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Abstract

Carbon dioxide (CO2) emission forecasting is crucial for efficient carbon reduction management. 
The majority of carbon emission prediction models are developed based on limited data, which are often 
collected annually and spatially sparse, and hence face the problems of overfitting and low robustness. 
Aiming at reliable estimation of CO2 emissions with a small-scale of data, we propose a CO2 prediction 
framework that incorporates a hybrid predictor with feature selection. The hybrid predictor, formed 
by a fractional-order Grey multivariate model (FGM) and an ensemble learning model, XGBoost, can 
capture both linear and nonlinear variations of CO2 emissions, demonstrating strong predictive ability. 
ReliefF is used for feature selection due to its ability to balance features’ importance and diversity, 
which helps reduce model overfitting. The forecasting effect of the proposed framework is validated on 
the county-level CO2 emissions in Shanxi Province, China, from 2012-2022. The results show that the 
proposed model is superior to other linear and machine learning prediction models and achieves a good 
forecasting effect, with RMSE, MAE, and R2 values of 1.73, 1.03, and 0.93, respectively. The Likelihood 
Ratio (LR) test, the soundness test, and the heterogeneity test have confirmed the generalizability and 
stability of our proposed hybrid model for CO2 emissions predictions, as well as the effectiveness of 
feature selection. Consequently, the prediction results of Shanxi’s CO2 emissions provide a reliable basis 
for spatial correlation analysis using Moran’s Index.

Keywords: CO2 emissions, feature selection, grey multivariate model, ensemble learning model, spatial 
autocorrelation.
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Introduction

Since September 2020, when China announced its 
goal of reaching a carbon peak by 2030 and carbon 
neutrality by 2060, plenty of studies have been 
conducted to predict national [1,2], provincial [3,4], or 
municipal carbon dioxide (CO2) emissions [5,6], and 
provide strategies for carbon reduction. These studies 
mainly focused on exploring various influencing 
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factors and/or developing prediction algorithms for CO2 
emissions, utilizing restricted statistical data. 

In terms of forecasting methods, three main 
categories can be grouped: statistical econometric 
models, machine learning models, and hybrid models 
with multiple stages [7-9]. The widely used econometric 
models include the Grey Model (GM) [9] and its 
variations [10-11], autoregressive integrated moving 
average (ARIMA) [12], vector autoregressive (VAR) 
[13], multivariate linear regression (MLR), and the 
Bayesian model [14]. Econometric models are often 
based on economic theory, making it possible to explain 
the causal relationship behind the prediction. Moreover, 
some models, such as MLR, can be statistically 
extrapolated. However, they operate under the premise 
that the correlation between variables is linear and 
stable, which cannot always be ensured for carbon 
emissions fluctuating with complex factors. Machine 
learning models have the ability to handle complex 
nonlinear data. The models used for CO2 emission 
forecasting include back propagation (BP) neural 
networks [15-16], support vector regression (SVR) 
[17], random forest (RF) [8], extreme learning machine 
(ELM) [18] and long short-term memory (LSTM) [19]. 
These models can learn from historical data and achieve 
high-accuracy predictions of CO2 emissions. However, 
they require large amounts of data for training. When 
the data is limited, they easily overfit, resulting 
in low generalization. Multi-stage hybrid models 
combine different methods to achieve better prediction 
performance, which is often done through multiple 
stages. Lin et al. [20] combined the multivariable Grey 
Model (GM) with genetic programming (GP) in the 
second stage to lower the forecasting error. Wen and 
Yuan [15] established a BP neural network prediction 
model with the first step of index quantization selection 
using random forest and then performance optimization 
using particle swarm optimization (PSO). Li et al. [21] 
proposed a complicated hybrid model, DNCHAE, which 
includes variational mode decomposition (VMD), neural 
networks, ensemble empirical model decomposition, 
error correction, and least squares support vector and 
runs diverse optimization for each step in order to reach 
excellent performance in terms of evaluation metrics. 
However, such a complex model will be excessively 
sensitive to parameters. 

To develop prediction models of carbon emissions, 
most studies rely on the annual data of CO2 emissions and 
their influencing factors, such as energy consumption, 
production of fossil fuels, GDP, and population [17, 20, 
22]. For example, Qiao et al. [17] forecasted the carbon 
emissions of 12 countries with 53 data points for each 
country, of which 48 are used as a training set, and 5 are 
used as a test set. Some projects, such as Carbon Monitor 
[23], provide daily carbon emission data, but only at the 
country level. A significant problem is raised: how can a 
data-driven model achieve reliable predictions with the 
limited carbon estimations data?

Feature selection is a crucial step in machine 
learning and statistics that involves choosing a subset 
of relevant features to improve model performance, 
reduce overfitting, and enhance interpretability. Studies 
have shown that the prediction factors selected based on 
the random forest can improve the prediction accuracy 
of carbon emissions [8]. Kong et al. [18] employed 
a two-stage feature selection composed of partial 
autocorrelation function (PACF) and ReliefF to select 
appropriate inputs for the CO2 prediction model. The 
feature selection approaches, broadly classified into filter 
methods, wrapper methods, and embedded methods, are 
based on distinct mathematical theories and possess 
unique properties. Therefore, the appropriateness of 
feature selection methods for a particular task depends 
on factors such as dataset characteristics, the nature of 
the problem, and the available computational resources. 

By reviewing existing studies, it can be seen that 
the majority of researchers prioritize the accuracy of 
the prediction model while neglecting the stability of 
the forecast [17]. Moreover, prediction models are often 
established using annually collected and spatially sparse 
data. Thus, they face the problem of overfitting with a 
small-scale dataset. 

