissions may entail intricate 
causal relationships that are dependent on combinations 
of multiple factors operating synergistically [18, 19]. 
Essentially, the CEI of manufacturing enterprises is 
shaped by various interplaying factors [20], necessitating 
further comprehensive research to unveil their intricate 
relationships. This study addressed two fundamental 
questions: (1) What are the primary drivers of CEI in 
manufacturing enterprises? (2) Which configurational 
pathways lead to high and low CEI in manufacturing 
enterprises amidst the combined influence of multiple 
factors?

To address the research questions, this study 
collected and organized samples from the Caijing 
magazine’s ranking of the top 100 listed companies’ 

CEI in China from 2021 to 2022, which only includes 
manufacturing enterprises. Based on the technological, 
organizational, and environmental (TOE) framework, 
this study employed necessary condition analysis 
(NCA), fuzzy-set qualitative comparative analysis 
(fsQCA), and machine learning methods to explore 
the complex causal relationships and importance 
of variables affecting the CEI of manufacturing 
enterprises. Our study contributes to the literature on 
CEI in manufacturing enterprises. First, unlike most 
previous studies that emphasize the independent roles 
of factors such as digital transformation and green 
technology innovation in the CEI of manufacturing 
enterprises, our study explores the synergistic effects 
of multiple combined factors from technological, 
organizational, and environmental dimensions based on 
the TOE theoretical framework. Second, we used the 
NCA and fsQCA methods to identify the configurational 
pathways of the CEI in manufacturing enterprises, delve 
into the causal complexity and interlinking relationships 
between the CEI and its influencing factors, and reveal 
the complementary or substitutive effects of various 
antecedents. Furthermore, machine learning was used 
to identify the importance of these factors. Our research 
results can guide manufacturing enterprises in reducing 
their CEI.

Material and Methods

Theoretical Basis

The TOE framework posited that technological 
innovation within enterprises resulted from the 
interaction of three dimensions: technology, 
organization, and environment [21]. Specifically, the 
technology element primarily referred to the actual 
and potential technological capabilities acquired 
through technology adoption, which revealed aspects 
such as technology availability, usefulness, and 
compatibility [22]. The organizational element referred 
to characteristics of organizational structure that aligned 
with technology, including factors such as organizational 
size, financial support, and top management support 
[23]. The environmental element referred to the 
pressures from the external environment regarding 
technology adoption, including institutional pressures, 
competitive intensity, and policy instruments [23, 24].

The literature indicates that manufacturing 
enterprises have characteristics such as high costs, 
long cycles, and high uncertainty [25]. When 
engaging in carbon emission reduction activities, 
they often face multiple constraints regarding 
resources, capabilities, and the environment owing to 
inadequate financial support, lack of technical strategic 
knowledge, insufficient low-carbon competitiveness, 
and inadequate transformation awareness [26, 27]. 
Carbon emission reduction is a complex process that 
involves technological change, organizational behavior,  
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and external environmental factors [17]. This suggests 
that the carbon emission reduction activities of 
manufacturing enterprises are not only influenced by 
the internal resources, capabilities, and technologies 
of the enterprises but also constrained by external 
environmental factors. We chose the TOE framework 
as the theoretical foundation because it comprehensively 
considers technology characteristics, internal 
organizational factors, and external environmental 
factors. Additionally, Wang et al. (2024) [18] utilized 
the TOE framework to study carbon emission reduction 
performance using a mixed method that combined 
supply chain modeling, regression analysis, and 
fuzzy set Qualitative Comparative Analysis (fsQCA). 
Su and Ding (2024) [28] analyzed the low-carbon 
transformation configuration paths of heavily polluting 
enterprises based on the TOE framework. Zhu and Peng 
(2024) used the TOE framework to analyze the factors 
affecting CEI at the provincial [29]. These studies reflect 
the applicability of the TOE framework in analyzing the 
factors affecting corporate CEI. 

Model Construction

First, from a technological perspective, digital 
transformation and green technological innovation 
represent the latest advancements in technology and 
innovative practices within organizations, respectively. 
Technological progress can indirectly reduce carbon 
emissions by reducing energy consumption [15, 30]. 
Digital transformation can reduce manufacturing 
enterprises’ carbon emissions by increasing the 
level of government green subsidies, promoting 
technological progress [9], and improving corporate 
social responsibility [31]. The quality and quantity 
enhancement from green technological innovation can 
significantly reduce carbon emissions [32, 33]. 

Second, from an organizational perspective, dual-
carbon leadership and financial redundancy reflect 
an organization’s strategic decision-making and 
resource allocation capabilities. Dual-carbon leadership 
demonstrates the management and strategic direction 
of enterprises in carbon reduction, ensuring that carbon 
reduction activities are effectively implemented within 
the organization. Simultaneously, financial redundancy 
provides the necessary funding support for enterprises to 
undertake technological transformation and innovation 
[34], reflecting their resource-buffering capability in 
response to environmental pressures.

Finally, from an environmental perspective, formal 
environmental regulatory pressures and informal 
environmental pressures influence CEI in the external 
environment [35]. Formal environmental regulatory 
pressures have set clear external requirements for 
corporate emission reductions, such as government 
regulations and policies, international agreements, and 
industry standards. These provide policy incentives 
and constraints for the technological transformation 
and innovation of enterprises’ carbon reduction 

activities [36], thereby enhancing the level of corporate 
environmental information disclosure, environmental 
management concepts, and resource allocation efficiency 
[37]. Simultaneously, informal environmental pressures 
arising from public concern provide positive market 
signals to enterprises, strengthening the government’s 
implementation of environmental regulatory policies 
[38] and influencing corporate environmental behaviors 
through market mechanisms [39].

As mentioned above, this study, based on the 
TOE theory combined with a systems perspective, 
investigated the impact of the interactions and 
synergistic effects among digital transformation, green 
technological innovation, dual-carbon leadership, 
financial redundancy, formal environmental regulation 
pressures, and public environmental concern variables 
on enterprise CEI.

Technological Factors

Digital Transformation

Digital transformation referred to the use of digital 
technologies and data as key elements in reforming 
enterprise management, business, and commercial 
models. By integrating digital technologies into 
production, management, and logistics processes, 
enterprises can monitor carbon emissions in real time, 
optimize production and supply chain management, and 
effectively reduce supply chain carbon emissions and 
emission reduction risks [40]. Additionally, integrating 
digital transformation into manufacturing processes can 
improve the ability of companies to acquire, transmit, 
and store analytical data, which in turn improves 
production management and optimizes resource 
allocation efficiency, thereby reducing carbon emissions 
[9]. However, the digital transformation process 
requires a lot of data management support and is full 
of uncertainties, which may trigger energy rebound 
effects and ultimately increase carbon emissions [41]. 
Additionally, some studies have indicated that digital 
transformation may indirectly affect carbon emissions 
through increased electricity consumption, exhibiting an 
inverted U-shaped relationship with carbon emissions 
[9]. This suggests that digital transformation should be 
combined with other factors, such as resource allocation 
and environmental policies, to promote carbon emission 
reduction activities in enterprises effectively.

