
Introduction

One of the most critical crises facing human 
society today is the global climate crisis brought on by 
greenhouse gas emissions. Carbon peaking and carbon 
neutrality have been acknowledged as critical strategic 
initiatives to address the world’s climatic concerns.  
In response, many countries have set aggressive carbon 

reduction targets, aiming for both carbon peaking and 
carbon neutrality. For example, the European Union 
and the United States have established their carbon 
neutrality goals for 2050, while China has committed 
to peaking its carbon emissions by 2030 and achieving 
carbon neutrality by 2060. These goals are crucial for 
global climate action and meeting the international 
agreements’ sustainable development targets. However, 
the path to achieving these goals varies across nations, 
reflecting economic, technological, and energy structure 
differences. China faces unique challenges in balancing 
its rapid economic growth with environmental 
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Abstract

Climate change requires urgent action to reduce greenhouse gas emissions. In response to the urgent 
need for accurate carbon emission forecasting to support global and national carbon neutrality 
goals, this paper presents a predictive framework for carbon emissions in City X, utilizing the Long  
Short-Term Memory (LSTM) network model. The study integrates the Kaya model and the Logarithmic 
Mean Divisia Index (LMDI) for precise carbon accounting and identifies the key factors influencing 
emissions. Additionally, it employs logistic regression, ARIMA, and the least squares method  
to forecast population, GDP, and energy consumption, respectively. The LSTM model is innovatively 
applied to predict regional carbon emissions and offer policy recommendations for achieving carbon 
neutrality. The study presents three distinct scenarios for dual carbon targets, offering valuable insights 
for governments’ green policy development and advancing both theoretical and practical approaches  
to sustainable urban planning.
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sustainability. China is presently responsible for more 
than one-third of the world’s carbon emissions, making 
it one of the world’s largest consumers of energy 
and carbon emitters [1]. China’s efforts in energy 
conservation and emissions reduction are not only 
crucial for domestic environmental and ecological 
construction but also have profound implications for 
global climate action [2, 3]. 

From the perspective of ecological modernization 
theory, economic growth and environmental 
sustainability are not necessarily mutually exclusive. 
This theory suggests that modern societies can achieve 
economic development while addressing ecological 
concerns through technological innovation, regulatory 
frameworks, and environmental reforms. For China, 
adopting green technologies and promoting sustainable 
industries could be key strategies in reconciling its 
modernization goals with environmental imperatives 
[4]. Moreover, low-carbon theory emphasizes 
transitioning to an economy that minimizes carbon 
emissions through renewable energy, energy efficiency, 
and decarbonization of key industries. Xiong et al. [5] 
reviewed the current status of low-carbon building 
development and discussed challenges and potential 
improvements for the future. This work supports the 
idea that China can pursue higher living standards 
and technological advancements while reducing its 
carbon footprint by fostering low-carbon industries 
and investing in clean energy. Nonetheless, there is 
tension between China’s vision of a modern society by 
2035, which includes higher living standards, economic 
prosperity, and technological advancement, and the 
critical need to reduce carbon emissions [6, 7]. The 
historical interdependence of population increases, 
economic development, and carbon emissions gives rise 
to this conflict, making it difficult to balance these three 
factors and environmental sustainability. Achieving 
the dual goals of carbon peaking and carbon neutrality 
will require China to not only make technological 
and industrial shifts but also adopt a more eco-centric 
approach to its future development plans.

The driving forces behind carbon emissions are 
often investigated using the Logarithmic Mean Divisia 
Index (LMDI). The LMDI decomposition model 
without residual terms was proposed by Sun et al. 
[8]. It is distinguished by perfect decomposition and 
consistent aggregation and precisely measures the 
relative contributions of predefined factors to changes in 
aggregate indicators. Earlier research predicted carbon 
emissions using the Kaya and the LMDI decomposition 
models [9-11]. Furthermore, the Kaya model has been 
employed to investigate the elements that propel carbon 
emissions. According to some academics, urbanization 
causes notable disparities in the economic development 
of urban and rural areas in developing nations, 
substantially affecting CO2 emissions. They suggested 
tweaks to the U-Kaya model and used three distinct 
urbanization policy modes to forecast China’s potential 
carbon emissions in 2020 [12]. 