To solve this problem, we propose a CO2 emissions 
prediction framework by incorporating a hybrid 
prediction method with feature selection. Taking 
multi-source data of NPP/VIIRS nighttime light, 
socioeconomic statistics, and meteorological data as the 
input, we first evaluate the potentials of various feature 
selection methods in determining the most important or 
relevant features for CO2 prediction. Then, we establish 
a hybrid predictor by incorporating a multivariate Grey 
model with the XGBoost model, which uses the selected 
features to predict CO2 emissions. Lastly, Moran’s 
Index is applied to analyze the multivariate spatial 
pattern of CO2 emissions. To verify the effectiveness of 
the proposed framework, we take the carbon emission 
prediction of Shanxi Province, China, as an example. 
Shanxi Province is a major coal production and energy 
chemical base in China [24], ranking fourth in terms 
of per capita carbon emissions and carbon intensity 
per unit of GDP in China in 2020 [25]. In this paper, 
we analyze and predict the state of county-level carbon 
emissions in Shanxi Province. The predictive model can 
be used for more granular carbon emissions prediction, 
providing a scientific basis for developing differentiated 
carbon reduction policies at the city-county level. 

The main contributions of this study are threefold:
(1) We propose a research framework for CO2 

emissions prediction, which can reach accurate 
predictions with limited historical data. This framework 
effectively explains the comprehensive associations of 
CO2 emissions by determining independent variables 
from multi-source indicators, which are derived from 
nighttime light images, socioeconomic statistics, and 
meteorological records. It realizes accurate prediction 
by incorporating the abilities of multivariate Grey 
prediction FGM and ensemble learning XGBoost, 
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considering both linear and nonlinear relationships 
between multi-variables and CO2 emissions.

(2) We comprehensively study the significance of 
feature selection for CO2 prediction with small data. 
The results raise awareness about the diversity of 
feature selection, and key feature selections importantly 
determine the performance of feature selection 
techniques. We point out that Relief is an adequate 
feature selection method in this study.

(3) We thoroughly analyze the prediction model 
performance through statistical tests, including the LR 
test, the soundness test, and the heterogeneity test. The 
LR test confirms the effectiveness of feature selection. 
The soundness test and heterogeneity test confirm that 
our model has good generalization performance and 
prediction stability.

Material and Methods

Data Sources

The research data used in this study are sourced 
from multi-modal data of Shanxi Province, China, 
from 2012 to 2021. Shanxi Province is situated between 
latitudes 34°36′N and 40°44′N and longitudes 110°15′E 
and 114°32′E. Covering a total area of 156,700 square 
kilometers, the province had a resident population of 34.8 
million people as of the end of 2022. Administratively, 
Shanxi is divided into 11 prefecture-level cities and 117 
county-level units. Shanxi experiences four distinct 
seasons, notable climate differences between the 
north and south, and significant diurnal temperature 
variations, ranging from 4.2°C to 14.2°C. Shanxi is 
abundant in mineral resources and holds an important 
position in the national mining economy as a resource-
rich province. The province's economic and industrial 
structure has long relied on coal, resulting in significant 
total carbon emissions and high emissions intensity. 
Moreover, the province faces prominent issues related to 
energy resource structure [26].

The data sources include nighttime lights imagery, 
administrative boundary vector maps of Shanxi 
Province, socioeconomic statistical data, meteorological 
data, and county-level carbon emissions data. Table 1 
summarizes the sources and specific uses of these data.

Data Preprocessing

We preprocessed these data sources and extracted 
features to construct our dataset. As shown in Table 
2, a total of 19 factors were extracted as potential 
independent variables for CO2 emissions prediction. The 
details of data preprocessing are described below.

VIIRS Nighttime Lights Data

We first extract nighttime lights (NL) indexes from 
remote sensing NL imagery. The NL index, which 
effectively indicates the intensity of human social 
activities, has demonstrated a strong correlation with 
carbon emissions [16,27,28]; therefore, it can reflect 
regional carbon emission levels.

The annual NL imagery used in this study is from 
version 2 of the Visible Infrared Imaging Radiometer 
Suite (VIIRS VNL V2) dataset. The NL images are 500 
meters in spatial resolution and produced by the Earth 
Observation Group (EOG) [29]. 

Since the study area is Shanxi Province, global NL 
images need to be cropped only for Shanxi Province. 
To do so, the global NL images and the administrative 
boundary vector maps of Shanxi Province are first 
projected to the GCS_WGS_1984_UTM coordinate 
system, and then the NL images, which retain only 
the data of Shanxi Province, are cropped based on the 
administrative boundary using ArcGIS software. Next, 
to mitigate the impact of extreme outliers and noise in 
the NL data, pixel values exceeding a radiance threshold 
of 472.86 are smoothed using an 8-neighborhood 
denoising technique, and pixel values below 0.5 are 
considered background noise and set to zero [30]. 
Finally, seven NL indexes are computed for each county 

Data name Source Data description Data usage

Administrative 
boundary of Shanxi

Department of Natural Resources 
of Shanxi Province

Shapefile, a digital vector format 
for storing geometric location and 

attributes

Defining the administrative units 
for analysis

Nighttime lights 
imagery

Earth Observation Group (https://
eogdata.mines.edu/products/

vnl/#annual_v2)

Annual nighttime lights imagery, 
spatial resolution ~500m, 2012-

2021

Mapping nighttime light 
indicators to carbon emission for 

each city and county
County-level 

socioeconomic data
China Statistical Yearbook 

(County-level)
Annual statistical data from 2010-

2021
Influencing factors of carbon 

emissions

Meteorological data Shanxi Meteorological Bureau 
(http://shanxi. weather. com.cn)

Daily weather data of all counties 
in Shanxi from 2012-2021 

Providing climate factors for each 
city and county

County-level carbon 
emissions data

Emissions Database for Global 
Atmospheric Research (https://

edgar.jrc.ec.europa.eu/)

Annual CO2 emissions, 
0.1°x0.1°, from 1997-2021

Providing empirical data for 
carbon emissions prediction

Table 1. Multi-source data and their usage.
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of Shanxi from the denoised NL images, as shown in 
Table 3. These indexes are simple to compute; here, we 
only provide the equations for the sum of NL values 
NLsum, the average of NL, and the total number of 
pixels for which digital values are greater than zero in 
(1), (2), and (3), respectively.

  (1)

  (2)

  (3)

where, Di represents the brightness value of the ith 
pixel in a city or county, m represents the total number 
of pixels in the corresponding area, and II(·) denotes 
if the condition in the parentheses is met, it equals 1; 
otherwise, it equals 0. 

