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Abstract

The study of the spatial and temporal evolution of annual mean PM2.5 concentration and population 
exposure risk in Hunan Province can further analyze the influence of the landscape pattern index on 
the changes in annual mean PM2.5 concentration and population exposure risk. The spatial and temporal 
evolution of the coupling relationship between people, air, and land at a fine scale and its spatial 
heterogeneity were investigated by the population exposure risk model, the moving window method, 
the spatial auto correlation model, and correlation analysis. The results show that: (1) from 2000 to 
2020, the annual average PM2.5 concentration in Hunan Province showed a slow increase and then a 
significant decrease, and its spatial distribution was high in the northeast and low in the southwest. 
(2) From 2000 to 2016, the average proportion of the population exposed to high annual average PM2.5 
concentrations (>45 μg/m3) in Hunan Province reached 74.24%, and from 2016 to 2020, the proportion 
of the population exposed to low annual average PM2.5 concentrations (<35 μg/m3) increased year by 
year. In 2020, there were regions with annual average concentrations of 15-25 μg/m3, and the regional 
concentrations were all less than 45 μg/m3. The spatial distribution is dominated by low-risk areas, with 
an overall scattered distribution, and high-risk areas are concentrated in the Chang - Zhu - Tan urban 
agglomeration. (3) Cultivated land and forested land, as the main land types, have relatively obvious 
characteristics of changes in dynamics and attitudes; water bodies and impervious surfaces are second; 
cultivated land has a high degree of patch aggregation, high edge density and low fragmentation, which 
increases the risk of annual average PM2.5 concentration and population exposure; forested land has 
a high degree of patch aggregation, low edge density and low fragmentation, which is conducive to 
reducing the risk of annual average PM2.5 concentration and population exposure; and water bodies 
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Introduction

Accompanied by the acceleration of urbanization, 
the problem of air pollution has become increasingly 
prominent [1, 2]. Population expansion, urban 
infrastructure construction, and industrial development 
have led to increased emissions of pollutant gases and 
rising pressure on the ecological environment. The 
contradiction between the people's growing demand for 
a beautiful ecological environment and the continuous 
deterioration of the ecological environment is prominent 
[3]. Urban and regional air pollution, represented by 
fine particulate matter (PM2.5), not only poses a great 
threat to public health but also damages the ecological 
environment, thus hindering the sustainable development 
of cities [4]. Therefore, it is important to study the 
temporal dynamic pattern of PM2.5 concentration in 
different regions, its spatial pattern distribution, and 
its interrelationship with various influencing factors in 
order to control air pollution, optimize the construction 
of the ecological environment, improve the human 
habitat, and build a healthy city.

At present, the study of the spatial and temporal 
distribution pattern of PM2.5 concentration and 
the exploration of its formation mechanism and 
influencing factors is one of the hotspots of atmospheric 
environment research [5]. Scholars at home and abroad 
on air pollution (PM2.5) research are mainly focused on 
source analysis [6], spatial and temporal evolution [7, 8], 
driving mechanisms [9], scenario simulation [10], and 
health evaluation [11, 12], and its influencing factors 
include meteorological factors, population density, land 
use, road traffic, topographic changes, and sources of 
pollution. They are gradually paying attention to the 
influence of landscape patterns on PM2.5 concentration. 
In terms of the spatial and temporal distribution and 
evolution of PM2.5, the study presents the diversification 
of data sources [13], the refinement of scales [14], 
and the diversification of methods [15]. Its different 
scales include national scales [16], regional scales [17], 
provincial scales [18], urban scales [19], etc. Specifically, 
in terms of the influence of population factors on PM2.5 
concentration, the study focuses on population exposure 
risk to pollution sources, evolutionary pathways, and 
policy formulation [20], with population density [21] 
and population weighting [22] as the two main methods, 

and mostly using administrative districts as the research 
unit. Such studies are unable to characterize the severity 
of population exposure risk within refined spatial units 
[23], and there are some limitations in exploring the 
spatial heterogeneity of PM2.5 population exposure risk 
in depth. In contrast, the population exposure relative 
risk model can effectively quantify the degree of risk 
of population exposure to PM2.5 concentrations within 
a spatial unit [24]. It can more finely and accurately 
analyze the interrelationships between demographic 
factors and PM2.5 concentrations in a spatial unit. For 
example, Chen [25] compared air quality concentrations 
and population spatial distribution, proposed a 
population air pollution exposure assessment model, and 
then quantified the degree of population air pollution 
exposure within a spatial unit. Singh [26] differentiated 
the risk of population air pollution exposure on a fine 
scale by superimposing atmospheric pollutants and the 
spatial distribution of the population on the internal 
grid of the spatial unit, and some scholars have further 
discussed the impacts of landscape pattern factors 
on PM2.5 concentrations on the spatial unit from a 
geographic point of view. Some scholars further 
discussed the influence of landscape pattern factors 
on PM2.5 concentration from a geographic perspective, 
e.g., LIM A [27] found that PM2.5 concentration was 
positively proportional to the area of patches and the 
number of patches and inversely proportional to the 
average perimeter-area ratio and the average Euclidean 
distance. SHARMA D [28] and GHESHLAGHPOOR 
S [29] mainly investigated the relationship between 
particulate pollutant data and urban land use/cover 
characteristics, and the correlation between air pollutant 
distribution and concentration was found to be different 
from the spatial pattern of land use. MENGISTE B.M 
[30] found that the higher the degree of landscape 
dominance and the stronger the connectivity of patches, 
the more capable of reducing PM2.5 concentration 
through multiple linear regression analysis it is. McCarty 
[31] found that changes in landscape patterns would 
affect the spatial distribution of PM2.5 and increase the 
risk of exposure for the population by combining the 
correlation between the landscape pattern of the urban 
landscape and air quality analysis. It can be seen that 
the above studies focus more on the influence of single-
factor changes on the spatial and temporal distribution 

