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Abstract

This paper systematically examines carbon emissions from China’s export trade (2013-2022) amid

the rising conflict between economic globalization and environmental protection. Using the Tapio

decoupling and LMDI models, the spatiotemporal characteristics and key drivers of these emissions are

identified, and a gray relational early warning system is introduced. Findings reveal that the primary

contributor to carbon emissions is the expansion of export trade, with the industrial sector as the largest

source. While occasional energy intensity and structure improvements have reduced emissions, the

overall trend remains upward. Policy recommendations include optimizing energy structure, boosting

efficiency, advancing industrial upgrades, and promoting green logistics to support China’s “dual

carbon” goals and foster sustainable economic-environmental development.
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Introduction

In the context of economic globalization and
environmental globalization, the conflict between
trade liberalization and environmental protection has
become increasingly prominent and tends to intensify
[1]. The continuous rise in carbon dioxide emissions
has drawn significant attention from the international
community [2-4]. Balancing export trade with carbon
reduction has become a crucial issue for the future
world order, national development, and social security
[5, 6]. Empirical analysis by Gavard et al. [7] and Khosla
et al. [8] has reaffirmed the carbon leakage issues in
developing countries initially highlighted by Wyckoff
and Roop [9] and Grabowski et al. [10]. For a long time,
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developing countries have relied on an extensive trade
growth model dominated by resource-, energy-, and
pollution-intensive export products [11, 12], thereby
increasing their carbon emission burdens and leading
to the “carbon leakage” problem, which results in these
countries becoming “carbon pollution havens”.

China has become the world’s largest exporter and
carbon emitter [13, 14]. The carbon emission problems
arising from the rapid development of China’s export
trade have garnered attention from both the government
and scholars [15-17]. With the deepening of economic
globalization, international cooperation has gradually
shifted from inter-industry and intra-industry divisions
to product divisions among various sectors. The total
carbon emissions from China’s export trade and the
total import and export volume both show an upward
trend. The continuous increase in export trade scale
is the main reason for the growth of embodied carbon
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in China’s trade. Simultaneously, the developed
countries’ unilateral implementation and strengthening
of environmental regulations are significant factors
contributing to the exacerbation of “carbon leakage”
and other environmental pollution issues in developing
countries, led by China [18, 19]. However, current
literature fails to deeply explore the limitations inherent
in these viewpoints. For instance, while some studies
have acknowledged the issue of carbon leakage, few
have provided robust solutions or alternative models to
mitigate these effects. Additionally, the research on early
warning systems for carbon emissions from export trade
is still in its infancy, and the existing studies remain
superficial. Most discussions of early warning systems,
particularly in this field, offer only cursory analysis. In
this study, for example, early warning system research
is limited to a brief mention, spanning only a few
sentences, which does not fully convey its importance
or the necessity for a more sophisticated model. This
gap highlights the need for a more comprehensive
exploration of early warning mechanisms, especially
in light of rapid global trade and environmental policy
changes [20].

The academic community currently holds two
distinct views on the environmental consequences
of trade liberalization: one view posits that the
environmental consequences of free trade are negative
in both the short and long term, especially for developing
countries; the other view suggests that although trade
liberalization may lead to environmental deterioration
in the short term, it will bring positive environmental
impacts in the long term [21]. Export trade affects
carbon emissions through various effects, and the sum
of these effects represents the impact of export trade on
carbon emissions.

The primary theories based on trade and the
environment include the Pollution Haven Hypothesis and
the Environmental Kuznets Curve (EKC) Hypothesis.
The Pollution Haven Hypothesis suggests that pollution-
intensive industries will transfer from developed countries
with stringent environmental regulations to developing
countries with more relaxed regulations, making the
latter “pollution havens” for the former. Grossman [22],
through empirical research on the relationship between
environmental quality and per capita income, found an
inverted U-shaped curve relationship between pollution
and per capita income. Panayoyotou [23] termed this
relationship the Environmental Kuznets Curve (EKC),
suggesting that the relationship between trade and the
environment also conforms to the EKC hypothesis, where
trade liberalization initially has negative environmental
effects but will positively impact the environment over
time.

Despite these theoretical advancements, more
recent international studies on trade and environmental
impacts suggest a shift towards multifactorial
approaches, considering the intersectionality of
trade liberalization, environmental regulation, and
technological innovation. For example, integrating

green technology in export-driven economies has shown
promising results in mitigating carbon leakage, a factor
that earlier models did not adequately address. This
shift underscores the importance of aligning national
trade strategies with international sustainability goals,
particularly in emerging economies like China. Most
literature employs the input-output method to study the
relationship between export trade and carbon emissions
across different countries and industries. However,
research on the early warning of carbon emissions from
export trade is still in its infancy.