However, the majority of the previously stated 
literature examines the factors impacting carbon 
emissions using the LMDI decomposition model or 
the Kaya model independently, without merging the 
two. Ortega and Mena [13] integrated the two models 
to investigate the variables that affected India’s carbon 
emissions from 1990 to 2016. They discovered that per 
capita income is the main contributor to the increase 
in CO2 emissions in India, and that India will reach 
its government target for 2020 in terms of emission 
intensity. Furthermore, Jiang et al. [14] utilized the Kaya-
LMDI model to evaluate the driving forces behind CO2 
emissions from non-residential electricity consumption 
in China from 2007 to 2016. The Kaya model and the 
LMDI decomposition model were merged by You et al. 
[15] to examine the interactions between CO2 emissions 
and residential central heating. Based on this, we use 
the Kaya model for carbon emissions accounting and 
combine the LMDI decomposition model to determine 
the primary factors affecting carbon emissions.

Regional carbon emissions are influenced by 
population, economy, and energy consumption. Logistic 
regression is one of the most commonly used statistical 
analyses in multivariate modeling [16]. It has been 
applied in various fields, such as predicting natural gas 
demand [17] and population [18]. The Autoregressive 
Integrated Moving Average Model (ARIMA), 
commonly used for economic forecasting, is a statistical 
model employed for time series analysis and forecasting. 
For instance, scholars have used the ARIMA model 
to forecast GDP in China for 2020-2021 [19] and in 
Jordan for 2020-2022 [20]. Additionally, Gu et al. [21] 
demonstrated that incorporating nighttime light remote 
sensing (NLT) as an exogenous variable improves the 
predictive performance of the ARIMA model when 
forecasting GDP. In terms of energy consumption 
prediction, some scholars use the least squares method 
to forecast energy consumption, such as predicting 
Turkey’s electricity consumption [22].

In carbon emission prediction, Zhou et al. [23] 
analyzed and forecasted China’s net carbon emissions 
from 2021 to 2035 using a TWSVR model based on 
AO. Hu and Man [24] proposed three carbon emission 
prediction models based on deep learning, combining 
model uncertainty, combination mechanisms,  
data-driven approaches, and intelligent algorithms.  
Qiao et al. [25] developed a decoupling model using 
BysO_LightGBM to study the relationship between 
urban development characteristics and carbon emissions. 
In comparison to the least squares method, an increasing 
number of scholars [26-28] have adopted LSTM for 
carbon emission prediction, achieving more significant 
results. Research on carbon emissions under multiple 
scenarios has become mainstream. For instance, Zhang 
et al. [29] simulated and estimated various carbon 
emission scenarios in China from 1991 to 2030. Bao et 
al. [30] utilized system dynamics to model and simulate 
three scenarios regarding the growth rate of China’s 
thermal power, carbon emission peak, and development 
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trends, investigating the future economic and policy 
impacts on the thermal power industry. Li et al. [31] 
presented a novel carbon emission prediction method 
that combines meta-learning and differential long 
short-term memory networks, significantly improving 
accuracy and reducing overfitting when predicting 
industrial CO2 emissions. Zhong et al. [32] explored 
carbon reduction pathways for Chinese provinces by 
integrating regional development plans and carbon 
intensity convergence trends, using the IPCC’s shared 
socio-economic pathways to predict carbon peak 
values and timings, highlighting significant disparities 
in emissions influenced by economic levels and 
population. Qi & Yu [33] utilized a bottom-up national 
energy technology model to optimize China’s energy 
transformation pathway and highlight the electricity 
sector’s critical role in achieving these goals.

How China will reach its carbon neutrality objective 
is one of its major problems. Thus, it is essential to 
anticipate carbon emissions precisely. We must resolve 
the conflict between China’s objectives of 2030 peak 
carbon, 2035 modernization, 2050 Chinese-style 
modernization, and 2060 carbon neutrality and offer 
the government path planning suggestions to meet the 
anticipated goals. Previous studies on carbon emission 
forecasting have primarily focused on predicting 
multiple provinces or the entire country [22-25], and the 
broad regional scope of these studies has diminished 
their relevance for urban policy formulation. To address 
this gap, this study specifically examines a single city in 
eastern China (City X) and proposes concrete pathways 
to achieve dual carbon goals tailored to this urban 
context. We construct a predictive model for regional 
carbon emissions and their related factors (economy, 
population, energy consumption) in City X, considering 
the heterogeneity in population and economic 
development among cities. We thoroughly analyze how 
the energy structure and efficiency will develop under 
various scenarios to forecast the carbon emissions of X 
city and identify the goals and strategies for reaching the 
twin carbon goals (carbon peak and carbon neutrality). 
We set three scenarios to provide a basis for policy 
formulation to achieve the dual carbon goals.