and impervious surfaces have a high degree of aggregation, low edge density, and low fragmentation, 
which is conducive to reducing the risk of annual average PM2.5 concentration and population exposure. 
The higher the degree of aggregation, the higher the edge density, the more complex the degree of 
fragmentation of water bodies and impervious surfaces, and the higher the risk of annual average PM2.5 
concentration and population exposure. The results of this study can provide a theoretical basis for 
mitigating air pollution, improving the human environment, optimizing the landscape pattern, and 
promoting ecologically sustainable development.

Keywords: PM2.5 concentration, population exposure risk, landscape pattern index, spatial heterogeneity, 
spatiotemporal evolution
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and evolution of PM2.5 concentration. In correlation 
analysis, only population and landscape patterns are 
analyzed independently on the trend of spatial and 
temporal evolution of PM2.5 concentration, which does 
not fully reveal the spatial heterogeneity and mutual 
interference among factors and lacks the differences 
in the influence of multiple factors on PM2.5 at a fine 
scale. Therefore, it is particularly important to explore 
the coupling relationship between population, landscape 
pattern, and air pollution (PM2.5) in spatial distribution 
to further quantitatively analyze the spatial and temporal 
evolution characteristics of ‘Human-Air-Ground’ and 
its spatial heterogeneity at fine scales and to provide 
entry points and breakthroughs for the sustainable 
development of regional ecological environments.

Against this background, the author takes Hunan 
Province as the study area uses PM2.5 concentration data, 
population distribution data, and six-phase land-use type 
data from 2000 to 2020, and takes a 5 km × 5 km grid 
as the study unit. It introduces the relative risk model, 
the spatial auto correlation model, and the correlation 
coefficient method of population exposure to match 
population distribution at the scale of the refinement 
grid and the administrative district. By matching 
the population distribution, PM2.5 concentration, and 
landscape pattern indices at the scale of refined grids 
and administrative districts, we reveal the spatial and 

temporal evolution characteristics of the coupling 
relationship between ‘Human-Air-Ground’ and its 
spatial heterogeneity. In this paper, the following three 
aspects of the coupling relationship are investigated: ① 
Identify the characteristics of the spatial and temporal 
evolution of PM2.5 concentration in the study area under 
long time series; ② Explore the spatial and temporal 
evolution of PM2.5 concentration and population 
exposure risk in the study area, and accurately identify 
the degree of PM2.5 population exposure risk; ③ Reveal 
the spatial and temporal evolution characteristics 
of the coupling relationship between ‘Human-Air-
Ground’ and its spatial heterogeneity in the study area. 
The study results can provide a theoretical basis for 
mitigating atmospheric pollution, improving the human 
environment, optimizing the landscape pattern, and 
promoting ecologically sustainable development.

Materials and Methods

Study Area

Hunan Province is located in the middle and lower 
reaches of the Yangtze River, at 24°39′N-30°08′N, 
108°47′E-114°15′E (Fig. 1), with 13 prefectural-level 
cities, 1 autonomous prefecture, and 122 districts and 

Fig. 1. Study area extent and elevation.
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counties, covering an area of 211,800 km2. The terrain is 
predominantly mountainous and hilly, with interspersed 
plains, basins, rivers, and lakes, and decreases in a 
gradient from west to east. Most of the study area has 
a subtropical monsoon climate, with an average annual 
temperature of 16-18 ℃ and an average annual rainfall 
of 1,200-1,700 mm. By the end of 2023, the resident 
population of Hunan Province will be 65.68 million, 
a year-on-year decrease of 0.5%; the gross domestic 
product (GDP) will be 50,012.09 billion yuan, a year-
on-year increase of 4.6%; and the gross regional product 
(GDP) per capita will be 75,938 yuan, a year-on-year 
increase of 5.0%. The achievements in economic 
construction have also brought great challenges to 
air quality, the most obvious phenomenon of which is 
the frequent occurrence of haze weather, with PM2.5-
based haze pollution problems being more prominent. 
The landscape pattern of the region is characterized by 
greater spatial heterogeneity and evolution due to the 
long-term combined effects of anthropogenic activities 
and social factors.

Data Source and Processing

The study’s main data includes digital elevation 
(DEM), administrative boundaries of Hunan Province, 
annual average concentration of PM2.5, population 
distribution, and land use types. Considering the need 
to maintain the consistency of the relevant data time 
period, every four years was chosen as the interval 
period, with a total of six data periods in 2000, 2004, 
2008, 2012, 2016, and 2020. ArcGIS software was used 
to crop and extract the study area data according to the 
administrative boundaries and reclassify the land use 
types into cropland, forest land, shrubland, grassland, 
water bodies, bare land, and impervious surface. Due 
to the differences in the data resolution, the spatial 
resolution was resampled to 300 m to ensure spatial and 
temporal matching on a uniform coordinate system. The 
data sources and processing are shown in Table 1.