In recent years, studies on early warning systems
have mainly focused on the fields of finance, investment,
accounting, and financial management. Early warning
systems remain underexplored in the context of carbon
emissions from export trade, and the need for innovation
in this area is critical. China’s rapid economic growth
has largely depended on the driving force of exports for
a long time. Therefore, from the perspective of a low-
carbon economy, it is essential to measure the relevant
data on carbon emissions from China’s export trade and
establish an early warning system for these emissions.
Further analysis and publication of the early warning
levels and trends in carbon emissions from China’s
export trade will help China prepare contingency plans
and take proactive measures. This will promote the
sustainable development of China’s ecological trade and
provide references and insights for targeted regulatory
measures.

Achieving the sustainable development goal of
China’s export trade based on carbon emissions involves
using advanced development models and management
methods to break the coupling state between export
growth and carbon emissions, thus realizing the
coordinated development of export growth and the
environment. Our study aims to analyze the decoupling
state and temporal characteristics of carbon emissions
and export trade at the national level by constructing
a Tapio decoupling model. Additionally, it intends to
decompose the driving factors of carbon emissions in
China’s export trade based on the LMDI model and
clarify the carbon sources of China’s export trade. Using
the gray relational analysis method to construct an early
warning system for carbon emissions from China’s
export trade will help clarify the carbon reduction paths
in China’s export trade. This approach aims to provide
recommendations for reducing carbon emissions from
export trade and offer insights for achieving the “dual
carbon” goals.

Materials and Methods
Data Sources

The data on China’s export trade volume, total output
value of various industries, and energy consumption
across different industry classifications are sourced from
the “China Energy Statistical Yearbook” and “China
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Statistical Yearbook™ published by the National Bureau
of Statistics from 2014 to 2023. The classification of
China’s national economic sectors is based on the new
national standard “Industrial Classification for National
Economic Activities” (GB/T4754-2011), approved by
the General Administration of Quality Supervision,
Inspection and Quarantine and the Standardization
Administration of China, which was implemented on
November 1, 2011, after its third revision.

Research Methodology
Total Carbon Emissions Accounting

The Chinese government has not released direct
monitoring data on carbon emissions. Consequently,
most of the existing research on carbon emissions is
based on estimates derived from energy consumption
and carbon emission coefficients. According to the
Fourth Assessment Report of the IPCC (2006), carbon
emissions and the calculation methods for carbon
emission intensity are provided. Using these methods,
we estimate the carbon emissions generated by export
trade based on the total primary energy consumption
of various industries in China and the carbon emission
coefficients of primary energy. The calculation formula

is as follows:
n
C - Z SiTi
i=1

In the formula, C represents the carbon emissions
from export trade, S, denotes the export volume of
industry i, T, represents the carbon emission intensity of
industry 7, and # is the number of industry classifications.
According to the IPCC (2000), the calculation formula
for carbon emission intensity 7 is as follows:

the link between “environmental pollution” and
“economic goods”. The Tapio decoupling model uses an
elasticity analysis method based on time span to derive
the decoupling elasticity coefficient, which dynamically
reflects the decoupling relationship between variables
[26]. This makes the analysis results more accurate
and objective. Based on Tapio’s method for studying
the relationship between economic development,
transportation capacity, and carbon emissions in Europe,
this study constructs a corresponding decoupling index
model according to the variation relationship between
carbon emissions and export trade volume:

_Ac/c
fox T Ax/x

In the formula, ¢, represents the decoupling index
between the total export trade volume and the total
carbon emissions, X denotes the total export trade
volume, AC represents the difference in total carbon
emissions between the current period and the base
period, and AX denotes the difference in total export
trade volume between the current period and the base
period.

LMDI Model

In 1989, Professor Yoichi Kaya first proposed the
Kaya identity at the IPCC workshop as a method for
decomposing the influencing factors of carbon emissions
[14, 27]. Our study appropriately modifies the Kaya
identity to reflect the actual conditions of export trade
activities and uses the Logarithmic Mean Divisia Index
(LMDI) model for quantitative decomposition. The
LMDI model has the advantages of factor reversibility
and the ability to eliminate residuals, making the results
more persuasive. The decomposition expression used in
our study is as follows:

n
7 = 2= Bk
j=1 L C==X—=X—=X=XP
E W X P
In the formula, E represents the consumption of C
energy type j by industry i, K, denotes the carbon a= E
emission coefficient of energy type j (as shown
in Table 1), and GDP, stands for the total output value of B = E
industry i. W
Tapio Model _ [
=X
The “decoupling” theory originates from the X
concept of “decoupling” in the field of physics and was o =—
first proposed by the OECD [24, 25]. It aims to break P
Table 1. Carbon emission coefficients of energy.
Coal Crude Gasoline Kerosene Diesel Fuel oil Natural gas
Factor 0.7476 0.8363 0.8140 0.8442 0.8616 0.8823 0.5956
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In the formula, C represents the total carbon
emissions from export trade, £ denotes the total energy
consumption, W represents the total output value of
the industry, X is the total export trade volume, and P
represents the population size. The parameters a, B, v,
and 9, respectively, represent energy structure, energy
intensity, export industry structure, and economic scale.