Green Technology Innovation

Green technology innovation encompasses green 
product innovation, green process innovation, end-
of-pipe treatment technology innovation, and clean 
production technology innovation [42]. For example, 
enterprises can effectively reduce product carbon 
emissions by adopting green technology innovations such 
as eco-friendly materials, energy-saving technologies, 
and clean production processes [43-46]. Through green 
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technology innovation, enterprises can achieve end-of-
pipe resource recycling and waste treatment, thereby 
reducing carbon emissions [47]. However, some studies 
have indicated that a complex relationship may exist 
between green technology innovation and carbon 
emissions. Miao et al. (2024) [33] showed that both the 
quantity and quality of green technology innovation 
can significantly reduce the carbon emissions of high-
energy-consuming manufacturing enterprises. Lyu et al. 
(2024) [34] believe that green technology innovation can 
introduce advanced equipment, continuously optimize 
the production process, improve the energy efficiency 
of enterprises, and reduce the carbon intensity of 
enterprises.

Organizational Factors

Dual-Carbon Leadership

Dual-carbon leadership referred to the 
comprehensive leadership capabilities and management 
levels demonstrated by enterprises in addressing 
climate change and achieving carbon peak and carbon 
neutrality goals. This leadership was reflected not 
only in the enterprise’s deep understanding and long-
term planning of carbon strategies but also in how 
effectively it organized resources, formulated and 
implemented carbon action plans, and addressed risks 
and opportunities related to carbon goals. Enterprises 
with higher levels of carbon leadership had senior 
managers who actively formulated and promoted 
strategies, policies, and measures closely related 
to carbon reduction, ensuring that carbon emission 
issues were thoroughly considered in daily operations. 
This leadership could guide the entire organization 
in forming a consensus and environment for low-
carbon development, thereby significantly reducing the 
enterprise’s CEI.

Financial Redundancy

Financial redundancy referred to the financial 
resources available for management’s discretionary 
use after meeting necessary financial expenditures 
[48]. On the one hand, enterprises with ample financial 
redundancy are potentially more capable of bearing 
the risks and costs associated with transformation, 
making it easier for them to transition from high-carbon 
emission industries to low-carbon emission industries 
[49]. On the other hand, when enterprises face resource 
constraints, sufficient financial redundancy could serve 
as a buffer, helping to resolve internal conflicts, protect 
core technologies, promote innovation, and positively 
impact corporate social responsibility performance 
[49]. Therefore, financial redundancy serves as an 
internal resource buffer, providing the necessary 
financial support for enterprises to deal with external 
environmental changes.

Environmental Factors

Environmental Regulatory Pressure

Environmental regulatory pressure referred to 
the environmental laws and regulations issued by the 
government and market-based regulatory mechanisms 
[50]. Formal environmental regulatory pressure reflected 
the command-and-control and market-driven regulatory 
approaches. Faced with stringent environmental 
regulations and policies, manufacturing enterprises must 
adjust their production methods and business strategies 
to comply with environmental regulatory requirements. 
Environmental regulation can reduce enterprise carbon 
emissions by enhancing the level of environmental 
disclosure and environmental management concepts 
and accelerating the establishment of corporate 
environmental systems [40, 50]. Additionally, 
environmental regulation is of significant importance 
for green technology innovation in manufacturing. 
Appropriate environmental regulations have forced 
enterprises to reduce pollution emission costs, thereby 
promoting green technology innovation and serving 
as an important driver for the government to address 
environmental pollution issues [37]. Thus, formal 
environmental regulatory pressure is an important 
antecedent environmental factor that influences 
manufacturing enterprises’ CEI.

Public Environmental Concern

Public environmental concern, as an informal 
environmental regulatory pressure [51], has become 
another important method of environmental governance 
in China [52]. Through mechanisms such as opinion 
pressure, low-carbon consumers, and environmentally 
friendly choices, the public could effectively reduce the 
likelihood of polluting enterprises entering the market, 
thereby achieving source control of pollution emissions 
[52]. Additionally, public environmental concerns 
can effectively promote enterprises’ green technology 
innovation and enhance their carbon performance 
levels [53, 54]. It also helps amplify the suppressive 
effect of environmental regulations on enterprise 
carbon emissions [51]. Therefore, public environmental 
concerns have a significant impact on manufacturing 
enterprises’ CEI.

Research Methods

NCA indicates the conditions necessary for the 
production of a specific result; without these conditions, 
the corresponding result cannot be achieved [55, 
56]. fsQCA posits that, in analyzing a particular 
outcome, the combination of multiple conditions jointly 
determines the occurrence of the result rather than 
a single factor acting in isolation [57, 58]. It excels 
in elucidating successful pathways under different 
combinations of conditions and assists researchers 
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analysis method proposed by Jiang et al. (2023) [55] 
and incorporates a machine learning analysis to 
compensate for the shortcomings of NCA and fsQCA. 
This approach reveals the variables that play a critical 
role in influencing outcomes, making it an effective 
complement to the NCA and fsQCA. 

The NCA identifies the necessity of antecedent 
conditions, assesses the effect size and statistical 
significance of these conditions, and determines the 
extent to which predictive antecedent conditions act as 
bottlenecks for the outcome variables [56]. However, the 
NCA does not provide an analysis of data sufficiency 
and does not offer detailed descriptions of the empirical 
cases. In contrast, fsQCA is suitable for analyzing 
complex causal relationships and interactions under 
multiple conditions. It explores how multiple concurrent 
causal relationships lead to the formation of complex 
social issues from a holistic perspective, explains 
complex real-world phenomena from a configurational 
perspective, and identifies antecedent conditions 
as necessary conditions for outcome variables [57].  
To analyze the necessary and sufficient causal 
relationships for CEI in manufacturing enterprises,  

in identifying the necessary and sufficient conditions 
within these combinations. Furthermore, it emphasizes 
the configuration of causal conditions, allowing for 
the equivalence of different pathways and rendering 
it suitable for analyzing complex phenomena and 
interdependent relationships [59]. In addition, machine 
learning, with its flexible model structure, can reveal 
complex nonlinear relationships between explanatory 
variables and outcomes rather than the net effects of 
individual variables [55]. Through measures of variable 
importance, machine learning methods facilitate the 
identification of explanatory variables that play a crucial 
role in predicting outcomes, providing researchers with 
indications of factors that warrant in-depth analysis. 
This approach is not only applicable to large datasets but 
also informs small-sample studies [60].

This study combines NCA, fsQCA, and machine 
learning algorithms for complementary analysis. 
NCA focuses on the necessity analysis of antecedents, 
whereas fsQCA focuses on the combination of sufficient 
conditions for antecedents. However, neither of these 
can rank the importance of the variables in the results. 
To solve this problem, this study draws on the mixed 

Fig. 1. Structural diagram of this study.
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we combined NCA and fsQCA. The NCA identifies the 
conditions necessary for the CEI, whereas the fsQCA 
examines the impact of these conditions under different 
combinations on the CEI. 

Subsequently, we used a tree-based ensemble 
learning method to predict the importance of the 
antecedent variables. This method predicts the target 
variable by constructing multiple decision trees and 
combining their results. It also excels at capturing 
complex nonlinear relationships and interactions [55]. 
We choose the random forest algorithm to identify 
the antecedent variables that are most important for 
predicting the CEI and use gradient-boosted decision 
trees for robustness checks. The integrated analytical 
approach used in this study provides a comprehensive 
perspective on complex causal relationships, and 
the complementarity of these methods enhances 
the understanding and predictive ability of complex 
phenomena. The technical routes used in this study are 
illustrated in Fig. 1.

Variable Measurement

For the CEI variable, the data come from the 2021 
and 2022 rankings of carbon emissions for China’s top 
100 listed companies published by Caijing magazine. 
We calculated the CEI of each listed company by using 
the ratio of annual carbon emissions to annual business 
income.