Methods

Population Exposure Risk

In order to scientifically quantify the risk of 
population exposure to PM2.5 pollution, this paper 
introduces the relative risk evaluation model of 
population air pollution exposure [32]. This is mainly 
to multiply the proportion of the population in each cell 
of the study area to the population of the whole area 
with the concentration of PM2.5 in the cell to obtain the 
contribution value of the cell to the risk of population 
exposure to PM2.5, and then add the contribution value 
of each cell of the study area to obtain the population-
weighted concentration exposure index of PM2.5 in 
the study area. The contribution of each cell in the 
study area was then summed to obtain the population-
weighted PM2.5 exposure indicator for the area. The 
specific calculation formula is as follows:

	 	 (1)

Where: i - grid number; Ri - risk of population 
exposure to PM2.5 for the grid; Pi - number of people in 
the grid; Ci - PM2.5 concentration value within the grid; 
n - total number of grids.

Moving Window Method

In order to comprehensively reflect the spatial 
distribution characteristics of landscape patterns, with 
reference to previous studies [33, 34], landscape pattern 
indices, such as aggregation index (AI), the average 
area of patches (AREA_MN), patch density (PD), edge 
density (ED), shape index (LSI), and contagion index 
(CONTAG), as well as the proportion of patches in the 
landscape area (PLAND), were selected to characterize 
the landscape's connectivity, degree of fragmentation, 
structure, shape, and compositional characteristics. 
Since the landscape pattern is scale-dependent, choosing 

Type Source Description Accuracy Processing method

Digital Elevation Model Geospatial data cloud Elevation, slope, and direction of 
slope 30m×30m Projection, inlay, cutting

National Administrative 
Boundary

Resources and 
Environmental Science 

Data Center

Vector data on administrative 
boundaries of provinces, cities, and 

counties nationwide
— Projection, 

consolidation

PM2.5 annual average 
concentration

National Earth System 
Science Data Center

High-resolution, high-quality, 
year-on-year, month-on-month, and 

day-on-day PM2.5 data for China, 
2000-2022

1 km Projection, cropping

Population Distribution World pop dataset Data on the spatialization of 
population in China, 2000-2020 1 km Projection, cropping

Land use type China land cover dataset Year-by-year landscape type data for 
China, 1985-2020 30m×30m Projection, cropping

Table. 1. Data sources and processing.
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the appropriate scale can more accurately reflect the 
real situation of the landscape pattern; therefore, the 
window radius (km) was set to 1, 2, 3, 4, 5, 6, and 7 
using Fragstats software. The semi-variance function in 
geostatistics was used to determine the optimal scale for 
the moving window. The ratio of the nugget value to the 
abutment value in the semi-variance function (nugget-
base ratio) reflects the degree of spatial variability, and 
the smaller its value is, the more obvious the spatial 
autocorrelation is and the more stable the scale is. 
The optimal analysis scale is the window radius when 
the patch-to-basal ratio reaches relative stability [35, 
36]. Under the continuous scale, the spreading index 
(CONTAG), patch density (PD), and shape index (LSI) 
were selected as the calculation objects, and sample 
strips were set up for sampling [37]. It was finally 
determined that the landscape pattern index tended to 
be stabilized at 5 km (Fig. 2), which indicated that this 
scale could better reflect the spatial heterogeneity of the 
landscape pattern.

Spatial Autocorrelation

Global spatial autocorrelation analysis was used to 
measure the agglomeration between spatial units and 
neighboring units throughout the study area, and the 
global Moran's index was used to determine whether 
PM2.5 concentrations were spatially autocorrelated. The 
value of the global Moran index ranges from [-1,1], 
which is greater than 0 to indicate that there is a positive 
spatial correlation between PM2.5 concentration and its 
influencing factors, less than 0 to indicate that there is 
a negative spatial correlation, and equal to 0 to indicate 
that there is no spatial autocorrelation between the 
regions. Local spatial autocorrelation analysis is used 

to explore the degree of adjacent spatial correlation, 
detect the location of outliers or clusters, and determine 
the clustering of spatial units (districts and counties) of 
annual average PM2.5 concentrations based on the local 
Moran index [38]. The global Moran index (IG) and 
local Moran index (IL) are commonly used, and their 
expressions are as follows:

	 	 (2)

	 	 (3)

	 	 (4)

	 	 (5)

Where: n - total number of grids; S2 - variance of 
PM2.5 concentration of all grids; xi and xj - PM2.5 
concentration of the ith and jth grids;  - mean of all 
grid attributes; wij - spatial weights.

Land Use Dynamics

Land use dynamic attitude is the area ratio before 
and after the change of a certain type of land use type 
within a certain time range in the study area, which can 
reflect the change of land use in type, quantity, speed, 
and ecological quality in different periods [39]. In the 
paper, the land use dynamic index model was applied to 
dynamically analyze the changes in type, quantity, and 
speed in different periods in the study area. Its single 

Fig. 2. Trends in the spatial variability of landscape pattern indices.
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land use dynamics can express the change of a certain 
land use type within a certain time range in a specific 
area, while the comprehensive land use dynamics can 
reflect the annual rate of change of all the land uses in 
the whole area. The specific model formula is as follows 
[40]:

Single land-use attitudes

	 	 (6)

Integrated land-use dynamics

	 	 (7)

Where: Ua and Ub - area of a land-use type (km2) at 
the beginning and end of the study period; Ui - area of 
a land-use type of type i (km2), ΔUij - absolute value of 
the area of land-use type i converted to type i during the 
study period (i ≠ j); T - length of the study (years).