Using the LMDI model, after eliminating
unexplainable residuals, the total contribution of export
trade to carbon emissions is AC. The contributions
of energy structure, energy intensity, export industry
structure, economic scale, and population size to carbon
emissions are Aa, AP, Ay, A, and AP, respectively.
The expression is as follows:

AC=Aa+AB+Ay+ A8+ AP = Ct —C°
Ct_cO (Zt
lnCt—lnCO N0

Bt
AB = ZIn lnC0 @

Ct_Co yt
Ay = Zln lnC01 y°

Ct_CO 8t
S
1nct—1nc0 50

Pt
AP = Zln lnC01 po

In the formula, Aa represents the change in carbon
emissions due to the energy structure factor from the
base year to year ¢, assuming all other factors remain
constant. Similarly, AB, Ay, Ad, and AP respectively
represent the changes in carbon emissions due to energy
intensity, export industry structure, economic scale, and
population size from the base year to year ¢, assuming
all other factors remain constant.

Ao =

A =

Carbon Emission Early Warning
Selection of Early Warning Indicators

The indicator system involved in export trade is
vast and complex, making it challenging to consider
all factors influencing carbon emissions from export
trade. According to the principles of constructing an
early warning indicator system, based on the monitoring
data of carbon emissions from China’s export trade,
we have developed an early warning model for carbon
emissions from export trade. This model ensures that the
relationships between various factors are hierarchical
and systematic, providing a feasible basis for the current
monitoring and early warning of carbon emissions
from export trade. Our study selects the following four
main variables as early warning indicators to measure
the impact on carbon emissions from export trade.

The specific calculation methods for these indicators are
as follows:

X — Xp
L1=t t—1

Et—l/Et
Ly
Xt

L, =

* 7 GDP,

L3=

In the formulas, L, represents the export trade
growth rate, L, represents the export trade carbon
emission rate, L, represents the energy consumption
elasticity coefficient, and L, represents the export trade
dependency.

Gray Relational Dynamic Analysis

The relational analysis method is used for dynamic
comparative analysis of variable development trends and
has quantitative characteristics [28, 29]. It aligns with
the dynamic principles of early warning and can be used
for early warning analysis of carbon emissions from
China’s export trade. Gray relational analysis (GRA) is
particularly suited for analyzing complex systems where
relationships between variables are uncertain or not
fully understood, which is common in environmental
and economic studies. The GRA method is based on
gray system theory, which allows for exploring dynamic
systems with incomplete or limited data, providing a
quantitative measure of the strength of relationships
between multiple variables. This is particularly
important in this study, where various interdependent
economic and environmental variables may influence the
driving factors of carbon emissions. Since the selected
early warning indicators are primarily inverse indicators
and moderate indicators, a mean normalization method
is uniformly applied to process the data for each early
warning indicator. This results in dimensionless early
warning indicator data. This normalization ensures
that all variables are on a comparable scale, which is
crucial for accurately assessing their relative influence
on carbon emissions. By using GRA, we aim to quantify
not only the correlations between indicators but also
to infer potential causal relationships. Variables with
high gray relational coefficients will likely significantly
impact carbon emissions, indicating possible causality.
The further established covariance matrix can reflect the
variation degree of each early warning indicator in the
original data and contain information on the degree of
mutual influence among the early warning indicators.
The calculation formula is as follows:
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L=Li/L,

— =1 Li(®)
L, —N

In the formula, L, represents the value of the i-th
early warning indicator. Next, we calculate the gray
relational coefficients by first computing the difference
sequence. The absolute differences between L, and the
reference sequence L, at each time point are as follows,
with the calculation formula given below:

Ai = |Li - L0|

Thus, we derive the difference sequence for the
dimensionless early warning indicators. Then, we take
the minimum and maximum values of the two levels to
calculate the numerator of the gray relational coefficient.
In this study, we use 0.5 as the distinguishing coefficient
to prevent distortion of the gray relational coefficient
caused by excessively large maximum values, thereby
enhancing the significant differences between the gray
relational coefficients. The data are then substituted into
the gray relational coefficient calculation formula:

min;[A;(min)] + 0.5max;[A;(max)]
|Lo(t) — L, (t)| + 0.5max;[A;(max)]

W;(t) =

In the formula, W(f) is the relative difference
between the comparison curve L, and the reference
curve L, at time . This becomes the gray relational
coefficient of L, relative to L, at time ¢ The gray
relational coefficient quantifies the degree of similarity
between the development trends of different indicators,
providing insight into the strength of their relationships
with carbon emissions. While GRA primarily reflects
correlation, high gray relational degrees can suggest
underlying causal relationships, making it a useful
tool in identifying key drivers of carbon emissions. To
centrally process the information of related indicators,
the average value r of the gray relational coefficients
at each time point is calculated using the following
formula:

DXL 0]
TTTN

In the formula, the comparison sequence is L, and
the reference sequence is L, The gray relational degree

Table 2. Classification of early warning levels.

between L and L,is r. The closer the  value is to 1, the
higher the correlation between the indicators. In this
study, gray relational analysis not only helps determine
the strength of the relationship between driving factors
and carbon emissions but also aids in exploring potential
causal pathways, offering insights into how different
factors may contribute to or mitigate carbon emissions
over time.