In terms of technological condition variables, this 
study constructs an indicator for enterprise digital 
transformation by analyzing the frequency of keywords 
related to digital transformation in the annual reports of 
publicly listed companies. Specifically, we referred to 
the study by Yang et al. (2023) [61]. Using Python web 
scraping technology, we systematically collected annual 
report information from the CNINFO website. We then 
performed word segmentation using Jieba, incorporating 
stop words and a custom dictionary, to count the 
frequencies of keywords related to artificial intelligence 

technology, big data technology, cloud computing 
technology, blockchain technology, and the application 
of digital technologies across the five dimensions.  
We measured the degree of enterprise digital 
transformation by adding one to the counted frequencies 
and taking the natural logarithm. For green technological 
innovation, we assessed the level of innovation by 
adding one to the number of green technology patent 
applications of listed companies and taking the natural 
logarithm [62].

In terms of organizational condition variables, for 
dual-carbon leadership, we utilized the dual-carbon 
leadership data of China’s top 100 listed companies 
published by Caijing magazine. This indicator identifies 
the various elements that enterprises need to have under 
the dual-carbon goals, including eight dimensions: 
strategic planning, management mechanisms, action 
plans, rules and regulations, support tools, assessment 
and constraints, brand promotion, and capacity building. 
Additionally, it incorporates recommendations from the 
Task Force on Climate-related Financial Disclosures 
(TCFD), including identifying, assessing, and managing 
climate risks and opportunities, integrating these 
requirements into the evaluation system, and assigning 
different weights to different dimensions. Ultimately, 
the dual-carbon leadership evaluation system for listed 
enterprises covers 10 key issues, 35 dimensions, and 
more than 120 sub-indicators, classifying dual-carbon 
leadership into excellent, very good, good, medium, 
and average levels. We converted these levels into 
corresponding numerical values ranging from 5 to 1, 
representing the levels from high to low. Additionally, 
for the financial redundancy variable, we used the 
enterprise financial ratio (the ratio of cash and cash 
equivalents to total assets). We measured an enterprise’s 
financial redundancy by subtracting the average 
financial ratio of the total sample [63].

Regarding environmental condition variables, for 
formal environmental regulatory pressure, this study 
employs the proportion of industrial pollution control 

Table 1. Sample descriptive statistics.

Variable Mean SD Max Min N Mean SD Max Min N

Year 2021 2022

CEI 7.092 6.494 25.72 1.630 40 6.912 5.988 22.82 1.160 40

DT 1.481 1.045 4.543 0.000 40 1.364 0.997 4.094 0.000 40

GTI 1.386 1.334 3.466 0.000 40 1.284 1.217 3.497 0.000 40

DCL 2.200 0.992 5.000 1.000 40 2.725 0.877 5.000 1.000 40

FR -0.030 0.054 0.143 -0.137 40 -0.038 0.048 0.097 -0.161 40

ERP 0.841 0.793 2.734 0.047 40 0.841 0.793 2.734 0.047 40

PEC 130.300 134.700 511.300 1.449 40 120.9 108.2 391.3 2.507 40

Note: CEI denotes carbon emission intensity; DT denotes digital transformation; GTI denotes green technology innovation; DCL 
denotes dual-carbon leadership; FR denotes financial redundancy; ERP denotes environmental regulatory pressure; PEC denotes 
public environmental concern. The abbreviations for the variables in the following tables have the same meanings as those in this table.
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investment in the secondary industry in the province 
where the listed company is registered as an indicator 
of the environmental regulatory pressure intensity faced 
by the enterprise [64]. To evaluate public environmental 
concerns, we used the Baidu search engine to conduct 
the keyword searches. We collected the average daily 
search volume for the terms “environmental pollution” 
and “smog” in various prefecture-level cities from 
2021 to 2022 as the measurement standard [51]. Table 1 
presents the descriptive statistics of the variables.

Data Calibration

Data calibration is the basis of the configurational 
analysis in QCA. In this study, the direct calibration 
method was utilized with a full membership set at 
95%, crossover point at 50%, and full non-membership 
at 5%, thus converting the original variable data into 
fuzzy membership values between 0 and 1 [58]. Table 2 
provides the details of the calibration data for each 
antecedent and outcome variable. To avoid samples with 
a fuzziness of 0.5 in the analysis, we follow standard 
practice and add a small constant (0.001) to each member 
with a fuzziness of 0.5 for configurational analysis, thus 
ensuring the accuracy of the QCA analysis [58].

Results and Discussion

Necessary Condition Analysis

In the necessity analysis, we combined NCA and 
fsQCA to identify the necessary conditions, as they 
employ different methods and criteria for calculating 
the necessary conditions. NCA analyzes the degree of 
necessity of conditions using quantitative methods, 
clearly indicating the importance of specific conditions at 
various levels for the outcome, whereas fsQCA employs 
qualitative methods to determine whether conditions are 
necessary without addressing the “quantitative” analysis 
of the degree of necessity of antecedent variables for the 

outcome. In other words, NCA focuses on quantitatively 
assessing the degree of influence of conditions, whereas 
fsQCA emphasizes the combination and existence of 
conditions. Therefore, the combined analytical approach 
of both methods can provide more concrete insights 
into the complex relationship between antecedent and 
outcome variables. 

First, we chose the NCA for the necessity analysis. 
NCA not only helps us identify which conditions are 
essential for a specific outcome but also reveals the 
minimum standards required for these conditions 
to produce the outcome [55, 56]. To apply NCA, we 
employed two analytical methods to assess effect 
sizes: ceiling regression (CR) and ceiling envelopment 
(CE). To determine whether antecedent conditions 
are necessary for the outcome, the effect size of these 
antecedent conditions must be greater than 0.1, and the 
p-value of the effect size must be less than 0.01 after 
Monte Carlo simulation permutation tests [56]. Table 3 
presents detailed results of the necessity analysis for 
each antecedent condition using the NCA method. The 
data in the table indicate that all the variables have 
effect sizes less than or equal to 0.1, and the p-values 
are not significant. This suggests that, in our study, these 
antecedent conditions are not necessary for the intensity 
of enterprise CEI. This finding provides an important 
direction for subsequent configurational analysis; 
specifically, we need to focus on the combinations and 
interactions between these conditions to gain a more 
comprehensive understanding of how they collectively 
impact enterprise CEI.

Next, to further understand the relationship between 
antecedent conditions and the outcomes of low or high 
CEI in enterprises, we conducted a necessity analysis 
using the fsQCA. In a necessity analysis, a condition 
is deemed necessary for an outcome if the consistency 
score between the condition and the outcome exceeds 
0.9 [59]. Table 4 presents the results of the necessity 
tests. The results indicate that the consistency score for 
each condition is below 0.9, suggesting that no single 
factor constitutes a necessary condition for enterprises 

Table 2. Fuzzy-set membership calibrations.

Variables

Calibrations

2021 2022

Fully out Crossover Fully in Fully out Crossover Fully in

CEI 18.783 3.660 2.287 17.837 3.800 2.175

DT 2.815 1.609 0.000 2.786 1.386 0.000

GTI 3.332 1.242 0.000 2.898 1.354 0.000

DCL 4.000 2.000 1.000 4.000 3.000 2.000

FR 0.047 -0.043 -0.111 0.027 -0.039 -0.115

ERP 2.734 0.540 0.048 2.734 0.540 0.048

PEC 511.337 95.406 13.605 391.317 101.132 15.693
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with either low or high CEI within the scope of this 
study. 