Socioeconomic Statistical Data

Socioeconomic statistical data are often annually 
reported, containing a wide range of information 
related to a region’s economic and social conditions, 
which can help make informed decisions to promote 
balanced and sustainable development. We obtained the 
socioeconomic data for Shanxi Province's regions from 
the "China Statistical Yearbook (County-level)" and the 
"China City Statistical Yearbook," published by China 
Statistics Press [31,32]. Although the data contain tens of 
data fields, many are not directly correlated with carbon 
emissions, and significant data gaps exist for various 
counties and districts. After eliminating some data fields 
and filling in the missing data by bilinear interpolation, 
we retain four key statistical indicators: Area, Gross 
Domestic Product (GDP), population, and per capita 
GDP (i.e., the ratio of GDP to the total population of the 
region).

Meteorological Data

The meteorological data of Shanxi province are 
reported daily and mainly include temperature, air 
pressure, relative humidity, and wind speed. To maintain 
the same dimensions as other data, we processed the 
daily meteorological factors into annual average values 

Source Indicator Description

Nighttime light (NL) data

NLsum Sum of NL digital number (DN) values

NLavg Average of DN values

NLstd Standard deviation (Std) of DN values

NLmax Maximum of DN values

NLmin Minimum of DN values

NLmed Median of DN values

NLcount Number of DN values > 0

Socioeconomic statistical data

Area Area of a region /km2

Pep Population of a region/ 104person

GDP GDP of a region /104Yuan

GDPc per capita GDP of a region /Yuan

Meterological data

Tmean Average of air temperature /°C

Tstd Std of air temperature

Hmean Average of relative humidity /%

Hstd Std of relative humidity

Wmean Average of wind speed /m/s

Wstd Std of wind speed

Pmean Average of air pressure /hpa

Pstd Std of air pressure

Table 2. Features for carbon emissions prediction.
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for each city and county. We computed the standard 
deviations of the four indicators, considering that the 
change of weather may affect or be affected by carbon 
emissions.

Dataset Construction

We aim to use all the indicators extracted from NL 
images, statistical data, and meteorological data (as 
listed in Table 2) to predict CO2 emissions. Therefore, 
the data must be on the same scale.

The county-level CO2 emissions data are sourced 
from the IEA Emissions Database for Global 
Atmospheric Research (IEA-EDGAR) v8.0, which 
can be downloaded from https://edgar.jrc.ec.europa.
eu/emissions_data_and_maps. The IEA-EDGAR CO2 
emission data are provided in 0.1deg x 0.1deg annual 
gridmaps. We processed the gridmaps according to 
the administrative boundary vector maps of Shanxi 
Province to generate the CO2 emissions (in a million 
tons /Mt) for each county/district of Shanxi. Since the 
available NL data started in 2012, we also used the CO2 
emissions data from 2012, covering a 10-year period 
from 2012 to 2021.

Since 2012, there have been some changes in 
Shanxi’s administrative divisions. The number of 
districts and counties changed from 119 (23 districts, 
11 cities, and 85 counties) to 117 (26 districts, 11 
cities, and 80 counties). To be consistent, we took the 
administrative divisions of 2020 as the baseline and 
integrated the data from previous years according to this 
baseline. The 11 prefecture-level cities include Taiyuan 
(TY), Datong (DT), Yangquan (YQ), Changzhi (CZ), 
Jincheng (JC), Shuozhou (SZ), Jinzhong (JZ), Yuncheng 
(YC), Xinzhou (XZ), Linfen (LF), and Lvliang (LV). In 
the end, a total of 117 county-level cities and counties 
were retained for analysis.

Overall, the dataset is constructed with 1170 data 
samples, each with 19 features. Therefore, the data 
from 2012 to 2019 will be used as the training set, 
while the data from 2020 to 2021 will serve as the test 
set to evaluate the performance of the carbon emissions 

prediction model. This study faces the challenge of 
small-scale available data.

Method

The overall framework of CO2 prediction is 
demonstrated in Fig. 1. The process includes four 
steps: (1) data preparation; (2) feature selection; (3) 
prediction modeling; and (4) spatial pattern analysis 
of CO2. The data preparation, as explained in Section 
“Data Preprocessing”, produces a set of indicators to 
be used as features for predicting CO2 emissions. Let 
(xi,yi) be for i = 1,...,N be for N independent identically 
distributed samples,  be the k-dimensional 
vector, and yi be the true value of CO2 emissions. 
The input matrix to the feature selection method 
is denoted by , and 

. Feature selection filters 
out a subset of features based on feature importance, 
which is measured differently using various feature 
selection methods. We will use  to 
refer to the feature matrix after the feature selection step. 
Taking Xp as the input, the prediction model will learn 
from the historical time-series data and forecast future 
CO2 emissions. The prediction model’s performance 
is then verified by statistical tests for its effectiveness, 
generalizability, and stability. Finally, Moran’s Index is 
adopted to analyze the spatial patterns of CO2 emissions 
in Shanxi Province. 

Feature Selection Algorithms

Feature selection methods are broadly categorized 
into filter, wrapper, and embedded methods based on 
their interaction with the prediction algorithm. Filter 
methods are model-blind and rely on data properties; 
wrapper methods involve training models and selecting 
features based on model performance, and embedded 
methods integrate feature selection into the model 
training process using regularization or inherent 
model properties. Feature selection methods can also 
be considered based on the metric used to determine 
the feature importance, e.g., distance, correlation, 

Method Criterion Type

PearsonC Pearson correlation Univariate Filter

NMI Mutual information Univariate Filter

CFS Symmetrical uncertainty correlation Multivariate Filter 

mRMR Maximize relevance and minimize redundancy Multivariate Filter 

ReliefF Ability to discriminate between instances of different target values Multivariate Filter (weighting)

RFE Impact on a prediction model performance Wrapper

Lasso L1 Norm regularization Embedded 

RForest Average decrease in the impurity of the forest Embedded 

Table 3. The description of feature selection methods.
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similarity, information entropy, and weights in linear 
models. In this study, we investigated eight different 
feature selection methods, as listed in Table 3. 

Pearson coefficient (PearsonC). This is a filter 
method based on the Pearson coefficient ρ, which is 
computed between every feature Xi, and the target of 
CO2 emission Y: 

  (4)

where, Cov is the covariance and σ is the standard 
deviation. The range of ρ is [-1, 1]. A value of ρ close to 
0 indicates that the two variables are not correlated.