Early Warning Interval Setting

To quantitatively use the statistical early warning
system, we first conduct a correlation test on the early
warning indicator variables. Based on the analysis
of the gray relational coefficient » values of the early
warning indicators, we then select the appropriate
indicators. Subsequently, we perform interval analysis
according to the correlation coefficients and make
a comprehensive judgment of the warning levels by
combining the importance of the indicator variables.
This process identifies early warning signals categorized
as green warning, yellow warning, and red warning.
Finally, based on the relationship between warning
signals and various socio-economic impact factors,
we provide early warnings on the severity of carbon
emission monitoring in export trade, further determining
the levels of mild, moderate, and severe warnings,
as shown in Table 2.

Results
Carbon Emissions

As shown in Fig. 1, the total carbon emissions
generated by China’s export trade have generally
exhibited an upward trend. In 2013, the total carbon
emissions from China’s export trade amounted to
198,192.82x10* tons, which increased to 258,094.39x10*
tons by 2022, marking a growth rate of 30.22%.
In 2016, demand weakened due to significant economic
slowdowns in emerging market countrics. However,
from 2017 to 2022, the trend remained positive. Despite
the outbreak of the COVID-19 pandemic in China
in 2020, it did not appear to impact the total carbon
emissions from export trade significantly. In both 2020
and 2021, the total carbon emissions from China’s
export trade remained well above 2.00x10° tons. This
can be attributed to China’s relatively effective pandemic
control measures.

Warning level r value range Meaning Significance Early warning signal
Mild [0,0.35] Weak Correlation Good Green
Moderate [0.35,0.65] Moderate Correlation Fair Yellow
Severe [0.65,1] Strong Correlation Poor Red
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Regarding the total carbon emissions generated by
export trade across different industries, the industrial
sector contributed the highest emissions among all
sectors. From 2013 to 2022, the industrial sector’s
export trade generated approximately 1.98x10" tons
of carbon emissions, accounting for 97.74% of China’s
total cumulative carbon emissions over the same period.
Although the other four major sectors also produced
significant carbon emissions, their contributions were
negligible compared to the industrial export trade.

Correlation Analysis

Agriculture shows a significant negative correlation
with industry, construction, storage, and total carbon
emissions, whereas industry has a significant positive
correlation with agriculture, construction, storage,
wholesale, and total carbon emissions (Fig. 2).
Construction is significantly negatively correlated with
agriculture, storage, and wholesale but significantly
positively correlated with industry and total carbon
emissions. Storage shows a significant negative
correlation with agriculture, construction, and total
carbon emissions, as well as a significant positive
correlation with industry and wholesale. Wholesale
is significantly negatively correlated with agriculture
and total carbon emissions and significantly positively
correlated with industry, construction, and storage.
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Overall, total carbon emissions are negatively correlated
with agriculture but positively correlated with
industry, construction, and storage, all with significant
correlations. This indicates that industry is the primary
driver of carbon emissions, while agriculture negatively
correlates with other industries (especially industry,
construction, and storage), suggesting that as carbon
emissions in these industries increase, agricultural
emissions decrease, and vice versa. Construction and
storage also significantly impact total carbon emissions
but show a negative correlation with agriculture and
wholesale. Although the wholesale sector has some
impact on total carbon emissions, it is not as significant
as industry and construction.

Decoupling Relationship Analysis

As shown in Table 3, the decoupling relationship
between China’s export trade volume and total carbon
emissions has exhibited significant variations over
different years. From 2014 to 2017, carbon emissions
decreased while export trade volume increased,
indicating weak decoupling and recession decoupling
phenomena. From 2017 to 2019, although both carbon
emissions and export trade volume increased, the
decoupling index remained low, still reflecting weak
decoupling. From 2019 to 2021, the increase in carbon
emissions outpaced the growth in export trade volume,
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Fig. 1. Total Carbon Emissions from China’s Export Trade (2013-2022).
Note: Agriculture includes farming, forestry, animal husbandry, and fishery. Storage includes transportation, storage, and postal services.

Wholesale includes wholesale and retail trade.
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Fig. 2. Correlation analysis of carbon emissions from China’s export trade.

Note: * presents a significant difference P<0.05.

leading to expansive negative decoupling and expansive
coupling phenomena. In 2021, the decoupling index
reached its highest level, indicating a significant increase
in both carbon emissions and export trade volume,
characterized by expansive coupling.