Configuration Analysis

After the necessity analysis, truth tables were 
constructed to assess the sufficiency of the various 
condition configurations. Pappas and Woodside (2021) 
[58] showed that the consistency level for sufficiency 
should not fall below 0.75, with the frequency threshold 
for cases set at 1 for small samples and greater than 1 for 
large samples. In our study, we established a frequency 
of 1 for the sample, set the original consistency of the 
configuration at 0.8, and fixed the consistency for the 
prime implicants at 0.75. Intermediate and parsimonious 
solutions have been integrated to report configurations 
[59]. The results for these configurations are presented 
in Table 5.

Configurational Analysis of Low CEI

Based on the results presented in Table 5, we 
observed that a total of 11 pathways with low CEI were 
identified for 2021 and 2022. The consistency of all 
pathways exceeded 0.800, indicating that these pathways 
were sufficient conditions for a low CEI. This further 
confirms that various factors and their configurations 
influence the reduction in corporate CEI. Notably, green 
technological innovation is a core condition in all ten 
configuration pathways for achieving a low CEI. These 
findings support the view of Lee et al. (2022) [47] that 
green technological innovation is a crucial driving force 
for low-carbon transformation. We classified the 11 
configuration pathways into five distinct modes of low 
CEI based on the distribution characteristics of the core 
conditions: technology-driven type, green technology 
innovation-led type, resource and public concern-
driven type, technology-organization-environment 

Table 3. Analysis results of NCA method necessary conditions.

Year Variable Ceilings Accuracy Ceiling zone Scope Effect size p-value

2021

DT
CR 100% 0.004 0.930 0.004 0.707

CE 100% 0.008 0.930 0.009 0.701

GTI
CR 100% 0.002 0.890 0.002 0.601

CE 100% 0.003 0.890 0.004 0.601

DCL
CR 100% 0.000 0.920 0.000 1.000

CE 100% 0.000 0.920 0.000 1.000

FR
CR 100% 0.004 0.960 0.004 0.938

CE 100% 0.007 0.960 0.007 0.934

ERP
CR 92.5% 0.088 0.880 0.100 0.070

CE 100% 0.077 0.880 0.087 0.033

PEC
CR 87.5% 0.052 0.900 0.058 0.373

CE 100% 0.031 0.900 0.034 0.319

2022

DT
CR 100% 0.003 0.920 0.003 0.669

CE 100% 0.005 0.920 0.006 0.669

GTI
CR 100% 0.000 0.900 0.000 1.000

CE 100% 0.000 0.900 0.000 1.000

DCL
CR 100% 0.008 0.970 0.008 0.823

CE 100% 0.015 0.970 0.016 0.788

FR
CR 100% 0.009 0.960 0.009 0.864

CE 100% 0.018 0.960 0.019 0.807

ERP
CR 100% 0.038 0.870 0.044 0.249

CE 100% 0.050 0.870 0.057 0.095

PEC
CR 100% 0.018 0.890 0.020 0.530

CE 100% 0.018 0.890 0.013 0.625
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collaborative type, and technology-environment-driven 
type. The detailed analysis is as follows.

Technology-driven type (C1a, C1b): Configuration 
C1a indicates that digital transformation and green 
technology innovation exist as core conditions, 
while dual-carbon leadership serves as a peripheral 
condition, and financial redundancy in the absence of 
peripheral condition. This suggests that enterprises 
can successfully achieve a low CEI through high levels 
of digital transformation and green technological 
innovation combined with appropriate dual-carbon 
leadership. Configuration C1b shows that high digital 
transformation and green technological innovation 
exist as core conditions, with financial redundancy as 
a peripheral condition, and environmental regulation 
and public environmental concern in the absence of 
peripheral conditions. In this configuration, enterprises 

can achieve a low CEI. Compared to Configuration 
C1a, Configuration C1b indicates that when green 
technological innovation and digitalization reach 
high standards, financial redundancy and dual-carbon 
leadership are interchangeable in the process of 
achieving a low CEI in the technology-driven type. The 
technology-driven model underscores the importance 
of enterprises achieving a low CEI through their own 
digital transformation, green technological innovation, 
high dual-carbon leadership, and strong financial 
support in the absence of external environmental 
pressures. This configuration path highlights the 
indispensability of green technological innovation and 
digital transformation for proactive implementation of 
low-carbon emissions by enterprises.

Green technology innovation-led (C2a, C2b): 
Configuration C2a indicates that high green technology 

Table 4. Consistency and Coverage of Individual Condition Variables.

Year Variables
Low CEI

Variables
High CEI

Consistency Coverage Consistency Coverage

2021

DT 0.655 0.731 DT 0.523 0.512

dt 0.563 0.574 dt 0.725 0.648

GTI 0.719 0.814 GTI 0.389 0.386

gti 0.458 0.461 gti 0.812 0.716

DCL 0.661 0.696 DCL 0.631 0.582

dcl 0.604 0.651 dcl 0.671 0.634

FR 0.795 0.748 FR 0.599 0.493

fr 0.461 0.567 fr 0.694 0.748

ERP 0.502 0.576 ERP 0.739 0.743

erp 0.776 0.772 erp 0.578 0.504

PEC 0.553 0.725 PEC 0.511 0.588

pec 0.686 0.615 pec 0.761 0.598

2022

DT 0.649 0.683 DT 0.582 0.566

dt 0.588 0.603 dt 0.674 0.639

GTI 0.681 0.761 GTI 0.417 0.430

gti 0.490 0.477 gti 0.768 0.690

DCL 0.457 0.630 DCL 0.495 0.631

dcl 0.733 0.611 dcl 0.710 0.547

FR 0.683 0.688 FR 0.670 0.624

fr 0.627 0.673 fr 0.665 0.659

ERP 0.542 0.607 ERP 0.697 0.720

erp 0.750 0.373 erp 0.619 0.555

PEC 0.568 0.712 PEC 0.482 0.559

pec 0.648 0.576 pec 0.752 0.616

Note: Uppercase letters indicate the presence of condition variables; lowercase letters indicate their absence.
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innovation serves as a core condition, whereas digital 
transformation and financial redundancy are absent 
as peripheral conditions. Even when dual-carbon 
leadership and environmental regulations are missing 
core conditions, a low CEI can still be achieved. 
Similarly, Configuration C2b shows that high green 
technology innovation is a core condition, with digital 
transformation, environmental regulation, and public 
environmental concern absent as peripheral conditions. 
When dual-carbon leadership and financial redundancy 
are missing as core conditions, manufacturing 
enterprises can achieve a relatively low CEI. The 
green technology innovation-led model suggests that 
green technology innovation plays a leading role in 
driving low-carbon transformation and maintaining 
effective carbon reduction even in the absence of 
various conditions. This indicates that green technology 
innovation has a sufficient driving force to compensate 
for the lack of other conditions.

Resource and public concern-driven type (C3): 
Configuration C3 indicates that high dual-carbon 
leadership, high financial redundancy, and strong public 
environmental concerns serve as core conditions, while 
digital transformation acts as a peripheral condition. 
Even when environmental regulation is absent as a 
peripheral condition, enterprises can successfully 
achieve low carbon emissions. The resource and 
public concern-driven model suggests that dual-carbon 
leadership, as an enterprise’s capability and strategy for 
setting and implementing dual-carbon goals combined 
with substantial financial support and external public 
environmental concern, incentivizes enterprises to adopt 
proactive environmental protection measures. Digital 
transformation as a peripheral condition further supports 
enterprises in optimizing resource management, thereby 
promoting the achievement of a low CEI.