Results and Discussion

Characteristics of the Spatial and 
Temporal Evolution of PM2.5

Characterization of Temporal Heterogeneity

Analyzing the trend change of annual average 
PM2.5 concentration in Hunan Province from 2000 to 
2020, it is found that its annual average change has a 
certain volatility, and the whole is characterized by a 
slow increase and then a significant decline, reaching 
a maximum of 59.27 μg/m3 in 2007 and falling to a 
minimum of 28.05 μg/m3 in 2020. As can be seen in Fig. 
3: PM2.5 concentration increased slowly from the initial 

39.2 μg/m3 to 58.91 μg/m3 in 2000-2013, with an average 
annual growth rate of 3.59%; PM2.5 concentration 
decreased significantly from the initial 58.91 μg/m3 to 
28.05 μg/m3 gradually in 2013-2020, with an average 
annual decrease rate of 13.7%. 55% of the years had 
annual average PM2.5 concentrations above 50 μg/m3, 
and up to 85% of the years had annual average PM2.5 
concentrations exceeding the standard value of 35 μg/
m3. Although it dropped to below the maximum limit 
value (35 μg/m3), it was stipulated in the Ambient Air 
Quality Standard after 2018 [41] that it was still nearly 
twice as high as the international standard value (15 μg/
m3) [42-43]. This indicates that the pollution level is still 
relatively high in most parts of Hunan Province, and the 
pollution situation cannot be ignored.

Characterization of Spatial Heterogeneity

In order to reveal the characteristics of changes 
in the spatial distribution of annual mean PM2.5 
concentration, it was divided into seven intervals of (15, 
25), (25, 35), (35, 45), (45, 55), (55, 65), (65, 75), and (75, 
+∞) in conjunction with the international standard limit 
values (annual mean concentration of 15, 25, and 35 μg/
m3), with every 4 years as the interval period (Fig. 4). 
It can be seen that: (1) The overall spatial distribution 
was high in the northeast and low in the southwest. 
The spatial distribution patterns were generally similar 
in 2000, 2004, and 2008, with the region-wide annual 
mean concentration continuing to increase, the northeast 
region expanding significantly, and the southwest region 
relatively slow, especially in 2008, when the region-
wide annual mean concentration reached more than 
45 μg/m3. In 2012, 2016, and 2020, the region-wide 
annual mean concentration continued to decline, and 
the northeast region is significantly down compared 
with the southwest region, which is relatively slower, 
especially in 2020. The annual average concentration of 

Fig. 3. Trend of annual average PM2.5 concentration in Hunan Province.



Spatial and Temporal Heterogeneity of Human-Air-Ground... 7

the whole region reached 35 μg/m3 or less and is below 
the maximum limit of domestic air quality standards. 
However, there is still a gap from the target value. 
(2) There are obvious differences in the local spatial 
distribution; for example, in 2004, 2008, and 2012, the 
high-value areas (>45 μg/m3) were mainly distributed 
in Changsha, Xiangtan, Zhuzhou, Changde, Yueyang, 
and Yiyang; in 2016 and 2020, the areas with annual 
average concentrations of less than 35 μg/m3 in this 
urban agglomeration have increased significantly, and in 
particular, in 2020, the annual average concentration in 
the whole area will reach below 35 μg/m3.

Geoda software carried out the global spatial 
autocorrelation test of annual mean PM2.5 concentration 
in Hunan Province, and the global Moran's 
index was used to determine whether the annual 
mean concentration of different grids had spatial 
autocorrelation [44]. The Moran's index remained stable 
from 2000 to 2020, and all of them were over 0.8 (Table 
2), which showed a significant positive autocorrelation 
in spatial distribution, indicating that the spatial 
distribution had agglomeration characteristics.

In order to further explore the spatial distribution 
characteristics of the annual average PM2.5 

Fig. 4. Changes in the spatial distribution of annual average PM2.5 concentration in Hunan Province from 2000 to 2020.
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Parameters 2000 2004 2008 2012 2016 2020

Moran’s I 0.834 0.810 0.831 0.841 0.836 0.827

P-value 0.001 0.001 0.001 0.001 0.001 0.001

Z-value 14.8634 14.5478 14.8182 14.8845 14.8449 14.9690

Table. 2. Global spatial autocorrelation analysis of annual average PM2.5 concentration in Hunan province.

Fig. 5. LISA spatial clustering distribution of PM2.5 concentration in Hunan Province from 2000 to 2020.
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concentration, the local spatial autocorrelation test was 
carried out with the grid as the spatial unit. According 
to the degree of aggregation of high or low values in 
each grid, it is categorized into four spatial correlation 
patterns: high - high aggregation area, low - low 
aggregation area, high - low aggregation area, and low 
- high aggregation area [45]. As shown in Fig. 5, local 
spatial aggregation characteristics are obvious; the high 
- high aggregation area is mainly concentrated in all or 
part of the districts and counties of Changsha, Xiangtan, 
Zhuzhou, Changde, Yueyang, Yiyang, and Hengyang, 
which are located in the center of economic development 
of urban agglomerations, with flat terrain and urban 
concentration, active human activities, and aggregation 
of PM2.5 air pollutants. The low - low aggregation zone 
is mainly located in all or part of Yongzhou, Chenzhou, 
Huaihua, and Shaoyang, which are relatively socio-
economically backward, with mountainous hills, high 
vegetation cover, and superior ecological environments 
conducive to the deposition and absorption of PM2.5 
pollutants.