Normalized Mutual Information (NMI). The NMI 
method is non-parametric (it does not assume a specific 
form or distribution) based on entropy estimation. It 
goes beyond the Pearson correlation, which is a linear 
model sensitive to outliers. The NMI is defined as: 

  (5)

where MI is the mutual information, measuring 
the amount of information obtained about one random 
variable through another random variable. H denotes 
the information entropy, and H(Y) = MI(Y, Y). The NMI 
is between 0 and 1. A value close to 1 indicates a high 
correlation between the two variables.

Correlation-based Feature Selection (CFS). This is 
also a multivariate filter method, which selects a feature 
subset instead of individual features. CFS assumes that 
a good subset of features should contain highly relevant 
features to the target and not be related to each other. 
It uses a symmetrical uncertainty (SU) correlation 
coefficient to measure the correlation between variables, 
given by:

  (6)

Then, a merit metric is computed to rank each subset 
S containing k features:

Fig. 1. Flowchart of the methodology.



Incorporating Hybrid Prediction... 7

  (7)

where,  means the average SU correlation 
between the feature ( f∊X) and the target, and  is 
the average SU feature-feature intercorrelation. CFS 
aims to find an optimal subset of features that maximize 
Merits. 

Max-Relevance Min-Redundancy (mRMR). It uses 
a greedy algorithm to select features that maximize 
relevance and minimize redundancy. This involves 
iteratively adding the feature with the highest relevance 
to the target while ensuring it is minimally redundant 
with the already selected features. The mRMR score for 
feature Xi can be expressed as:

 

 
(8)

where  represents the average 
MI between feature Xi and all the features already in the 
subset S. 

ReliefF. This is a feature weighting algorithm, 
where the feature weight is defined as the ability to 
discriminate close observations. Features with weights 
below a certain threshold will be removed. As ReliefF 
was originally designed for a multi-class classification 
problem, it is necessary to discretize the dependent 
variable carbon emission when using it to select carbon 
emission factors. 

In each step, the Relief method randomly takes data 
point R from the training set, then finds k, the nearest 
neighbor of R with the same target class (i.e., NearHit), 
Hj( j = 1,2,..., k), and k, the nearest neighbor of R with 
different target classes (i.e., NearMiss), Mj( j = 1,2,...,  k). 
The weights for each feature are then updated as follows:

  (9)

where W(Xi) denotes the weights of Xi, dif(Xi,R1,R2) 
refers to the difference between R1 and R2 in the feature 
Xi.

Suppose the distance between R and NearHit on 
a feature is less than between R and NearMiss. In 
that case, it indicates that the feature is beneficial in 
distinguishing the nearest neighbors of the same class 
from those of different classes, and the weight of the 
feature is increased. Otherwise, the weight of the feature 
is reduced. The above process is repeated m times, and 
finally, the average weight of each feature is obtained. 

Recursive Feature Elimination (RFE). RFE, which 
belongs to the wrapper methods, iteratively removes the 
least important features based on model performance. 
It requires an external predictor to assign weights to 
features (e.g., a linear model or a decision tree). In this 
study, we used the decision tree regressor. RFE starts 
with model fitting all features, and at every step, it 
deletes the least important feature from the subset. That 
procedure repeats recursively until reaching the desired 
number of features to select. 

Least Absolute Shrinkage and Selection Operator 
(Lasso). As an embedded method, the Lasso feature 
selection method is essentially a linear regression model 
with L1 norm regularization. Because the L1 norm 
penalization in linear models tends to shrink the feature 
coefficients of some features to zero, it results in sparse 
solutions. The features with non-zero weights are the 
remaining important features. 

Random Forest (RForest). RF can be used as a tree-
based embedded feature selection method. The RF 
algorithm creates multiple decision trees using different 
samples obtained by random sampling with replacement 
(bootstrap sampling). At each split in the tree, a random 
subset of features is selected, and the best feature from 
this subset is chosen to make the split. This process 
introduces more diversity among the trees. Each time 
a feature is used to split a node in a decision tree, the 
algorithm measures the improvement in the splitting 
criterion (e.g., Gini impurity). The importance of a 
feature is calculated as the average decrease in impurity 
over all the trees in the forest. 

Prediction Model

In this paper, we consider multi-variable, multi-
step prediction for achieving more accurate prediction 
of CO2 emissions with limited data. With the selected 
features as the independent variables, our prediction 
method combines a fractional-order Grey multivariate 
model, FGM(1,N) [33], and an ensemble model, eXtreme 
Gradient Boosting (XGBoost), in order to capture both 
the linear and nonlinear variants of CO2 emissions and 
obtain stable prediction results. 

Different from the typical first-order Grey 
multivariate prediction model GM(1,N), FGM(1,N) is a 
fractional-order accumulation Grey model that adjusts 
the time-series data accumulation weights, which 
reflect the different importance of long- and short-term 
information in time-series data. Given the time-series 
CO2 emission data , and the 
sequences of the associated features are:

  
(10)
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Then, the r fractional-order accumulation operator 
is:

  
(11)

The weights are calculated as:

  
(12)

The whitening equation is:

  (13)

The parameters b1, b2, ..., bp+1 and u can be solved 
using the least square method.

  (14)

Although the Grey prediction model has some 
advantages in the case of small-scale data and has good 
interpretability, it is based on linear assumptions and 
expects the relationship between the variables to be 
linear and describable. This does not always hold true in 
practical applications. Studies have shown the nonlinear 
associations between economic factors (e.g., GDP and 
population) and CO2 emissions [34]. Moreover, the 
multivariate Grey model is sensitive to noise and outliers 
of input data. These noises and outliers may significantly 
affect the estimation of model parameters, which in turn 
affects the accuracy of the prediction results. Some 
advanced GM models have been proposed recently, 
such as the adjacent accumulation Grey multivariate 
convolution model (AGMC) [35] and adaptive weighted 
least squares model (AWLS) [36]. They improve the 
fitting performance of historical data and enhance the 
generalization performance of future trends. However, 
they are still essentially looking for better weights for 
feature combinations. 