Technology-organization-environment collaborative 
type (C4, C5a, C5b): Configuration C4 indicates that 
with high levels of green technology innovation, high 
financial redundancy, and strong public environmental 
concern as core conditions, the presence of 
environmental regulation as a peripheral condition, and 
the absence of digital transformation as a peripheral 
condition, enterprises can still successfully achieve  
a low CEI. Configuration C5a shows that when 
enterprises have high levels of green technology 
innovation, high dual-carbon leadership, substantial 
financial resources, and strong public environmental 
concerns as core conditions, with digital transformation 
absence as a peripheral condition, manufacturing 
enterprises can still achieve a low CEI. Configuration 
C5b, similar to C5a, also emphasizes the importance 
of high levels of green technology innovation, high 
dual-carbon leadership, substantial financial resources, 
and high environmental concern as core conditions. 
The technological, organizational, and environmental 
synergy models reflect the interdependence and 
synergistic effects of technological, organizational, and 
environmental factors in achieving a low CEI within 

enterprises. Green technology innovation and dual-
carbon leadership are core drivers, while financial 
resources and public environmental concerns provide 
support and incentives. Even when certain peripheral 
conditions are absent, enterprises can successfully 
achieve a low CEI, as long as the core conditions are 
met. This underscores the importance of the synergistic 
action of multiple factors in achieving a low CEI.

Technology-environment-driven type (C6a, C6b, 
C7): Configuration C6a indicates that with high levels 
of digital transformation, high green technology 
innovation, and strong public environmental concern 
existing as the core conditions and dual-carbon 
leadership existing as a peripheral condition, even 
in the absence of environmental regulation as a core 
condition, enterprises can still achieve a low CEI. 
Configuration C6b shows that with high levels of digital 
transformation, high green technology innovation, 
and strong public environmental concern existing as 
core conditions and financial redundancy existing as a 
peripheral condition, while environmental regulation is 
absent as a core condition, enterprises can still establish 
pathways to drive a low CEI. These two configurations 
suggest that enterprises can create effective low-
carbon emission pathways by leveraging digital tools 
and innovations in green technology, combined with 
public environmental awareness and support. Despite 
the lack of environmental regulations, enterprises can 
achieve low-carbon goals by enhancing their internal 
management efficiency and innovative practices. 
Comparing configurations C6a and C6b, we observe that 
financial redundancy and dual-carbon leadership are 
interchangeable in these technological and environmental 
driving models, respectively. Configuration C7 indicates 
that when digital transformation is absent as a core 
condition, but high green technology innovation and 
environmental regulation are present as core conditions 
and financial redundancy exists as a peripheral 
condition, enterprises can still form pathways to drive 
low CEI in the absence of dual-carbon leadership 
and public environmental concerns. This pathway 
demonstrates the core role of green technology and 
environmental policies in achieving low-carbon 
goals. The technological and environmental drive 
model highlights that manufacturing enterprises with 
strong digital transformation and green technological 
innovation capabilities can adopt various strategies to 
achieve a low CEI under moderate external incentives 
and regulations.

To analyze whether these configurations evolve 
over time, we conducted an evolutionary analysis of the 
configurations that lead to a low CEI. A comparison 
of all the low CEI configurations in Table 5 between 
2021 and 2022 reveals several significant trends. First, 
the green technology innovation-led (C2a and C2b) 
demonstrate stability over time, with configurations 
C2a appearing in 2021 and C2b in 2022. Second, the 
technology-driven pathways (C1a and C1b) gradually 
evolved into technology-environment-driven types 
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(C6a and C6b), reflecting the growing public attention 
to carbon emission issues. Finally, the technology-
organization-environment collaborative type (C5a and 
C5b) showed stability and maintained consistency over 
time.

Configuration Analysis of High CEI

Comparing the results in Table 5, we can see that 
among the various configurational pathways leading to 
high CEI, informal environmental regulation (public 
environmental issues) appears as a core condition in 
multiple configurational pathways (C8a, C8b, C10), while 
green technology innovation is absent as a core condition 
(C8a, C8b, C9, C10). This implies that the absence of 
green technology innovation in enterprises may lead 
to a high CEI, and a high CEI will arouse more public 
environmental concern. These regulations and oversight 
are particularly pronounced when enterprises exhibit 
a high CEI. From the information in Table 5, we find 
that in 2021 and 2022, there are four driving pathways 
leading to a high CEI, all of which have consistency 
greater than 0.800. These four pathways were sufficient 
to form a high CEI. Based on the distribution of core 
conditions in these pathways, we categorized them 
into three high CEI patterns: technology capability-
constrained type, technology environment-lacking 
type, and green technology innovation-deficient type.  
The detailed analysis is as follows.

Technology capability-constrained type (C8a, C8b): 
These two configuration pathways indicate that, even 
with strong public environmental concern as a core 
driving force, the absence of core conditions, such as 
enterprise digital transformation and technological 
innovation, along with the lack of peripheral conditions, 
such as dual-carbon leadership or financial redundancy, 
results in a high CEI. This configuration indicates that 
high CEI has drawn significant public attention to the 
issue of carbon emissions. However, in the absence 
of necessary technological capabilities and resource 
support, companies struggle to address this challenge 
effectively, resulting in the persistence of high CEI 
levels. In this context, companies face the dual 
challenges of environmental pressure and limitations 
in technological resources, hindering their ability to 
reduce carbon emissions rapidly. Failing to meet public 
expectations may result in reputational damage.

Technology environment-lacking type (C9): This 
configuration pathway indicates that when high dual-
carbon leadership is present as a core condition, with 
digital transformation and environmental regulation 
as supporting conditions, and the absence of green 
technology innovation and public environmental 
concern as core conditions, enterprises face the risk 
of a high CEI. This pathway suggests that a lack of 
green technology leads to a technological innovation 
lag, failing to reduce carbon emissions effectively. 
Additionally, the absence of external pressure to drive 
environmental actions limits an enterprise’s adaptability 

to policy requirements, ultimately impairing its long-
term competitiveness and sustainable development 
capabilities.

Green technology innovation-deficient type (C10): 
This configuration pathway indicates that when high 
financial redundancy, strict environmental regulations, 
and high public environmental concern are present 
as core conditions with dual-carbon leadership as a 
peripheral condition, the absence of green technology 
innovation as a core element, along with the lack of 
digital transformation as a peripheral condition, still 
results in a high CEI. This pathway suggests that 
the lack of green technology innovation restricts the 
application and development of low-carbon technologies, 
and the absence of digital transformation prevents 
the optimization of production processes and energy 
management. Although financial resources, external 
policies, and public pressure provide impetus, the lack 
of technological means makes it difficult for enterprises 
to achieve effective carbon reduction.

Robustness Test

This study tested the robustness of the results by 
adjusting the consistency criteria. First, the consistency 
threshold was raised from 0.80 to 0.85, and second, the 
PRI value was increased from 0.75 to 0.8, with specific 
results shown in Table 6. Table 6 indicates that the single 
and overall consistencies of both antecedent variables 
were above 0.9. One pathway from 2021 was reduced 
in the low CEI pathway, whereas the others remained 
consistent. However, 2022 saw significant changes, 
retaining only one pathway, with the new pathway 
C5 similar to pathway C6a from the original Table 5, 
indicating a shift in one of the core conditions [65]. 
Regarding the high CEI pathways, the 2021 pathways 
are very similar, while those from 2022 show some 
similarities, meaning that most core conditions remain 
stable, although other core and peripheral conditions 
have changed [65]. Overall, the results were considered 
reliable.