In the long term, from 2013 to 2022, although
both carbon emissions and export trade volume
increased substantially, the overall state was one of
weak decoupling. Overall, China exhibited weak
decoupling in most years, but recent years have shown
signs of expansive negative decoupling and expansive
coupling. This highlights the need to further strengthen

environmental policies and technological innovations to
achieve true decoupling.

Driving Factors

As shown in Table 4, from 2014 to 2022, the changes
in carbon emissions from China’s export trade were
influenced by multiple factors. The energy structure
significantly reduced carbon emissions from 2014 to
2016, with a reduction of 15,001.64x10* tons in 2016.
However, starting in 2018, it gradually increased,
reaching 21,557.90x10* tons in 2022. Energy intensity

Table 3. Analysis of the decoupling relationship between China’s export trade volume and total carbon emissions.

Year AC/C AX/X Decoupling Index Decoupling Type
2014-2013 0.0003 0.0575 0.0063 Weak Decoupling
2015-2014 -0.0593 -0.0291 2.0346 Recession Decoupling
2016-2015 -0.0681 -0.0125 5.4465 Recession Decoupling
2017-2016 0.0268 0.1149 0.2333 Weak Decoupling
2018-2017 0.0368 0.0784 0.4705 Weak Decoupling
2019-2018 0.0594 0.0389 1.5270 Expansive Negative Decoupling
2020-2019 0.0477 0.0284 1.6747 Expansive Negative Decoupling
2021-2020 0.0912 0.1821 0.5007 Weak Decoupling
2022-2021 0.1101 0.1209 0.9110 Expansive Coupling
2022-2013 0.3022 0.8597 0.3515 Weak Decoupling
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contributed to reducing carbon emissions in most
years, notably in 2017 and 2021, with reductions of
12,370.43x10* tons and 20,459.99x10* tons, respectively.
However, in 2020, energy intensity increased by
2,291.33x10*  tons, negatively impacting carbon
emissions. The export industry structure positively
impacted carbon emissions in the early years, increasing
by 1,575.77x10* tons in 2014, but fluctuated in recent
years. In 2017, the export industry structure reduced
carbon emissions by 3,647.64x10* tons, while in 2022, it
reduced them by 19,259.25x10* tons, demonstrating the
significant impact of industry structure adjustments on
carbon emissions.

Economic scale was the primary driving factor for
the increase in carbon emissions, with positive values in
all years. Particularly in 2017 and 2021, it contributed the
most to carbon emissions, increasing by 22,231.91x10*
tons and 45,069.33x10* tons, respectively. This indicates
that the expansion of economic scale was the main
driving force behind the growth in carbon emissions.
The impact of population size was relatively small and
stable, with changes ranging from -1,535.06x10* tons to
967.02x10* tons in most years. It only slightly increased
in 2014 and 2015, while the impact remained stable in
other years.

Early Warning of Carbon Emissions
from China’s Export Trade

Fig. 3 illustrates the relationships between export
trade growth rate, export trade carbon emission rate,
energy consumption elasticity coefficient, export trade
dependency, and export trade carbon emissions. The
gray relational coefficients not only indicate the strength
of the relationships but also suggest potential causal
links between these factors and carbon emissions.
Regarding the export trade growth rate, as China’s
total exports have steadily increased, the growth rate

of China’s export trade expanded from 4.14% in 2014
to 13.16% in 2022. Its gray relational coefficient with
export trade carbon emissions has consistently remained
above 0.88, reaching 0.9845 in 2022. This strong
correlation suggests that the rapid increase in export
trade directly contributes to higher carbon emissions,
primarily through increased industrial production and
energy consumption.

In terms of the export trade carbon emission rate,
the proportion of carbon emissions generated by export
trade in total industry carbon emissions has generally
remained between 18.93% and 25.30%. Its gray
relational coefficient with export trade carbon emissions
has consistently stayed above 0.98, reaching 0.9915 in
2022. This indicates a near-linear relationship, where
any increase in export trade is closely followed by
a proportional increase in carbon emissions, likely
driven by energy-intensive industries. Such a strong
relational degree points to a direct causal pathway where
the scale and structure of export activities dictate carbon
output. Regarding the energy consumption elasticity
coefficient, a significant downward trend has been
observed since 2019, decreasing from 0.81 in 2019 to
0.21 in 2022. Its gray relational coefficient with export
trade carbon emissions has shown a clear upward trend
since 2019, reaching 0.9877 in 2022. This shift reflects
improvements in energy efficiency within China’s
export sector; however, despite these improvements,
the strong gray relational coefficient suggests that energy
consumption remains a key determinant of carbon
emissions. The causal link here lies in the continued
reliance on non-renewable energy sources, which means
that even small increases in energy use can lead to
disproportionately large increases in emissions. Export
trade dependency has consistently remained around
30%, with a dependency rate of 33.16% in 2022. Its gray
relational coefficient with export trade carbon emissions
has remained above 0.96, reaching 0.9672 in 2022.
The close relationship between export trade dependency
and carbon emissions highlights the systemic nature

Table 4. LMDI decomposition results of carbon emissions from China’s export trade (x10% t).