Characterization of the Spatial and Temporal 
Evolution of the Risk of PM2.5 Population Exposure

Temporal Heterogeneity

The statistics and visualization of the percentage 
of the population exposed to PM2.5’s annual average 
concentration in each zone from 2000 to 2020 are 
shown in Fig. 6. (1) The mean percentage of the 
population exposed to high-concentration zones (>45 
μg/m3) amounted to 74.24% in 2000-2016, while the 
mean percentage of the population exposed to more 
than 35 ug/m3 was as high as 96.5%. (2) Between 2016 
and 2020, the proportion of the population in areas 
exposed to annual average PM2.5 concentrations (<35 
μg/m3) increased year by year, from 6.86% to 73.02%; 
among them, in 2020, there was an area where the 

annual average PM2.5 concentration was located in the 
range of 15-25 μg/m3, with a proportion of 13.2% of the 
population, and there were no areas with more than 45 
μg/m3.

Spatial Heterogeneity

In order to scientifically quantify the degree of risk 
of population exposure to PM2.5 concentration in a 
spatial cell (grid), systematic sampling was conducted 
according to a 5 km × 5 km grid with equal distances 
to extract the annual average PM2.5 concentration and 
the number of people at the sample points. The degree 
of risk of population exposure to PM2.5 concentration 
in a spatial cell was measured using the formula for 
population exposure risk in the previous section (Section 
1.3). Combined with the existing literature [46, 47], the 
population exposure risk is categorized into six levels: 
low risk (0, 1), lower risk (1, 2), medium risk (2, 3), 
higher risk (3, 4), high risk (4, 5), and very high risk (5, 
+∞). As can be seen from Fig. 7, the spatial distribution 
of the risk level of PM2.5 population exposure in Hunan 
Province from 2000 to 2020 is dominated by low risk, 
accounting for more than 70% of the total area, which 
is mainly distributed in the marginal cities and districts 
and counties, while the high-risk areas are mainly 
concentrated in the central urban agglomeration of 
Chang - Zhu - Tan. The rest is distributed in the form of 
a scattering point.

Using Geoda software to conduct a global spatial 
autocorrelation test of PM2.5 population exposure risk 
in Hunan Province, Moran's index remained stable 
and close to 0.5 from 2000 to 2020 (Table 3). This 
indicates a positive autocorrelation in the spatial 
distribution, suggesting that the spatial distribution of 
PM2.5 population exposure risk exhibits a clustering 
characteristic.

Analyzing the local spatial autocorrelation test of 
PM2.5 population exposure risk in Hunan Province 

Fig. 6. Percentage of population exposure to annual average PM2.5 concentration by zone in Hunan Province in a typical year.
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from 2000 to 2020 (Fig. 8), we found that the spatial 
correlation pattern is the same as the spatial clustering 
characteristics of PM2.5 annual average concentration 
(Section 2.1.2). The high - high aggregation area is 
distributed in a cluster shape, and the scope changes are 
small, mainly concentrated in the core area of Chang 
- Zhu - Tan city, which is fundamentally due to the 
urbanization and industrialization development triggered 
by the population concentration leading to the growth of 

PM2.5 emissions, and the high-risk area is concentrated 
in the city center, which exposes the population to the 
high-concentration range for a long period of time. 
The low - low concentration zones are mainly located 
in Yongzhou, Chenzhou, Huaihua, and Shaoyang, 
which are related to their hilly and mountainous 
location, high vegetation cover, small population size, 
slow industrialization, low socio-economic energy 
consumption, and low pollution emissions.

Fig. 7. Change in the spatial distribution of PM2.5 population exposure risk level in Hunan Province from 2000 to 2020.
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Fig. 8. LISA spatial clustering distribution of population exposure risk to PM2.5 in Hunan Province from 2000 to 2020.

Parameters 2000 2004 2008 2012 2016 2020

Moran’s I 0.493 0.497 0.495 0.494 0.496 0.496

P-value 0.001 0.001 0.001 0.001 0.001 0.001

Z-value 9.9563 10.0887 10.1023 10.1381 10.2414 10.3169

Table. 3. Global spatial autocorrelation analysis of PM2.5 population exposure risk in Hunan province.
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Characterization of Landscape Types

One needs to analyze the change in land use types to 
study the change in landscape pattern index. From Table 
4, it can be seen that from 2000 to 2020, the area share 
of each land use type in Hunan Province is forest land 
> cultivated land > water body > impervious surface 
> shrubland > grassland > bare land, with cultivated 
land and forest land as the main land use types, with 
cultivated land accounting for 33.48% of the average 
annual area, forest land accounting for 62.47%, and the 
rest of the average annual area accounting for a smaller 
proportion. Overall, the cropland and impervious 
surface area showed an increasing trend, while the rest 
of the land use types showed a decreasing trend, with 
woodland decreasing the most. 

Analyzing the dynamic changes in land use types 
(Fig. 9) reveals that the combined land use dynamics 
(Dc) during the five periods were 0.19%, 0.32%, 
0.07%, 0.10%, and 0.11%. This data indicates a general 
trend of initial increase followed by a decrease. The 
characteristics of single land use dynamics vary across 
each period. Cropland dynamics were positive from 

2000 to 2012, showing an increasing trend; however, 
they turned negative from 2012 to 2020, with the area 
decreasing year by year. Forest showed negative values 
from 2000 to 2016, indicating a continuous decrease in 
area, but turned positive from 2016 to 2020, starting 
to show an increase. Shrubland consistently exhibited 
negative dynamics, experiencing a continual decrease 
in the area across all periods. Both grassland and water 
followed a similar pattern, showing positive dynamics 
only from 2008 to 2012 and 2012 to 2016 and negative 
dynamics otherwise, resulting in an overall decrease in 
area. Barren saw a sharp increase in 2016-2020, marked 
by positive dynamics, although its area as a percentage 
of the total remained so small that the change was 
negligible. Impervious consistently showed positive 
dynamics across all periods, continuing to increase 
across the total area.