Importance Analysis of Influencing Factors

This study utilizes random forest and gradient 
boosting decision tree algorithms to rank the importance 
of the influencing factors. Random forest and gradient 
boosting decision tree algorithms are widely recognized 
as versatile methods capable of generating rankings 
for variable importance [60]. Unlike the fsQCA 
method, which identifies multiple pathways to low CEI, 
machine learning methods aim to build an optimal 
predictive model based on multiple influencing factors 
to determine the outcomes [55]. Considering the sample 
size requirements of machine learning, we used data 
from 2021 and 2022 as training samples and optimized 
the model parameters using a grid search while 
employing 10-fold cross-validation to reduce model bias. 
Using six antecedents from the TOE framework as input 
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variables, we constructed predictive models for CEI 
using random forest and gradient-boosting decision tree 
regressions. Fig. 2 displays the results of the random 
forest algorithm, and Fig. 3 presents the results of the 
gradient boosting decision tree. Both machine learning 
algorithms indicate that, compared to other influencing 
factors, green technology innovation has the highest 
importance for enterprise CEI. This result corresponds 
with the fsQCA analysis, which also identifies green 
technology innovation as a core condition appearing 
in multiple configurational pathways. Although dual-
carbon leadership has the lowest relative importance, it 
still plays a significant role in configurational pathways. 
All six elements contribute to reducing enterprises’ CEI.

Conclusions

This study aimed to reveal the multifaceted drivers 

of CEI in manufacturing enterprises. Our findings 
suggest that no single factor is sufficiently deterministic 
to achieve a low CEI, as indicated by the NCA and 
fsQCA necessity conditions. Furthermore, fsQCA 
reveals that reductions in CEI stem from the complex 
interplay and synergistic coordination among the 
technological, organizational, and environmental 
dimensions. We identified 11 configurational 
pathways leading to a low CEI, with green technology 
innovation playing a pivotal role in ten of these 
pathways. These pathways were classified into five 
categories based on their core conditions: technology-
driven type, green technology innovation-led type, 
resource and public concern-driven type, technology-
organization-environment collaborative type, and 
technology-environment-driven type. Conversely, 
four configurational pathways were associated with  
a high CEI. Public environmental concern emerges  
as a core condition in three of these pathways, 

Fig. 3. Importance of gradient boosting decision tree algorithm.

Fig. 2. Importance of random forest algorithm.
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whereas the absence of green technology innovation 
correlates with an increased CEI. We categorized these 
configurational pathways as technological capability 
constraints, technological and environmental absence, 
and green technology innovation absence patterns. 
Machine learning algorithms further corroborate the 
preeminent role of green technology innovation in 
diminishing CEI within the sector, underscoring its 
relative importance compared with other factors.

Theoretical and Management Implications

Our study makes three main theoretical contributions. 
First, we provide a more comprehensive and detailed 
pathway for reducing the CEI of manufacturing 
enterprises. Previous studies have mostly focused 
on individual factors, such as the impact of digital 
transformation [2, 9, 15, 31, 66, 67], green technological 
innovation [30, 32, 33, 36, 68, 69], and environmental 
regulations [37, 39, 70] on corporate carbon emissions. 
However, carbon emissions in enterprises represent  
a complex system that is subject to multiple constraints, 
such as technological capabilities, organizational 
resources, and external environments [18]. Based 
on the existing literature and the TOE framework, 
we shifted from a single-perspective approach to  
a systemic perspective by collecting longitudinal carbon 
emission data from manufacturing enterprises listed 
on the Chinese stock market. From the technological, 
organizational, and environmental dimensions, we 
identified the synergistic effects among different factors, 
emphasizing the impact of multifactor combinations  
on the CEI. This study addressed the limitations of 
previous research [71], which primarily focused on 
single factors.

Second, our findings enrich the literature on 
carbon emissions from manufacturing enterprises. 
Specifically, published literature [20] pointed out that 
the CEI of manufacturing enterprises is closely related 
to green technological advancements, organizational 
strategic support, and the regulatory role of the policy 
environment. However, they did not consider the 
significant impact of digital transformation and dual-
carbon leadership on manufacturing enterprises’ carbon 
emissions. Furthermore, in our configuration path 
analysis, we incorporated temporal effects to provide 
enterprises with dynamic strategies for reducing 
emissions. More importantly, against the backdrop of 
carbon neutrality goals, we were the first to investigate 
the effect of dual-carbon leadership on carbon emissions, 
offering a new perspective for the development of the 
literature on dual-carbon leadership in carbon emission 
studies.

Third, by integrating NCA, fsQCA, and machine 
learning, we provide a more abundant method to 
supplement the existing research literature on enterprise 
carbon emissions. The conclusions of these three 
methods can be mutually verified, which not only 
improves the accuracy and reliability of the research 

conclusions but also provides a multidimensional 
perspective for the study of the CEI. This enables 
researchers to make comprehensive use of different 
analytical tools when exploring complex phenomena, 
responding to the recent call for multi-method research 
on corporate carbon emissions [18], and promoting the 
trend of widespread adoption of multi-method research 
in this field.

Limitations and Future Research Directions

Our study had some limitations. First, from  
a theoretical perspective, although the study employs 
the TOE framework to investigate the technological, 
organizational, and environmental determinants 
of enterprise CEI, it could benefit from a deeper 
exploration of additional factors to expand this 
theoretical framework. Second, regarding the research 
subjects, this study’s case samples were manufacturing 
enterprises from China’s carbon emissions rankings, 
and the conclusions may only apply to manufacturing 
enterprises’ carbon emissions issues. According to 
China’s carbon emission ranking, the electricity sector 
is the largest emitter. Future research could explore the 
pathways that drive carbon emissions in the electricity 
sector. Finally, future studies could employ dynamic 
qualitative comparative analysis to uncover the intricate 
and evolving causal relationships between different 
antecedents, their configurations, and manufacturing 
enterprises’ CEI.

Acknowledgments

This study was supported by the Chinese Social 
Science Foundation of China (NO. 22BH153), the 
Humanities and Social Sciences Planning Project 
of the Ministry of Education (No. 23YJA630024), 
the Natural Science Foundation of Chongqing (No. 
CSTB2024NSCQ-MSX0404), and Research and 
Innovation Program for Graduate Students in Chongqing 
(No. 2023B008), and the Chongqing Intelligent Supply 
Chain Engineering and Technology Research Center 
(No. OFCISCETRC23201).

Conflict of Interest

The authors declare that they have no conflicts of 
interest.

References

1.	 ZHOU J., LIU W. Carbon reduction effects of digital 
technology transformation: evidence from the listed 
manufacturing firms in china. Technological Forecasting 
and Social Change. 198,122999, 2024.

2.	 LIU Y., ZHANG X., SHEN Y. Technology-driven carbon 
reduction: Analyzing the impact of digital technology  



Tao Wang, et al.16

on China’s carbon emission and its mechanism. 
Technological Forecasting and Social Change. 200, 
123124, 2024.

3.	 LIU D., FENG M., LIU Y., WANG L., HU J., WANG 
G., ZHANG J. A tripartite evolutionary game study  
of low-carbon innovation system from the perspective of 
dynamic subsidies and taxes. Journal of Environmental 
Management. 356, 120651, 2024.

4.	 BJØRN A., TILSTED J.P., ADDAS A., LLOYD S.M. 
Can science-based targets make the private sector paris-
aligned? A review of the emerging evidence. Current 
Climate Change Reports. 8 (2), 53, 2022.

5.	 DIETZ S., GARDINER D., JAHN V., NOELS J. How 
ambitious are oil and gas companies’ climate goals? 
Science. 374 (6566), 405, 2021.