To utilize the advantages of the Grey model in 
capturing time trend information and making up for 
its weaknesses in nonlinear modeling, we incorporate 
it with the ensemble model XGBoost. XGBoost is a 
decision tree-based ensemble learning algorithm that 
improves the model performance by progressively 
building multiple weak learners (usually decision trees) 

and optimizing the errors of the previous step at each 
step, meanwhile using regularization to reduce model 
complexity and prevent overfitting. 

The mathematical operation of XGBoost can be 
expressed as:

  (15)

where f l is the l-th weak learner and αl is its weight, 
L is the total number of learners.

The XGBoost aims to minimize the loss function, 
expressed as the following:

  (16)

where Ω( f l) is a regularization term to control the 
model’s complexity.

Historical data with selected features are used to 
train the hybrid model. We first solve the FGM using 
multi-variable time series with a time step of 5 and then 
use the FGM model to make initial predictions  on CO2 
emissions. Then, the residuals between the predictions 
and true values are computed, . Next, taking 
the preliminary predicted residual as a new feature, 
XGBoost is trained to model the trend of residuals. With 
the trained hybrid model, the predicted CO2 values are 
obtained by adding the initial predictions by the FGM 
model to the residual predictions by the XGBoost model.

Spatial Autocorrelation Model 

We employ the widely-used Moran’s index (Moran’s 
I) to investigate the county-level CO2 emission patterns 
from the spatial perspective [37]. Moran’s I measures a 
variable’s spatial autocorrelation and indicates whether 
similar values are clustered, dispersed, or randomly 
distributed. This is defined as the ratio of the covariance 
of a single variable between neighboring observations 
to the variance of that variable within the dataset, given 
by:

  
(17)

where n is the total number of observations,  is the 
mean value of the variable, yi and yj are the values at 
observations i and j, and δij is the spatial weight between 
i and j. Given a significant level (e.g., 0.05), the larger 
Moran’s I is, the higher the spatial correlation degree. 

Both global Moran’s I and local Moran’s I are used 
in this study. The former aims to compute the degree 
of clustering or disparity of CO2 emissions across 
Shanxi Province, whereas the latter aims to identify 
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clusters of similar or dissimilar CO2 emissions at the 
county level of Shanxi Province. By mapping the values 
of local Moran’s I onto the geographical map, specific 
areas where spatial autocorrelation is strong can be 
highlighted, which might be overlooked by global 
measures. This detailed insight helps governors to target 
interventions for carbon emissions more effectively.

Results and Discussion

In this section, we first analyze the different 
behaviors of feature selection methods and the impacts 
of their selection results on CO2 emission prediction. 
Then, we show the performance of our hybrid model 
with the optimal feature selection. We also carried out 
a Likelihood Ratio (LR) test, a soundness test, and a 
heterogeneity test to statistically verify the performance 
of the proposed hybrid model. Finally, we demonstrate 
the prediction results of the proposed model and provide 
a spatial analysis of Shanxi’s CO2 emissions in the last 
five years.

Evaluation Metrics

The performance of carbon emission prediction is 
evaluated using the root mean squared error (RMSE), 
mean absolute error (MAE), and coefficient of 
determination (R2) as evaluation metrics. The formulas 
are as follows:

  (18)

  (19)

  (20)

where yi represents the actual carbon emission 
values at the i-th area,  represents the predicted carbon 
emission values,  represents the mean of the actual 

Features PearsonC NMI CFS mRMR
(×1e-1) ReliefF RFE Lasso RForest

(×1e-2) Times

NLmin 0.08* 0.01 0 -0.46 13 1 0 1.98 1

NLmax 0.13** 0.06 0 -0.25 11 1 0 2.86 1

NLavg 0.20** 0.26 0 -1.08 8 0 0 1.81 1

NLcount 0.24** 1.00 0 0.02 2 0 2.39 7.06 5

NLsum 0.36** 0.20 0 0.30 9 1 0 2.93 4

NLstd 0.23** 0.07 0 -1.74 7 0 0 3.01 1

NLmed 0.11** 0.27 1 -1.91 12 0 0 2.74 2

Area -0.16** 0.01 0 24.23 1 1 -0.19 13.97 5

PEP 0.40** 1.02 0 1.53 5 1 6.59 21.53 7

GDP 0.44** 1.22 0 0.31 10 1 6.10 13.63 6

GDPc 0.30** 0.19 0 -0.87 6 0 1.49 9.03 4

Tmean 0.06 0.03 1 3.87 3 0 0 3.75 3

Tstd 0.02 0 0 -0.11 4 0 0 5.18 2

Wmean -0.05 0.03 0 0.47 16 0 0 1.95 1

Wstd -0.06 0 0 -5.72 15 0 0 1.42 0

Hmean -0.03 0.01 1 -6.07 18 0 0 2.17 1

Hstd -0.04 0 1 -2.82 19 0 0 1.26 0

Pmean -0.05 0.02 1 -1.99 17 0 0 2.06 1

Pstd -0.06 0 1 -8.12 14 0 0 1.66 1

Note:  *p < 0.05, **p < 0.01

Table 4. Variable importance measures using different feature selection methods. (Up to six important features are highlighted in bold 
for each method).
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carbon emission values, and N represents the total 
number of areas. 

RMSE is useful for evaluating the model's prediction 
error magnitude and prefers penalizing larger errors 
more heavily. MAE is less sensitive to outliers 
compared to RMSE. The smaller the RMSE and MAE, 
the more accurate the predicted results are. R2 measures 
the proportion of the variance explained by the model. 
The value range of R2 is [0,1], where a value closer to 1 
indicates a better fit of the model to the data. 

Analysis of Feature Selection

Table 4 shows the feature importance computed 
by eight diverse feature selection methods, including 
univariate filter methods Pearson correlation and NMI, 
the multivariate filter methods CFS, mRMR, and 
ReliefF, the wrapper methods RFE, and the embedded 
methods Lasso and RF. The bold values denote the top 
features selected by these methods. It should be noted 
that different methods provide different results. For 
Pearson correlation, NMI, mRMR, and RF, the feature 
importance is shown in scores; the higher the score, 
the more important the feature. For CFS and RFE, “1” 
and “0” indicate selected and not selected, respectively. 
For Lasso, the values represent the weights of a linear 
regression model; weights equal to zero mean the 
corresponding features are eliminated. ReliefF ranks 
features in descending order of importance. 