Year Aa AB Ay Ad AP AC

2014 -5285.42 -7959.25 1575.77 10768.24 972.51 71.85

2015 -13688.63 -3518.45 11638.85 -6505.49 967.02 -11106.71
2016 -15001.64 -7275.01 12581.40 -414.87 -1838.78 -11948.89
2017 -844.99 -12370.43 -3647.64 2223191 -538.48 4830.36
2018 529.51 -9788.79 1174.75 15886.70 -905.15 6897.03
2019 5564.78 -4163.52 2760.85 6845.68 812.05 11819.83
2020 5482.90 2291.33 -3703.74 7421.56 -1535.06 9956.99
2021 9146.08 -20459.99 -11779.54 45069.33 -1030.57 20945.31
2022 21557.90 -5262.61 -19259.25 35051.80 -3652.01 28435.81
Total 7460.47 -68506.74 -8658.55 136354.86 -6748.47 59901.58
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of the trade-emissions link in China’s economy.
As China’s economic growth relies heavily on exports,
any fluctuations in trade dependency are likely to
result in immediate changes in carbon emissions. This
suggests a deep-rooted causal chain where economic
dependency on trade reinforces carbon-intensive
production processes.

As shown in Table 5, by performing carbon
emission early warnings for various indicators, it
can be seen that the export trade growth rate, export
trade carbon emission rate, energy consumption
elasticity coefficient, and export trade dependency
have all reached severe early warning levels, with the
energy consumption elasticity coefficient having the
lowest r value of 0.6928. These severe warning levels
highlight the urgent need for interventions to decouple
economic growth from carbon emissions. The high
gray relational coefficients across all these indicators
suggest a network of interlinked causal chains, where
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export trade is the central driving force, amplifying
both energy consumption and carbon emissions. The
export trade growth rate has the highest correlation with
export trade carbon emissions, indicating that the export
trade growth rate is the primary driving factor for the
increase in carbon emissions from China’s export trade.
This suggests that policies aimed at reducing carbon
emissions must address the scale of export trade and the
energy efficiency of production processes, as these are
the key factors driving the upward trend in emissions.

Discussion

In recent years, China’s foreign trade openness has
increased steadily, with rapid export growth to emerging
economies [30, 31]. The “Belt and Road” initiative and
establishing the China-ASEAN Free Trade Area have
created both opportunities and challenges for China’s
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Fig. 3. gray relational coefficients of various indicators with total carbon emissions from export trade.

Table 5. Early warning levels of various indicators.

r-value Meaning Significance Warning level Early warning signal
L1 0.9471 Strong Correlation Poor Severe Red
L2 0.9915 Strong Correlation Poor Severe Red
L3 0.6928 Strong Correlation Poor Severe Red
L4 0.9811 Strong Correlation Poor Severe Red
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trade development [32, 33]. Export trade is a “double-
edged sword”; while it drives China’s economic growth,
it also directly leads to a continuous increase in domestic
carbon emissions, exacerbating China’s environmental
pollution problems [34]. Predicting and assessing carbon
emissions from China’s export trade in a low-carbon era
is crucial for meeting global climate regulations [35, 36].

For decades, China’s economic growth has relied
on an export-oriented model [37]. At present, China
faces multiple pressures, including resource and
environmental constraints, CO, emission reductions, and
sustainable economic growth [38, 39]. Optimizing the
import-export structure, enhancing trade quality, and
shifting focus from exports to domestic consumption
could help China align its economy with long-term plans
to “adjust structure and expand demand”. This would
also address the embodied carbon in exported goods,
promoting both economic and environmental benefits
[40, 41].

Our study calculated total carbon emissions from
China’s export trade from 2013 to 2022, showing an
output of around 2.02x10" tons of carbon emissions.
The industrial sector is the largest -contributor,
responsible for over 97% of total emissions, driven by
the high energy needs of industries like steel, cement,
and chemicals. This strong link between industrial
growth and emissions reflects how increased production
leads to higher fossil fuel use, thus boosting carbon
emissions. According to the China Energy Statistical
Yearbook (Table 6), China’s industrial sector continues
to heavily consume coal and crude oil, which supports
economic growth but increases environmental pressure.
China has recognized this issue and has been investing
significantly in renewable energy to reduce reliance on
fossil fuels [42, 43].

An analysis of energy consumption elasticity further
demonstrates the link between energy use and export
trade. Although energy efficiency has improved in
recent years, our gray relational analysis reveals that

Table 6. Energy consumption in China’s industrial sector (2013-2022).

even small increases in energy use can significantly
impact carbon emissions due to China’s heavy reliance
on coal and other fossil fuels. This suggests that changes
in energy efficiency, especially in the industrial sector,
directly affect carbon emissions.