6.	 CHEVROLLIER N., VAN LIESHOUT J.W.F.C., 
ARGYROU A., AMELINK J. Carbon emission reduction: 
understanding the micro-foundations of dynamic 
capabilities in companies with a strategic orientation for 
sustainability performance. Business Strategy and the 
Environment. 33 (2), 968, 2024.

7.	 LI K., WU T., ZHANG P., LIAN Y., ZHOU C., XIANG Y. 
Can institutional pressures serve as an efficacious catalyst 
for mitigating corporate carbon emissions? Environmental 
Science and Pollution Research. 31 (14), 21380, 2024.

8.	 YU F., MAO J., JIANG Q. Accumulate thickly to 
grow thinly: the u-shaped relationship between digital 
transformation and corporate carbon performance. 
Environment, Development and Sustainability. 2023.

9.	 ZHANG C., FANG J., GE S., SUN G. Research on the 
impact of enterprise digital transformation on carbon 
emissions in the manufacturing industry. International 
Review of Economics & Finance. 92, 211, 2024.

10.	 ZHENG D., SONG H., ZHAO C., LIU Y., ZHAO W. Is 
it possible for semiconductor companies to reduce carbon 
emissions through digital transformation? Evidence from 
china. Journal of Production Economics. 272, 109246, 
2024.

11.	 FERNANDO Y., ROZUAR N.H.M., MERGERESA F.  
The blockchain-enabled technology and carbon 
performance: insights from early adopters. Technology in 
Society. 64, 101507, 2021.

12.	CHEN P. Corporate social responsibility, financing 
constraints, and corporate carbon intensity: new evidence 
from listed chinese companies. Environmental Science 
and Pollution Research. 30 (14), 40107, 2023.

13.	 GAO W., WEN S., LI H., LYU X. Executives’ carbon 
cognition and corporate carbon performance: the 
mediating role of corporate low-carbon actions and the 
moderating role of firm size. Heliyon. 10 (1), e23959, 2024.

14.	 WANG Y. Can the green credit policy reduce carbon 
emission intensity of “high-polluting and high-energy-
consuming” enterprises? Insight from a quasi-natural 
experiment in china. Global Finance Journal. 58, 100885, 
2023.

15.	 SHANG Y., RAZA S.A., HUO Z., SHAHZAD U., ZHAO 
X. Does enterprise digital transformation contribute to the 
carbon emission reduction? Micro-level evidence from 
china. International Review of Economics & Finance. 86, 
1, 2023.

16.	 DENG F., CAI L., MA X. Does digital transformation 
restrict the carbon emission intensity of enterprises? 
Evidence from listed manufacturing enterprises in china. 
Natural Resources Forum. 48 (2), 364, 2024.

17.	 XU L., JIA F., LIN X., CHEN L. The role of technology 
in supply chain decarbonisation: towards an integrated 

conceptual framework. Supply Chain Management:  
An International Journal. 28 (4), 803, 2023.

18.	 WANG S., ZHANG X., PENG J., TAN Y., FAN Z. 
Providing solutions for carbon emission reduction using 
the toe framework. Expert Systems with Applications. 
255, 124547, 2024.

19.	 HUANG R., ZHU Z., LIN J. Pathway for the low-carbon 
consumption pattern transition of residents in six eastern 
coastal provinces of china: using fuzzy-set qualitative 
comparative analysis with panel data. Environmental 
Science and Pollution Research. 30 (13), 37263, 2023.

20.	LI X., RUAN T., HOU K., QU R. The configuring 
pathways of green technology advance, organizational 
strategy and policy environment for realizing low-carbon 
manufacturing from the perspective of simmelian tie:  
a qualitative comparative analysis of listed companies in 
china. Journal of Cleaner Production. 382, 135149, 2023.

21.	 DEPIETRO R., WIARDA E., FLEISCHER M. The context 
for change: organization, technology and environment. 
The Processes of Technological Innovation. 199 (0), 151, 
1990.

22.	AWA H.O., OJIABO O.U., OROKOR L.E. Integrated 
technology-organization-environment (t-o-e) taxonomies 
for technology adoption. Journal of Enterprise Information 
Management. 30, 6, 893, 2017.

23.	SUN Y., TAN C., LIM K.H., LIANG T., YEH Y. Strategic 
contexts, strategic orientations and organisational 
technology adoption: a configurational approach. 
Information Systems Journal. 2024.

24.	XING X., CHEN T., YANG X., LIU T. Digital 
transformation and innovation performance of china’s 
manufacturers? A configurational approach. Technology in 
Society. 75, 102356, 2023.

25.	TANG X., ZHANG W., LIN W., LAO H. Low-carbon 
sustainable development of China’s manufacturing 
industries based on development model change. Science of 
The Total Environment. 737, 140397, 2020.

26.	LOPES D., VZAQUEZ-BRUST D., CHIAPPETTA J., 
ANDRIANI R. The interplay between stakeholders, 
resources and capabilities in climate change strategy: 
converting barriers into cooperation. Business Strategy 
and the Environment. 29 (3), 1362, 2020.

27.	 WANKE P., JABBOUR C., MOREIRA J., LOPES D., 
ROUBAUD D., SOBREIRO V., SANTIBANEZ E. An 
original information entropy-based quantitative evaluation 
model for low-carbon operations in an emerging market. 
International Journal of Production Economics. 234, 
108061, 2021.

28.	SU X., DING S. Research on the configuration paths of 
low-carbon transformation of heavily polluting enterprises. 
Sustainability. 16, 5826, 2024.

29.	 MIN Q., ZHU R., PENG L. Pathways to improving 
carbon emission efficiency in provinces: a comparative 
qualitative analysis based on the technology-organization-
environment framework. Heliyon. 10 (3), e25132, 2024.

30.	SHAO X., ZHONG Y., LIU W., LI R.Y.M. Modeling the 
effect of green technology innovation and renewable 
energy on carbon neutrality in n-11 countries? Evidence 
from advance panel estimations. Journal of Environmental 
Management. 296, 113189, 2021.

31.	 CHEN J., GUO Z., LEI Z. Research on the mechanisms of 
the digital transformation of manufacturing enterprises for 
carbon emissions reduction. Journal of Cleaner Production. 
449, 141817, 2024.

32.	MIAO C., CHEN Z., ZHANG A. Green technology 
innovation and carbon emission efficiency: the moderating 



17Achieving Low-Carbon Goals: Analysis...

role of environmental uncertainty. Science of The Total 
Environment. 938, 173551, 2024.

33.	 LYU H., MA C., ARASH F. Government innovation 
subsidies, green technology innovation and carbon 
intensity of industrial firms. Journal of Environmental 
Management. 369, 122274, 2024.

34.	TEIRLINCK P. Engaging in new and more research-
oriented r&d projects: interplay between level of new 
slack, business strategy and slack absorption. Journal of 
Business Research. 120, 181, 2020.

35.	 SHEN Q., PAN Y., FENG Y. Identifying and assessing 
the multiple effects of informal environmental regulation 
on carbon emissions in china. Environmental Impact 
Assessment Review. 237, 116931, 2023.

36.	CHEN H., YI J., CHEN A., PENG D., YANG J. Green 
technology innovation and co2 emission in china: evidence 
from a spatial-temporal analysis and a nonlinear spatial 
durbin model. Energy Policy. 172, 113338, 2023.

37.	 PAN T., ZHANG J., WANG Y., SHANG Y.P. The impact 
of environmental regulations on carbon emissions of 
chinese enterprises and their resource heterogeneity. 
Sustainability. 16 (3), 2024.