This study builds upon previous research by 
integrating both the Kaya and Logarithmic Mean Divisia 
Index (LMDI) models with deep learning techniques, 
specifically the Long Short-Term Memory (LSTM) 
network. Unlike traditional models that rely on historical 
trends or linear relationships, the LSTM model captures 
complex temporal dependencies, making it particularly 
well-suited for long-term carbon emission forecasting. 
This theoretical advancement allows for more precise 
predictions, addressing limitations in single-method 
forecasting approaches. In the context of carbon 
emissions, combining the LSTM model with the Kaya 
and LMDI decomposition models represents a novel 
methodology that significantly enhances the accuracy 
of regional carbon accounting. By doing so, the study 
offers a robust analytical tool that challenges traditional 

methods, providing a more dynamic and comprehensive 
approach to carbon emission forecasting.

In practical terms, this study provides policymakers 
with actionable insights by simulating carbon emission 
pathways under three distinct scenarios: natural, 
baseline, and ambitious. These scenarios allow the 
government to assess different strategies for achieving 
carbon neutrality by 2060 and peaking goals by 2030. 
The study’s findings offer a detailed roadmap for 
decision-makers to promote industry upgrades, energy 
decarbonization, and the electrification of energy use. 
Additionally, the regional focus of the study ensures that 
the policy recommendations are tailored to the specific 
characteristics of City X, making them highly relevant 
for local governance. Thus, this research plays a critical 
role in guiding local governments to align their policies 
with national carbon goals, contributing to both regional 
and national efforts to achieve low-carbon development.

This study aligns closely with Ecological 
Modernization Theory, which emphasizes the possibility 
of decoupling economic growth from environmental 
degradation through technological innovation and policy 
reform. By integrating advanced prediction models 
such as Long Short-Term Memory (LSTM) with the 
Kaya and LMDI models, our research offers practical 
tools for predicting and managing carbon emissions 
while promoting economic modernization. The model 
developed in this study provides a framework for 
urban planners and policymakers to create effective 
carbon reduction strategies without compromising 
economic development, a key tenet of Ecological 
Modernization Theory. This research contributes 
to the theory by demonstrating how technological 
advancements in AI and machine learning can be 
applied to achieve sustainable development goals, 
offering empirical support to the idea that economic 
growth and environmental protection can be pursued 
simultaneously. In relation to Low-Carbon Development 
Theory, which advocates minimizing carbon emissions 
through sustainable energy use and innovation, our 
study offers a novel approach for cities and regions to 
achieve low-carbon goals. Combining the Kaya and 
LMDI models with LSTM improves carbon forecasting, 
providing a data-driven method to support low-carbon 
policies. The model proposed in this research provides 
actionable insights for urban planning, industrial 
upgrading, and energy transformation, all of which 
are essential elements in advancing low-carbon 
development. They offer a more nuanced approach to 
quantifying and managing carbon emissions, facilitating 
the practical implementation of low-carbon policies at 
both regional and national levels. Consequently, this 
study not only advances theoretical understanding 
but also has substantial implications for the practical 
transition to low-carbon economies.

Based on the above considerations, the innovations 
of this paper are outlined as follows: The theoretical 
innovations of this study lie in its contributions to 
Ecological Modernization Theory and Low-Carbon 
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Development Theory. By integrating Long Short-
Term Memory (LSTM) networks with the Kaya and 
LMDI decomposition models, the study demonstrates 
how technological advancements can decouple 
economic growth from environmental degradation, 
providing empirical support for the idea that economic 
development and carbon reduction can be pursued 
simultaneously in line with Ecological Modernization 
Theory. Furthermore, the research enriches Low-Carbon 
Development Theory by offering a more precise, data-
driven approach to quantifying and managing carbon 
emissions, facilitating the practical implementation of 
low-carbon policies.