Table 4 shows that none of these eight approaches 
yield identical outcomes, but some common choices 
are demonstrated. The last column lists the times the 
corresponding feature was selected. The most selected 
features are PEP, GDP, Area, NLcount, GDPc, and 
NLsum. 

For the NL indicators, three methods, PearsonC, 
mRmR, and RForest, take NLsum as the most important 
feature, while NMI, ReliefF, and Lasso pick NLcount as 
the top feature. Only NLsum gains a Pearson correlation 
coefficient ρ ≥ 0.3 (p < 0.001), indicating a statistically 
moderate positive correlation with CO2 emissions in 
Shanxi Province.

All four socioeconomic statistical indicators are 
highly selected. In particular, PEP, GDP, and GDPc are 
moderately positively correlated with CO2 emissions 
(ρ ≥ 0.3, p < 0.001). However, there may be collinearity 
between these features. For example, GDPc, as the per 
capita GDP, is calculated by dividing the GDP by the 
population PEP. In the Lasso method, this phenomenon 
is avoided. The population PEP is chosen by seven 
methods, showing its significance to carbon emissions. 
Both PearsonC and Lasso show a linear negative 
influence of Area on CO2 emissions. This reveals that 
counties with large areas in Shanxi Province are not 
necessarily large carbon emitters. 

According to the Pearson coefficients, the 
meteorological indicators have no linear correlations 
with CO2 emissions. However, Tmean and Tstd are 
selected three and two times, respectively. This 

suggests that climate factors should be considered when 
predicting CO2 emissions.

Impact of Feature Selection on 
Prediction Performance

Dealing with the small-sample-size prediction 
problem in machine learning, we conducted comparative 
experiments to assess the performance of different 
prediction algorithms and their performance with and 
without feature selection. The compared algorithms 
include linear regression, support vector regression 
model (SVR), random forest (RF), XGBoost, and FGM. 
In this paper, SVR uses the Radial Basis Function (RBF) 
kernel, realizing nonlinear mapping. RF and XGBoost 
are both tree-based ensemble learning methods, but 
RF is based on the bagging strategy and builds trees in 
parallel, and XGBoost uses the boosting strategy and 
builds trees sequentially. All the models were trained 
with the training set from 2012 to 2019 and evaluated on 
the test set from 2020 to 2021.

Table 5 shows the comparison results of different 
predictors using the features (up to six) selected by 
various feature selection methods. The following 
phenomena can be observed: 1) Overall, the linear 
regression performs inferior to the others. The value 
of R2 is less than 0.22, which is significantly lower 
than those of other models. This demonstrates that 
these features are not linearly related to CO2 emissions. 
Moreover, the linear regression model performs best 
using all the features. This is more likely to overfit 
with more variables, resulting in poor generalization of 
unseen data. 2) CFS and Pearson correlation are the worst 
feature selection methods. Unlike Pearson correlation, 
CFS avoids redundancy between features. As these two 
methods rely on linear correlations between features 
and the target to make a selection, they potentially miss 
important nonlinear interactions that could be valuable 
for a machine learning model. Exceptionally, the FGM 
model with CFS-selected features achieves good results 
(R2=0.74). This can be explained by FGM’s ability to 
learn possible chronological dependencies between 
features and target variables. This indicates FGM has 
great potential for accurate CO2 prediction. 3) Prediction 
models perform similarly with the features selected by 
Lasso and RForest because Lasso and RForest choose 
the same five features (as shown in Table 4). 4) ReliefF 
performs excellently with different predictors, except 
the linear regression model. In particular, it performs 
best with the ensemble algorithms RF and XGBoost. 
Analyzing the features selected by ReliefF, we can 
find that all three features (nighttime light, statistical, 
and meteorologic indicators) are included. RForest also 
includes three types but cannot handle collinearity 
between the selected PEP, GDP, and GDPc. 

From the above analysis, we can conclude that 
ReliefF is a useful feature selection method; FGM can 
perform well by considering chronological information, 
and ensemble models such as XGBoost can handle 
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nonlinear relationships and form a strong predictor by 
integrating multiple weak learners.

Performance of the Proposed Model

Our proposed hybrid model takes advantage of 
FGM and XGBoost and performs CO2 emissions with 
the features selected by ReliefF. In the hybrid model, 
we use XGBoost instead of RF to be combined with 
FGM. The reason is that XGBoost is much faster than 
RF in prediction and focuses on reducing both bias and 
variance. On the test set of 2020 and 2021, the evaluation 
metrics of RMSE, MAE, and R2 reach 1.73, 1.03, and 
0.93, respectively. Fig. 2 shows the scatterplots and the 
coefficients of determination (R2) of CO2 emissions 

predicted by various models. These comparison 
prediction models are all at their best performance with 
the corresponding feature selection methods. Our hybrid 
model fits well with the actual values and outperforms 
other models. 

To further verify the proposed hybrid model’s 
performance, we conducted statistical tests, including 
a Likelihood Ratio (LR) test, a soundness test, and a 
heterogeneity test.

(1) LR Test
The LR test compares the goodness of fit between 

the model with selected features (simple) and the 
model without feature selection (complex). It assesses 
whether the additional features in the complex model 
significantly improve the fit. For the simple model, we 