Analysis of the Coupling Relationship 
Between ‘Human-Air-Ground’

The correlation coefficient method can be used to 
analyze the correlation between landscape indices, and 

2000 2004 2008 2012 2016 2020

Cropland 68360.28 69678.77 71928.57 71998.09 71964.43 71490.33

Forest 135576.98 134219.27 131734.65 131192.06 130411.89 130813.31

Shrub 242.17 209.73 149.78 96.45 68.57 61.19

Grassland 82.59 67.79 62.36 67.88 65.20 57.58

Water 5067.41 4871.51 4707.93 4690.51 4915.31 4466.80

Barren 0.76 0.49 0.40 0.44 0.31 0.72

Impervious 2475.39 2758.03 3221.89 3760.15 4379.86 4915.66

Table. 4. Area of each landscape type in Hunan Province in a typical year from 2000 to 2020 (km2).

Fig. 9. Comparison of attitudes towards movement by landscape type in Hunan Province from 2000 to 2020.
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the t-test is used to verify the degree of significance of 
the correlation relationship between landscape indices 
[48]. The significant degree of correlation relationship 
was analyzed for several landscape pattern indices 
selected in the previous section (Section 1.3), and the 
results were as follows: (1) The correlation relationship 
between edge density (ED) and the shape index (LSI) 
was stronger in significant degree, and the correlation 
relationship between the shape index LSI and the other 
indices was more pronounced: therefore, the edge 
density (ED) was retained. (2) The aggregation index 
(AI), the average patch area (AREA_MN), and cohesion 
(COHESION) all characterize the structural features 
of the landscape category, but the average patch area 
(AREA_MN) and cohesion (COHESION) have strong 
correlations with the other indices, so the cohesion index 
(AI) is retained; (3) The proportion of the landscape area 
accounted for by the patches (PLAND) and the density 
of patches (PD) have a strong correlation, but PD is 
weakly correlated with other indices and can contain 
more information, so PD is retained. In order to further 
analyze the coupling relationship between “people, air, 
and land”, the landscape pattern indices were selected as 
Aggregation Index (AI), Patch Density (PD), and Edge 
Density (ED).

By analyzing the changes in land use types in the 
above (section 2.3), it can be seen that cropland and 
forest land, as the main land use types, have relatively 
obvious changes in dynamics and attitudes; water 
bodies and impervious surfaces come second; and the 
remaining types account for a very small proportion 
of the total and can be neglected. Therefore, we focus 
on analyzing the coupling relationship of ‘Human-Air-
Ground’ among cropland, forest land, water bodies, and 
impervious surfaces. According to Table 5, it can be 
realized:

The aggregation index (AI) and edge density (ED) 
of cropland were positively correlated with the annual 
average concentration of PM2.5 and the risk of population 
exposure, while the patch density (PD) was negatively 
correlated. Comparative analysis of the characteristics 
of the changes in the average annual concentration of 
PM2.5 and the risk of population exposure: it was found 
that from 2000 to 2020, the cultivated area and the 
average annual concentration of PM2.5 and the risk of 
population exposure showed a trend of increasing and 
then decreasing. This was mainly concentrated in all or 
part of the districts and counties of Changde, Yueyang, 
and Yiyang, as well as the edge of the Chang - Zhu - 
Tan urban agglomeration, etc., and the area with a high 
average annual concentration of PM2.5 and the risk of 
population exposure was high and localized in the space. 
The autocorrelation aggregation characteristics of this 
region are all characterized as high - high aggregation 
areas. The high degree of patch aggregation, high 
edge density, and low fragmentation of cultivated land 
will lead to an increase in the annual average PM2.5 
concentration and population exposure risk. The effect 
of cropland on PM2.5 annual mean concentration and 

population exposure risk has a significant seasonal 
effect. During the growing period, the vegetation 
adsorption capacity can slowly stagnate the dust and 
reduce the PM2.5 concentration in the air, while the 
bare ground and straw burning during the harvesting 
and planting period can produce large dust, which will 
increase the PM2.5 concentration.

Edge Density (ED) and Patch Density (PD) of 
woodland were positively correlated with the annual 
mean concentration of PM2.5 and population exposure 
risk, while the Aggregation Index (AI) was negatively 
correlated. Comparative analysis of the characteristics 
of changes in the mean annual concentration of PM2.5 
and population exposure risk: it was found that the area 
of forest land showed a decreasing and then increasing 
trend in relation to the mean annual concentration of 
PM2.5 and population exposure risk, which was mainly 
concentrated in all or part of the counties and districts 
of Yongzhou, Chenzhou, Huaihua, and Shaoyang. 
The low mean annual concentration of PM2.5, the low 
population exposure risk, and the autocorrelation 
aggregation characteristics of the local space are 
manifested in the low - low aggregation area. The high 
degree of patch aggregation, low edge density, and low 
degree of fragmentation of woodland are conducive 
to reducing annual average PM2.5 concentration and 
population exposure risk. The main reason why 
woodland can effectively reduce PM2.5 concentration 
is that concentrated and complex-shaped plant leaves 
can adsorb and immobilize particulate matter, reduce 
atmospheric particulate matter concentration, lower the 
risk of population exposure to PM2.5, and improve air 
quality.