Carbon emission intensity is another key indicator
in calculating emissions [44]. Using 2022 data (Fig. 4),
the carbon emissions per billion yuan of export output
in agriculture, industry, construction, transportation,
and retail were 0.03, 1.12, 0.24, 0.47, and 0.02 million
tons, respectively. The industrial sector had the highest
emission intensity, making up 1.88x10* tons per
billion yuan in 2022. From 2013 to 2022, the carbon
emission intensity of China’s export trade decreased by
approximately 33.10%, reflecting a partial decoupling of
economic growth from environmental impact. However,
our analysis shows that while emission intensity is
decreasing, total emissions continue to rise due to export
growth, highlighting a causal chain where export-driven
growth still leads to higher emissions despite gains in
efficiency [45, 46].

After decomposing the factors influencing carbon
emissions from China’s export trade, it is clear
that from 2014 to 2022, economic scale and export
industry structure were the main drivers of carbon
emission changes, with energy structure and energy
intensity also playing significant roles. Although
emissions were reduced in some years, the overall
trend remained upward. The key factors identified —
economic scale, energy intensity, and industry structure
— show a complex link between economic growth and
environmental impact. For instance, while energy
structure adjustments can temporarily reduce emissions,
continued growth in energy-intensive industries directly
impacts carbon emissions.

The early warning system proposed has theoretical
value but faces challenges in practical application.
Monitoring and updating data for key indicators like
energy consumption elasticity and export growth

Coal Crude Gasoline Kerosene Diesel Fuel oil Natural gas
2013 403157.01 48503.42 523.38 27.41 1675.88 2421.05 1129.06
2014 390497.43 51502.10 489.04 17.36 1595.28 2835.74 1221.33
2015 378190.00 54752.43 477.08 21.16 1516.37 3133.03 1234.48
2016 367435.00 57103.59 436.32 19.96 1412.91 3035.41 1338.59
2017 371160.00 59393.50 382.10 14.55 1459.94 3043.74 1575.25
2018 380696.00 62995.51 296.51 24.94 1259.47 2688.17 1940.07
2019 387268.00 67259.08 262.00 10.97 1290.60 2612.54 2092.05
2020 390891.00 69476.54 183.97 9.39 1026.12 3262.33 2304.02
2021 417585.00 72298.29 194.28 8.98 1192.49 3130.65 2678.25
2022 437175.00 70022.29 307.01 7.95 1645.00 3264.03 2675.79

Note: The unit of measurement for natural gas is 100 million cubic meters, while other energy sources are measured in 10,000 tons.
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Fig. 4. Carbon emission intensity of China’s export trade in 2022.

requires ongoing coordination among government
agencies and industries. To keep the system effective,
data collection must be integrated into the regulatory
framework and be supported by policies that enforce
carbon reduction, especially in key sectors like steel and
cement.

Aligning the early warning system with international
climate commitments may also be challenging. As
China’s export trade is deeply embedded in global
supply chains, any policy change must consider impacts
on trade and competitiveness. International cooperation,
such as aligning the system with global carbon standards,
will be essential for its success, requiring integration
into both domestic and international frameworks.

To reduce export-related carbon emissions, several
policies are recommended. First, since the industrial
sector is the largest source, reducing reliance on coal
through renewable energy development is critical.
Energy efficiency improvements are also vital. The study
highlights a strong link between energy consumption
elasticity and emissions, with a decrease from 0.81
in 2019 to 0.21 in 2022. Better energy efficiency
management and stricter standards will help decouple
growth from emissions, encouraging firms to adopt
advanced processes and technology [47]. Optimizing
export product structures by promoting high-value, low-
energy industries will further reduce carbon intensity
and support trade sustainability. Carbon markets and
carbon taxes can also drive emission reductions by
providing economic incentives for low-carbon practices.

Logistics and supply chains significantly contribute
to emissions. Promoting clean energy vehicles,
optimizing transport routes, and adopting green
packaging are essential steps to lowering the logistics
sector’s footprint.

International cooperation is key for China, the
world’s largest exporter and emitter. Aligning policies

Industry  Construction

Storage ~ Wholesale Total

with global standards and participating in climate
governance can enhance China’s global influence, while
integrating the early warning system with international
frameworks will strengthen cross-border coordination.

Finally, promoting green consumption and raising
public environmental awareness is crucial for long-
term change. Encouraging low-carbon products and
sustainable consumption behaviors can drive broader
environmental goals, with green campaigns supporting
both corporate and consumer shifts toward a low-carbon
economy.

These measures, supported by empirical data and
theoretical analysis, can help China control export trade
emissions, align economic growth with environmental
goals, and achieve its “dual carbon” objectives.