Features Metrics Lasso SVR RF XGBoost FGM

All

RMSE 5.84 3.38 3.92 4.16 4.62

MAE 3.96 2.64 2.73 3.01 2.19

R2 0.22 0.74 0.65 0.6 0.55

PearsonC 
selected

RMSE 5.91 4.94 4.62 4.33 4.03

MAE 3.99 3.11 2.86 2.9 1.51

R2 0.2 0.44 0.51 0.57 0.47

NMI selected

RMSE 5.91 4.99 4.66 4.55 3.14

MAE 3.99 3.01 2.99 3.01 1.37

R2 0.2 0.43 0.5 0.52 0.81

CFS selected

RMSE 6.56 6.01 5.82 5.82 4.31

MAE 4.47 3.54 3.65 3.84 2.11

R2 0.01 0.17 0.22 0.22 0.74

mRMR selected

RMSE 5.96 5.00 2.37 3.14 3.07

MAE 3.84 2.67 1.55 2.25 1.53

R2 0.18 0.43 0.85 0.77 0.78

ReliefF selected

RMSE 5.93 3.34 2.22 2.69 4.19

MAE 3.82 1.92 1.08 1.91 2.06

R2 0.19 0.74 0.85 0.83 0.72

RFE selected

RMSE 5.93 4.07 3.06 3.56 3.61

MAE 3.96 2.34 1.83 2.19 1.52

R2 0.19 0.62 0.77 0.71 0.76

Lasso selected

RMSE 5.91 4.08 2.8 3.02 4.41

MAE 3.96 2.32 1.66 1.98 1.83

R2 0.2 0.62 0.82 0.79 0.71

RForest selected

RMSE 5.91 4.07 2.93 2.96 4.08

MAE 3.95 2.34 1.65 1.92 1.75

R2 0.20 0.62 0.8 0.8 0.75

Table 5. Comparison of prediction performance of different models with and without feature selections. (“All” denotes using all features, 
“XXX selected” denotes using the features selected by the method XXX; The values in bold refer to the best results).
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refer to the hybrid model with the top six ranked features 
by ReliefF. The complex model has more features added 
based on the feature ranking. The hypothesis is defined 
as: H0: The simpler model is good.

After computing the log-likelihoods of the two 
models and the LR statistic, the LR statistic is compared 
to a chi-squared distribution with degrees of freedom 
equal to the difference in the number of parameters 
between the models. If the LR statistic is smaller than 
the critical value, we cannot reject the null hypothesis, 
suggesting that the simple model provides a significantly 
better fit. The results are shown in Table 6. Taking the 
complex model with full parameters (19 features) as the 
example, LR statistic =-132.51<22.36 and a high p-value 
=1.0 suggest that the simpler model is sufficient, and the 
additional parameters in the full model do not provide a 
significantly better fit.

(2) Soundness test
The soundness test is used to evaluate the reliability 

and stability of a model under different assumptions or 
conditions. For a machine learning model, a soundness 
test often refers to the model’s generalizability on 
unseen data. Cross-validation is commonly used to test 
whether a model can robustly generalize to unseen data 
through multiple data partitions. We performed 5-fold 

cross-validation and recorded the model performance of 
each fold with MAE, MSE, and R2. Then, we ran a one-
way ANOVA test on the metric values of five folds and 
received an F-statistic of 0.0965 and a p-value of 0.9813. 
This indicates that we cannot reject the null hypothesis: 
there is no significant difference in performance among 
the compared models.

This can be attributed to our hybrid model 
integrating FGM and XGBoost. The FGM model has 
strengths in robustness in small-sample scenarios. 
XGBoost tends to generalize well to unseen data due to 
its ensemble nature and the ability to prevent overfitting 
with L2 regularization. This helps to reduce variance 
and improve the accuracy of unseen data.

(3) Heterogeneity test
A heterogeneity test is used to assess whether the 

model's performance exhibits significant variation 
across different groups of data. In this study, we split the 
data according to the “year” of CO2 emission and then 
train subgroup models with these sub-datasets. Then, 
we run an independent t-test for each pair of groups 
to determine whether there are statistically significant 
differences in the performance metrics across the 
subgroups. The p-value for all the tests is greater than 
0.25 (> 0.05), so we cannot reject the null hypothesis: 

Fig. 2. Scatterplots of the true CO2 emissions vs. the predicted CO2 emissions by different prediction models with feature selection.
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the two models perform similarly. Besides, we split the 
data according to the 11 cities of Shanxi and executed 
the heterogeneity test. The results are also not significant 
(p-value >0.3), and our model performs similarly across 
subgroups. Therefore, we can conclude that there is no 
evidence of heterogeneity in our model.

Prediction of CO2 Emissions

The prediction model was used to estimate the CO2 
emissions of Shanxi Province in 2022. The results show 
that the CO2 emissions in 2022 reach 609Mt, with an 
increase rate of 2.9%. Fig. 3a shows the changes in 
total CO2 emissions from 2012 to 2022. Generally, the 
CO2 emissions of Shanxi Province have consistently 
increased since 2016 and reached a peak in 2022, with 
a significant growth of 22.29%. The 10-year average 
growth rate is 2.06%. By aggregating county-level 
carbon emissions into the cities they belong to, we 
obtain the CO2 emissions of 11 cities. 

The accumulated CO2 emissions for 2018-2022 are 
illustrated in Fig. 3b. DT, TY, and CZ are ranked the top 
three in terms of accumulated CO2 emissions, followed 
by JZ, YC, LF, JC, XZ, SZ, LL, and YQ. Historically, 
DT is known as the "Coal Capital" of China. Tens of 
thousands of tons of coal are produced daily in DT 
and are transported to every place that desperately 

needs energy. Therefore, DT is under great pressure 
to reduce carbon emissions. It is good to see that DT’s 
CO2 emissions in 2022 dropped significantly compared 
to 2021, reducing by 10Mt. This is inseparable from 
DT's efforts to develop new and renewable energy in 
recent years. As the capital city of Shanxi Province, 
TY has a high carbon emission intensity closely related 
to socioeconomic development. In contrast, YQ is the 
city with the smallest area, the smallest population, and 
the lowest GDP, and thus produces the lowest carbon 
emissions. 

Spatial Analysis of CO2 Emissions

We computed the global Moran's I to analyze the 
spatial autocorrelation of some key statistical factors in 
Shanxi Province. The results are shown in Table 7 and 
Fig. 4. Moran's l>0 indicates positive spatial correlation; 
the larger the value, the more obvious the spatial 
correlation; Moran's l<0 indicates negative spatial 
correlation; the smaller the value, the greater the spatial 
difference; otherwise, Moran's l=0 suggests a random 
spatial pattern. 