The Aggregation Index (AI), Edge Density (ED), 
and Patch Density (PD) of water bodies and impervious 
surfaces were all positively correlated with the annual 
average concentration of PM2.5 and population exposure 
risk. Comparative analysis of the characteristics of 
changes in the annual average concentration of PM2.5 
and population exposure risk finds that the area of water 
bodies decreased year by year, the area of impervious 
surfaces increased year by year, and both of them were 
mainly concentrated in all or part of the districts and 
counties of Changde, Yueyang, and Yiyang and the 
center of the Chang - Zhu - Tan urban agglomeration. 
The region with a high annual average concentration 
of PM2.5 and a high risk of population exposure and 
the characteristics of the local spatial autocorrelation 
aggregation were all manifested as a high - high 
aggregation area. Higher aggregation of water bodies 
and impervious surfaces, higher density of edges, and 
more complex fragmentation result in higher annual 
average PM2.5 concentration and population exposure 
risk. Therefore, the increase of impervious surfaces 
and the decrease of water bodies will increase the risk 
of PM2.5 annual average concentration and population 
exposure, and the reasonable control of impervious 
surfaces extension edge zone and fragmentation degree 
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can effectively mitigate PM2.5 pollution and reduce the 
risk of population exposure.

Characterization of the Spatial and Temporal 
Evolution of the Risk of PM2.5 Population Exposure

In the context of green development, sustainable 
development is the top priority of urban construction.
PM2.5, as an important indicator of urban green 
development, is closely related to industrial production, 
industrial structure, and road transportation networks. 
The author takes the spatial and temporal distribution 
characteristics of PM2.5 annual average concentration 
and population exposure risk as an entry point to analyze 
the correlation between the landscape pattern index 
and PM2.5 annual average concentration and population 
exposure risk. The annual average concentration of 
PM2.5 in Hunan Province from 2000 to 2020 has been 
slowly increasing and then significantly decreasing, 
and the year 2013 is the turning point of the decrease, 
which is mainly caused by two aspects: first, the 2012 
Eighteenth National Congress of the Party of China 
(CPC) set a new target to increase the annual average 
concentration of PM2.5 in Hunan Province, and the 
second one is to decrease the average concentration in 
Hunan Province. First, the 18th Party Congress in 2012 
listed “ecological civilization construction” for the first 
time in the overall layout of the socialist cause with 
Chinese characteristics and launched various strategic 
deployments for ecological civilization construction. 
Second, the Action Plan for Prevention and Control of 
Air Pollution issued by the State Council in 2013 clearly 
stated that practical and effective measures should be 
taken to strengthen ecological civilization construction 
and optimize industrial structure to alleviate the 
atmospheric environmental problems with PM2.5 as the 
characteristic pollutant. The spatial distribution is high 
in the northeast and low in the southwest. The high-value 
area is concentrated in the Chang - Zhu - Tan area, with 
rapid economic development and a high urbanization 
level, which indicates that PM2.5 is closely related 
to economic development, industrial structure, and 
industrial energy. The spatial distribution characteristics 
of the annual average concentration of PM2.5 and the risk 
of exposure of the population have consistency, with a 
significant positive autocorrelation in the global space 
and obvious clustering characteristics in the local area. 
The high-value area and the low-value area of both of 
them coincide spatially, which is in agreement with 
the spatial distribution of PM2.5, spatially coinciding, 
which is consistent with the findings of Fu [49]. The 
high urbanization level, large population base, and 
rapid industrial development in the high-value area all 
lead to an increase in PM2.5 emissions, exposing the 
population to a high-risk area for a long time, while 
the low-value area has a complex hilly terrain, a high 
vegetation cover, a small population base, a slow 
industrialization development, and low socio-economic 

energy consumption, which results in a low level of risk 
of population exposure to PM2.5.

Analysis of the Association Between 
Different Types of Landscape Patterns and 
the Risk of Population Exposure to PM2.5

The landscape pattern index is a quantitative 
index reflecting the spatiotemporal heterogeneity 
of the landscape, which can accurately extract the 
characteristics of the landscape pattern and is currently 
the most direct and effective research method in the 
analysis of spatiotemporal dynamics of the landscape 
pattern [50]. Using the optimal moving window method 
to explore the correlation between landscape patterns 
and annual average PM2.5 concentration and population 
exposure risk can improve the scientific validity of the 
research results. A large number of studies have shown 
[51, 52] that different land use types have a significant 
effect on PM2.5 concentration, and changes in landscape 
type are correlated with population exposure risk to a 
certain extent. By analyzing the dynamic attitude of 
land use, it was found that the strength of the correlation 
of the landscape pattern index was consistent with 
the corresponding single dynamic attitude change, 
indicating that the degree of change in land use type has 
an impact on the landscape pattern, which in turn affects 
the annual average PM2.5 concentration and population 
exposure risk [53]. Similar to the results of other 
studies, landscape types such as woodland, shrubs, 
and grassland were negatively correlated with annual 
mean PM2.5 concentrations, mainly attributed to green 
plants’ ability to effectively adsorb particulate matter in 
the air, thereby reducing air pollution. Cultivated land, 
on the other hand, showed a positive correlation with 
PM2.5 concentration, contrary to some studies’ results 
[54]. Among them, related scholars found that arable 
land has a “source” and “sink” phenomenon on PM2.5 
concentration, not only as a type of vegetation cover 
adsorption of stagnant dust but also in the harvesting 
and sowing seasons due to the surface of the bare dust. 
The results of the present study confirm that arable land 
is more likely to exacerbate the PM2.5 concentration of 
the air and is likely to exacerbate PM2.5 air pollution. The 
positive correlation between the landscape pattern index 
of water bodies and PM2.5 is different from the results 
of some studies [55], while the present study confirms 
that water bodies act as a long time series of pollutant 
retention, which leads to high air pollutant concentration 
levels around the water bodies in the form of pollutant 
sources. Regional economic development, urbanization, 
and industrialization have increased the complexity and 
fragmentation of bare land and impervious surface land 
patches, leading to higher annual average concentrations 
of PM2.5. HART R [56] and BENCHRIF A [57] assessed 
that population exposure risk is closely related to the 
human habitat and that environmental risk assessment 
is important for improving urban construction and 
social equity. Like the PM2.5 correlation, the landscape 
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index of woodland, shrub, and grassland green space 
sites showed a significant negative correlation with 
population exposure risk. Overall, the correlation 
between impervious surface and exposure index was 
greater than that of other sites, indicating that the impact 
of urban construction is stronger than other factors [58].