Limitations

In this study, we selected the Tapio decoupling
model and the Logarithmic Mean Divisia Index (LMDI)
model to analyze the relationship between carbon
emissions and export trade. While these models provide
a robust framework for analyzing the driving factors of
carbon emissions, their selection is based on specific
advantages over other existing models and certain
limitations that should be acknowledged. The Tapio
decoupling model was chosen for its ability to quantify
the decoupling relationship between economic growth
and environmental degradation through elasticity
analysis. Unlike earlier decoupling models that focused
primarily on static snapshots of economic-environment
relationships, the Tapio model offers a dynamic
approach, allowing for the assessment of changes over
time. However, one limitation of the Tapio model is
that it primarily focuses on the direct relationship
between variables such as trade volume and carbon
emissions without considering the potential impact of
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other macroeconomic factors, such as policy shifts or
technological advancements, which may influence the
decoupling results. This limitation is partially addressed
by including the LMDI model, which allows for a
decomposition of the factors driving carbon emissions.

The LMDI model is widely recognized for its
ability to decompose changes in carbon emissions into
various contributing factors, such as energy intensity,
economic structure, and population size. This method
ensures that all factors are accounted for without
leaving any unexplained residuals, which is a common
issue in other decomposition methods like the Shapley-
Sun method. However, the LMDI model is not without
limitations. One significant limitation is its reliance on
historical data, which may not fully capture the future
impact of emerging technologies or unanticipated shifts
in global trade policies. Additionally, while the LMDI
model provides a thorough breakdown of influencing
factors, it assumes that they are independent, which
may not always reflect the complexities of real-world
interactions. Other models, such as the Environmental
Kuznets Curve (EKC) hypothesis, while useful in
explaining the relationship between economic growth
and environmental degradation, tend to oversimplify the
dynamics between trade and carbon emissions. The EKC
hypothesis suggests that environmental degradation first
increases and then decreases with economic growth, but
it fails to account for the role of international trade and
its embodied carbon emissions, which are central to this
study.

Similarly, input-output analysis (IOA) has been used
in many studies to estimate the carbon footprint of trade
activities by tracing the flow of goods and services
across different industries. However, IOA models are
limited by their static nature. They often assume fixed
production technologies and consumption patterns,
which do not accurately reflect the dynamic nature of
modern global trade. Furthermore, IOA models often
rely on highly aggregated data, which may obscure
sector-specific trends in carbon emissions.

In comparison, combining the Tapio and LMDI
models allows for a more comprehensive and dynamic
analysis of the decoupling relationship between
carbon emissions and export trade. By integrating
these two models, we aim to provide a more nuanced
understanding of the factors driving carbon emissions in
China’s export trade and how these factors change over
time.

Despite the strengths of these models, future research
could benefit from integrating other methodologies,
such as agent-based modeling or system dynamics
models. These could offer more detailed insights into the
interactions between various economic, environmental,
and policy variables. These approaches could help
address some of the limitations mentioned and provide
a more holistic view of the factors influencing carbon
emissions in global trade.

Conclusions

Several key findings can be highlighted based on
the calculation and analysis of carbon emissions from
China’s export trade between 2013 and 2022. First,
the total carbon emissions from export trade have
significantly increased over the past decade, rising from
1,981.92 million tons in 2013 to 2,580.94 million tons
in 2022, representing a 30.22% growth. The industrial
sector remains the dominant contributor, accounting for
over 97% of the total emissions. Although improvements
in energy structure and intensity in certain years have
led to limited reductions in emissions, the overall
upward trend persists, reflecting the ongoing challenges
in reducing carbon emissions within a rapidly growing
trade sector.

Developing a gray relational early warning system
for carbon emissions from export trade has shown
potential in providing dynamic forecasting based on
early warning metrics. This system offers a valuable
tool for monitoring and predicting carbon emissions,
facilitating timely intervention and policy adjustments
to mitigate environmental impacts.

While the analysis provides important insights,
several unresolved issues warrant further research. One
critical area is the long-term effectiveness of policy
measures aimed at decoupling export growth from
carbon emissions. Future research should explore the
impact of emerging technologies, such as renewable
energy integration and smart manufacturing, on
reducing emissions in the export sector. Additionally,
further investigation into the role of international supply
chains in contributing to China’s carbon emissions
is needed, particularly in the context of global trade
dynamics.

Moreover, there is a need for more detailed sector-
specific analysis to understand the varying impacts
of different industries on overall emissions. This can
inform more targeted policy interventions. Finally,
expanding the scope of the early warning system to
incorporate international cooperation and cross-border
carbon accounting mechanisms could enhance its
effectiveness in addressing the global nature of carbon
emissions.

In conclusion, while this study highlights the
increasing carbon emissions from China’s export trade
and offers initial policy recommendations, the path
forward will require continued research and innovation
to achieve meaningful decoupling of trade from
environmental degradation.
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