As shown in Fig. 4, the Moran’s I index for population 
and GDP are all significantly positive (Moran’s I value > 
0.18, p<0.001). This indicates that population and GDP 
are all higher in places with large spatial aggregation, 

Fig. 3. (a) Total CO2 emissions of Shanxi Province from 2012 to 2022. (b) Stacked diagram for the cumulative CO2 emissions of 11 cities 
in Shanxi Province from 2018 to 2022.

Model pairs Degree of freedom Critical value for Chi-
squared LR statistic p-value

Simple: 6 features
Complex: 7 features 1 3.841 -125.20 1.0

Simple: 6 features
Complex: 10 features 4 9.488 -6.91 1.0

Simple: 6 features
Complex: 12 features 6 12.592 -21.62 1.0

Simple: 6 features
Complex: 19 features 13 22.362 -132.51 1.0

Table 6. LR test results.
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which is reasonable. We also note that Moran’s I for 
GDP decreased from 2020. This may suggest that the 
overall economic level is declining. The Mordan’s I of 
CO2 emissions was significantly positive before 2018 but 
decreased thereafter. The Mordan’s I is 0.0445 in 2022, 
and the p-value is 0.14. This suggests a slight positive 

spatial autocorrelation of CO2 emissions, but this spatial 
aggregation effect has been weakened. The first row of 
the figure illustrates the distribution of CO2 emissions 
in Shanxi from 2018 to 2022. It can be observed that the 
high-emission regions are scattered along the central 
axis from north to south. The low carbon emission area 
on the west side is mainly the Luliang Mountains.

Local Moran's I provides detailed insights into local 
patterns and helps pinpoint the areas of interest [38]. 
Therefore, we computed local Moran’s I for each county 
(or district) in 2018-2022 and mapped the index values in 
Fig. 5 (the second row). In the local Moran’s I map, the 
counties (or districts) with high CO2 emissions (> 10Mt) 
are highlighted in orange for local Moran’s I>0 and in 

Fig. 4. Spatial analysis from year 2012 to 2022 using Moran’s 
Indexes.

Year
Moran’s I

CO2 Population GDP

2012 0.1613** 0.1844** 0.2353**

2013 0.1606** 0.1942*** 0.2472**

2014 0.1602** 0.1873** 0.2749***

2015 0.1607** 0.1908** 0.3052***

2016 0.1615** 0.1939** 0.3274***

2017 0.1629** 0.1961** 0.3314***

2018 0.0499 0.3043*** 0.3791***

2019 0.0489 0.3033*** 0.4006***

2020 0.0491 0.2931*** 0.3963***

2021 0.0491 0.3020*** 0.3784***

2022 0.0445 0.3019*** 0.3063***

 Note: *p < 0.05, **p < 0.01, ***p<0.001

Table 7. Global Moran’s I of Shanxi Province in 2012-2022

Fig.5. The distribution maps of CO2 emissions (top) and Local Moran’s I (bottom) from 2018 to 2022.
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yellow for local Moran’s I<0 with a significance level of 
<0.05; the counties (or districts) with low CO2 emissions 
(<2Mt) are highlighted in green for local Moran’s I>0 and 
in light green for local Moran’s I<0 with a significance 
level of <0.05. We can observe that high neighboring 
clusters with high carbon emissions (orange blocks) are 
only gathered in the Xinrong district in DT. This is due 
to the multiple mining areas surrounding the area. There 
are no regions that have high carbon emissions while 
being surrounded by low carbon emissions neighbors. 
The low carbon emission regions are mainly clustered 
in Fangshan and Lan in LL, Pianguan, and Wuzhai in 
XZ (green blocks). Isolated low carbon emission regions 
are in Pingcheng and Zuoyun in DT, Wanbailin district 
in TY, Huguan in CZ, and Yongji in YC (light green 
blocks). These spatial patterns can help in developing 
policies for carbon emission reduction.

Conclusions

The accurate prediction of CO2 emissions is of great 
significance to achieving the carbon reduction goal. 
This study proposes a framework for predicting CO2 
emissions with limited historical data. This framework 
integrates multi-source data of NPP/VIIRS nighttime 
light, socioeconomic statistics, and meteorological data 
as the input, selects the suitable features by comparing 
the performance of various feature selection approaches, 
predicts CO2 emissions with a hybrid prediction model 
based on Grey theory and ensemble learning, and 
enables spatial correlation analysis of CO2 emissions 
with Moran’s I. Using Shanxi Province as a case study, 
we performed model training and testing with the data 
from 2012 to 2021, predicted county-level CO2 emissions 
of 2022, and analyzed spatial clustering patterns of CO2 
emissions in counties. The comprehensive conclusions 
include:

(1) The selection of key features and the diversity of 
feature categories have greatly influenced the result of 
feature selection. In this study, ReliefF can select diverse 
types of features and demonstrates high prediction 
accuracy with various prediction models. 

(2) The hybrid prediction method combines the 
fractional-order Grey model (FGM) and XGBoost to 
fully utilize the advantages of the two types of models. 
Based on a linear assumption, the FGM had a good fitting 
ability for the historical data. The XGBoost ensemble 
learning model is robust to nonlinear relationships. The 
hybrid model achieves better forecasting performance 
by integrating CO2 emissions’ trend prediction with 
nonlinear residual prediction. Statistical tests have 
verified the model’s robustness and stability.

(3) According to the predicted CO2 emissions in 
2018-2022, high-emission counties (or districts) are 
distributed from north to south on the central line along 
the terrain of Shanxi, while low-emission counties 
are mainly clustered in the west and east mountains. 
Moran’s I index confirms regional heterogeneity of 

CO2 emissions. Therefore, to reduce carbon emissions, 
the government should focus on strengthening regional 
governmental coordination. 

It is worth noting that this study has limitations. 
On the one hand, the data used in this study have a 
relatively large time scale with an annual resolution, 
so the analysis granularity is not detailed enough. 
Future research could incorporate monthly statistical 
data to monitor carbon emissions. On the other hand, 
carbon emissions are a complex process associated 
with socioeconomic activities, and further research can 
consider different industry characteristics to achieve 
a more accurate prediction of carbon emissions. In 
addition, we conducted a simple spatial autocorrelation 
analysis based on a binary weight matrix; it does not 
adequately account for the frictional coefficient of 
economy, commerce, labor, and capital movement that 
impact CO2 emissions.
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