Conclusions

In this paper, the landscape pattern index, annual 
average PM2.5 concentrations, and population exposure 
risk of different land use types at the fine grid scale 
in Hunan Province are studied. The population 
exposure risk model, moving window method, spatial 
autocorrelation model, and correlation analysis are 
used to explore the spatial and temporal evolution 
characteristics of annual average PM2.5 concentration 
and population exposure risk from 2000 to 2020. It 
reveals the characteristics of the spatial and temporal 
evolution of the “people-air-land” coupling relationship 
and its spatial heterogeneity in the study area. The 
spatial and temporal evolution characteristics of the 
coupling relationship between ‘Human-Air-Ground’ and 
its spatial heterogeneity were revealed. The results show 
that:

(1) From 2000 to 2020, the annual average 
concentration of PM2.5 in Hunan Province as a whole 
shows a slow increase and then a significant decrease; 
the spatial distribution is high in the northeast and low 
in the southwest, and the high-value areas (PM2.5 > 45 
μg/m3) are mainly located in Changsha, Xiangtan, 
Zhuzhou, Changde, Yueyang, Yiyang, and so on. This 
is a high - high agglomeration area located in the center 
of the urban agglomeration's economic development, 
with flat terrain and concentrated cities where human 
activities are active. It is located in the center of the 
economic development of urban agglomerations, 
with flat terrain and concentrated cities, active human 
activities, and aggregation of PM2.5 air pollutants. The 
low - low aggregation zone is mainly distributed in all 
or part of districts and counties, such as Yongzhou, 
Chenzhou, Huaihua, and Shaoyang, which are relatively 
backward in terms of socio-economics and forested with 
mountainous hills, with high vegetation coverage and 
superior ecological environment, which is conducive to 
the deposition and absorption of PM2.5 pollutants.

(2) From 2000 to 2016, Hunan Province was exposed 
to PM2.5 annual average high concentration areas (>45 
μg/m3), accounting for 74.24% of the average value. 
From 2016 to 2020, the proportion of the population 
in the areas exposed to PM2.5 annual average low 
concentration values (<35 μg/m3) increased year by year, 
from 6.86% to 73.02%. In particular, 2020 appeared 
to be when the PM2.5 population share of areas with 
annual average concentrations in the range of 15-25 
μg/m3 is 13.2%, and there are no areas above 45 μg/
m3. The risk of PM2.5 population exposure in the spatial 
distribution is dominated by low risk, accounting 

for more than 70% of the total area, which is mainly 
dispersed in the fringe cities and districts and counties 
in Hunan Province, as a low - low aggregation area, 
which is related to its location in the mountainous and 
hilly areas, high vegetation coverage, small population 
size, slow industrialization, low socio-economic energy 
consumption, and low pollution emissions. The high-
risk areas are mainly concentrated in the Chang - Zhu 
- Tan urban agglomeration center. The region has 
a scattered heterogeneous distribution, has a high - 
high aggregation area, is the root of urbanization and 
industrialization development, and has led to the growth 
of PM2.5 emissions so that the population is exposed to a 
high concentration range for a long time.

(3) Cultivated land and forested land, as the main 
land types in Hunan Province, are characterized by 
relatively obvious changes in dynamics and attitudes; 
water bodies and impervious surfaces are the second 
most common; therefore, we focused on analyzing 
the correlation between the landscape pattern indices 
of cultivated land, forested land, water bodies, and 
impervious surfaces and the risk of population 
exposure to the annual average PM2.5 concentration and 
population exposure. Among them, a high degree of 
patch aggregation, high edge density, and low degree 
of fragmentation of cropland led to higher annual mean 
PM2.5 concentration and population exposure risk, and 
the correlations of patch aggregation and edge density 
were stronger than those of fragmentation. Higher levels 
of patch aggregation, lower edge densities, and lower 
levels of fragmentation in woodlands contribute to 
lower PM2.5 annual mean concentrations and population 
exposure risk, and the levels of patch aggregation and 
fragmentation are more strongly correlated than edge 
densities. Higher aggregation, higher edge density, 
and more complex fragmentation of water bodies and 
impervious surfaces resulted in a higher risk of PM2.5 
annual mean concentrations and population exposure, 
and edge density and fragmentation were more closely 
correlated than patch aggregation.
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