38.	ZHANG S., CHENG L., REN Y., YAO Y. Effects of 
carbon emission trading system on corporate green total 
factor productivity: does environmental regulation play 
a role of green blessing? Environmental Research. 248, 
118295, 2024.

39.	 ZHAO L., ZHANG L., SUN J., HE P. Can public 
participation constraints promote green technological 
innovation of chinese enterprises? The moderating role 
of government environmental regulatory enforcement. 
Technological Forecasting and Social Change. 174, 121198, 
2022.

40.	ZHANG A., TAY H.L., ALVI M.F., WANG J.X., GONG 
Y. Carbon neutrality drivers and implications for firm 
performance and supply chain management. Business 
Strategy and the Environment. 32 (4), 1966, 2023.

41.	 MOYER J.D., HUGHES B.B. Icts: do they contribute to 
increased carbon emissions? Technological Forecasting 
and Social Change. 79 (5), 919, 2012.

42.	GAO J., FENG Q., GUAN T., ZHANG W. Unlocking 
paths for transforming green technological innovation 
in manufacturing industries. Journal of Innovation & 
Knowledge. 8 (3), 100394, 2023.

43.	 SHAN S., GENÇ S.Y., KAMRAN H.W., DINCA G. Role 
of green technology innovation and renewable energy  
in carbon neutrality: a sustainable investigation from 
turkey. Journal of Environmental Management. 294, 
113004, 2021.

44.	XU L., FAN M., YANG L., SHAO S. Heterogeneous green 
innovations and carbon emission performance: evidence at 
china’s city level. Energy Economics. 99, 105269, 2021.

45.	 DU K., LI J. Towards a green world: how do green 
technology innovations affect total-factor carbon 
productivity. Energy Policy. 131, 240, 2019.

46.	DABBOUS A., AOUN BARAKAT K., TARHINI A. 
Digitalization, crowdfunding, eco-innovation and financial 
development for sustainability transitions and sustainable 
competitiveness: insights from complexity theory. Journal 
of Innovation & Knowledge. 9 (1), 100460, 2024.

47.	 LEE C., QIN S., LI Y. Does industrial robot application 
promote green technology innovation in the manufacturing 
industry? Technological Forecasting and Social Change. 
183, 121893, 2022.

48.	LUNGEANU R., STERN I., ZAJAC E.J. When do firms 
change technology-sourcing vehicles? The role of poor 

innovative performance and financial slack. Strategic 
Management Journal. 37 (5), 855, 2016.

49.	 HE L., GAN S., ZHONG T. The impact of financial 
redundancy on corporate social responsibility 
performance: evidence from chinese listed firms. Frontiers 
in Psychology. 13, 882731, 2022.

50.	DU W., LI M. Assessing the impact of environmental 
regulation on pollution abatement and collaborative 
emissions reduction: micro-evidence from chinese 
industrial enterprises. Environmental Impact Assessment 
Review. 82, 106382, 2020.

51.	 WANG Y., ZHAO Z., SHI M., LIU J., TAN Z. Public 
environmental concern, government environmental 
regulation and urban carbon emission reduction – 
analyzing the regulating role of green finance and industrial 
agglomeration. Science of The Total Environment. 924, 
171549, 2024.

52.	DU W., LI M., FAN Y., LIANG S. Can public 
environmental concern inhibit the market entry of 
polluting firms: micro evidence from China. Ecological 
Indicators. 154, 110528, 2023.

53.	 WANG J., WU H., LIU Y., WANG W. Corporate green 
technology innovation under external pressure: a public 
and media perspective. Journal of Environmental Planning 
and Management. 2024.

54.	REN X., REN Y. Public environmental concern and 
corporate esg performance. Finance Research Letters. 61, 
104991, 2024.

55.	 JIANG Y., FENG T., HUANG Y. Antecedent configurations 
toward supply chain resilience: the joint impact of supply 
chain integration and big data analytics capability. Journal 
of Operations Management. 70 (2), 257, 2024.

56.	DUL J. Necessary condition analysis (nca): logic and 
methodology of “necessary but not sufficient” causality. 
Organizational Research Methods. 19 (1), 10, 2016.

57.	 FISS P.C. A set-theoretic approach to organizational 
configurations. Academy of management review. 32 (4), 
1180, 2007.

58.	PAPPAS I.O., WOODSIDE A.G. Fuzzy-set qualitative 
comparative analysis (fsqca): guidelines for research 
practice in information systems and marketing. 
International Journal of Information Management. 58, 
102310, 2021.

59.	 FAINSHMIDT S., WITT M.A., AGUILERA R.V., 
VERBEKE A. The contributions of qualitative comparative 
analysis (qca) to international business research. Journal of 
International Business Studies. 51 (4), 455, 2020.

60.	CHOUDHURY P., ALLEN R.T., ENDRES M.G. Machine 
learning for pattern discovery in management research. 
Strategic Management Journal. 42 (1), 30, 2021.

61.	 YANG G., NIE Y., LI H., WANG H. Digital transformation 
and low-carbon technology innovation in manufacturing 
firms: the mediating role of dynamic capabilities. 
International Journal of Production Economics. 263, 
108969, 2023.

62.	HUANG L., WANG C., CHIN T., HUANG J., CHENG X. 
Technological knowledge coupling and green innovation 
in manufacturing firms: moderating roles of mimetic 
pressure and environmental identity. International Journal 
of Production Economics, 248, 108482, 2022.

63.	VANACKER T., COLLEWAERT V., ZAHRA S.A. Slack 
resources, firm performance, and the institutional context: 
evidence from privately held european firms. Strategic 
Management Journal. 38 (6), 1305, 2017.

64.	JIANG Y., GUO Y., BASHIR M.F., SHAHBAZ M. Do 
renewable energy, environmental regulations and green 



Tao Wang, et al.18

innovation matter for china’s zero carbon transition: 
evidence from green total factor productivity. Journal of 
Environmental Management. 352, 120030, 2024.

65.	 YUAN Y., CHU Z., SONG D., LAI F. Understanding 
the effects of different responses to supplier-induced 
disruptions: a configurational approach. International 
Journal of Production Economics. 270, 109177, 2024.

66.	LI Z., BAI T., QIAN J., WU H. The digital revolution’s 
environmental paradox: Exploring the synergistic 
effects of pollution and carbon reduction via industrial 
metamorphosis and displacement. Technological 
Forecasting and Social Change. 206, 123528, 2024.

67.	 HU J. Synergistic effect of pollution reduction and carbon 
emission mitigation in the digital economy. Journal of 
Environmental Management. 337, 117755, 2023.

68.	SHEN Y., YANG Z., ZHANG X. Impact of digital 
technology on carbon emissions: Evidence from Chinese 

cities. Frontiers in Ecology and Evolution. 11, 1166376, 
2023.

69.	 SHEN Y., ZHANG X. Towards a low-carbon and beautiful 
world: assessing the impact of digital technology on 
the common benefits of pollution reduction and carbon 
reduction. Environmental Monitoring and Assessment. 
196, 695, 2024.

70.	GUO X., YANG J., SHEN Y., ZHANG X. Impact on green 
finance and environmental regulation on carbon emissions: 
evidence from China. Frontiers in Environmental Science. 
12, 1307313, 2024.

71.	 YANG Z., SHEN Y. The impact of intelligent 
manufacturing on industrial green total factor productivity 
and its multiple mechanisms. Frontiers in Environmental 
Science. 10, 1058664, 2023. 