In terms of practical innovations, the study 
significantly improves carbon emission forecasting 
accuracy by combining LSTM with the Kaya and 
LMDI models, overcoming the limitations of relying 
on single-method predictions. This approach provides 
more precise tools for forecasting GDP, population 
growth, and various emission types. Additionally, the 
study offers three carbon emission scenarios (natural, 
baseline, and ambitious), giving policymakers flexible 
pathways to achieve carbon peaking and neutrality 
goals. The research also provides specific policy 
recommendations for City X on industry upgrading, 
energy decarbonization, and electrification, serving  
as a valuable resource for local governments aiming  
to align with national carbon targets. The framework  
for predicting carbon emissions in City X is shown  
in Fig. 1.

This paper is organized as follows: Section 2 
provides an overview of carbon emission data sources, 
with a detailed analysis using the LMDI decomposition 
model. In Section 3, predictive models for carbon 
emissions in X city are constructed, incorporating 
population growth, economic development, and energy 
consumption. Section 4 introduces three dual carbon 
projection scenarios and discusses the implications of 
these scenarios for dual carbon path planning. Finally, 
Section 5 concludes with the paper’s key contributions 
and findings.

Materials and Methods

Data and Sources 

Our data is sourced from the government’s official 
statistical bureau, covering 2010 to 2020. The compiled 
data is presented in Appendix IV. The data sources, the 
composition of indicators utilized in the subsequent 
analysis, and their symbolic meanings are summarized in 
Appendix I. In this section, we employ the Logarithmic 
Mean Divisia Index (LMDI) decomposition technique to 
determine the main drivers of carbon emissions as well 
as their respective contributions. Furthermore, we create 
scatter plots and analyze the variation trend of indicators 
using the Kaya model. In addition to the revisions made 
to the manuscript, the data referenced in the paper 
has been made publicly available for transparency 

Fig. 1. The framework for predicting carbon emissions in City X.
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are denoted as Cj, and the carbon emissions in the base 
period are denoted as Cj–1. It is important to note that the 
base period is dynamically changing, where the carbon 
emissions of the previous year serve as the base period. 
We calculate the differences in carbon emissions and the 
corresponding factors between two adjacent years. Since 
no data was available before 2010, we commenced the 
calculation of carbon emission differentials from 2011 
onward. According to the additive form of LMDI, the 
difference in carbon emissions between the reporting 
and base periods is expressed as: Cj –  Cj–1 = ∆C = ∆p  
+ ∆g + ∆c + ∆e. The difference ∆p in population scale 
effect (𝑝): . The difference 

∆g in economic development effect (𝑔): 
. The difference ∆e in 

energy consumption intensity (𝑒): 
. The difference ∆c in 

energy structure intensity (𝑐):

	 	

According to the additive form of the LMDI 
decomposition model, the decomposition of carbon 
emission factors for a certain region is presented 
annually, as shown in Appendix II. A higher numerical 
value in each column indicates a greater influence of 
that factor on carbon emissions for the corresponding 
year, while a lower numerical value suggests a lesser 
influence. Overall, the calculated results of ∆p + ∆g  
+ ∆c + ∆e for each year align with the calculated 
results of Cj –  Cj–1, indicating that the change in carbon 
emissions for each year can be fully decomposed 
into these four factors. Therefore, the year-by-year 
decomposition of carbon emission factors for a certain 
region based on the additive form of the LMDI model is 
effective and feasible. Specifically, population scale and 
economic development exhibit positive effects, while 
energy consumption and structure intensity demonstrate 
significant negative effects.

We analyze the relationships between various 
indicators based on the Kaya and STIRPAT models.  
The Kaya model is often used to analyze the relationship 

and reproducibility. All relevant datasets included 
in Appendices I-IV have been uploaded to GitHub  
and can be accessed via the following link:  
https://github.com/HongWu-122/Prediction-and-Path-
Planning-Framework.

Analysis of Carbon Emission Status 

The primary factors influencing carbon emissions 
are identified using the LMDI. We assume a change in 
the rate of carbon emissions from the base year of 2010, 
denoted as v0 = 0. The carbon emission change rate is 
calculated as follows: , where Cj 
represents the total annual carbon emissions in a given 
year from 2011 to 2020, and C0 represents the total 
carbon emissions in the base year of 2010. Based on this 
formula, using 2010 as the base year, we calculated the 
annual carbon emission change rates during the 12th 
Five-Year Plan period (2011-2015) and the 13th Five-Year 
Plan period (2016-2020). The corresponding carbon 
emission quantities and change rates are presented in 
Table 1.

According to the data, the general pattern of carbon 
emissions over the 12th Five-Year Plan period indicated 
an initial increase followed by a fall. The carbon 
emission change rate was positive, indicating that  
the carbon emissions during the reporting period 
increased compared to the base year. Conversely, 
during the 13th Five-Year Plan period, the overall trend 
of carbon emissions was relatively stable. From 2016 
to 2019, carbon emissions exceeded the base year, and 
the overall change rate tended to stabilize. However, 
in 2020, the carbon emission change rate was -1.51%, 
indicating that the carbon emissions were slightly lower 
than the base year of 2010.

Factors Influencing Carbon Emission 
and Their Contributions

We employ the LMDI method, which is the 
logarithmic form of the Divisia index method. This 
method is favored for its ease of modeling and ability to 
eliminate residuals while satisfying factors’ reversibility. 
This paper utilizes the Type I additive model to analyze 
the factors influencing carbon emissions. We decompose 
the change in carbon emissions between two consecutive 
years: the carbon emissions in period j (reporting period) 

Table 1. The change rate of China’s carbon emissions from 2011 to 2020.

Year 2010 2011 2012 2013 2014 2015

Total Carbon Emissions (10,000 t) 165497.16 98963.95 42742.90 212584.02 190861.20 193663.34

Carbon Emission Change Rate (%) 0 -40.20 -74.17 28.45 15.33 17.02

Year 2016 2017 2018 2019 2020

Total Carbon Emissions (10,000 t) 201352.88 192746.05 190867.25 189362.01 163002.07

Carbon Emission Change Rate (%) 21.67 16.46 15.33 14.42 -1.51
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between regional carbon emissions and factors such 
as population, socio-economic development level, 
energy efficiency, and carbon emission factors [34]. Its 
expression is:

The Kaya model can be simplified as follows: by 
taking the logarithm of both sides and taking the first-
order partial derivative with respect to time, we obtain: 
carbon emission growth rate = population growth 
rate + per capita GDP growth rate + unit GDP energy 
consumption growth rate + unit energy consumption 
carbon emission growth rate.

To explore the changes in regional carbon emissions 
and various indicators related to economy, population, 
and energy consumption, we first perform logarithmic 
differencing on the data of regional carbon emissions, 
population, per capita GDP, energy efficiency, and 
carbon emission factors of energy consumption to 
enhance data stationarity. The data show that carbon 
emissions and unit energy consumption trends have been 
largely consistent in recent years, especially peaking 
in 2013, indicating extensive use of non-fossil energy 
sources. However, they have gradually declined with the 
advancement of low-carbon policies and technological 
progress. The population and per capita GDP changes 
show similar downward trends. However, per capita 
GDP and energy consumption intensity exhibit opposite 
trends, indicating a close correlation between economic 
growth and energy utilization efficiency. Improving 
energy utilization efficiency can decouple economic 
growth from energy consumption, laying the foundation 
for sustainable economic development.

Models and Predictions 

In this section, we employ various models to forecast 
the future trends of population, regional economy 
(GDP), and energy consumption. Specifically, we use 
a logistic model to predict future population trends, 
apply the Autoregressive Integrated Moving Average 

(ARIMA) time series forecasting method to forecast 
the future trend of the regional economy, construct 
a multiple linear regression model based on the least 
squares method to predict energy consumption, and 
utilize Long Short-Term Memory (LSTM) neural 
networks to forecast regional carbon emissions based on 
the predicted indicators influencing carbon emissions.

Population Growth Forecasting Model 

Given that City X is situated in China’s eastern coastal 
region, where natural resources and environmental 
factors notably influence population growth, traditional 
exponential growth models may not be appropriate. Due 
to the extended timeframe of this forecast and the key 
milestones for China’s modernization in 2035 and 2050, 
the logistic model has become the preferred method in 
academia for projecting future population trends.

Logistic regression is a machine learning algorithm 
used for classification or prediction tasks. It predicts the 
probability of a discrete target variable by fitting  
a logistic function (also known as the sigmoid function). 
The logistic model assumes that population growth  
has a maximum value xm and an intrinsic growth rate  
r0. Let x denote the population size, and x0 denote the 
initial population size. When the population x  
grows close to xm, the population will maintain  
this level without significant changes. The formula for 
the logistic distribution is as follows: 

. This 
formula indicates that as the random variable x 
approaches xm, the probability P(X = x) tends to 1/2, 
indicating that X has a 50% chance of being equal to x. 
Conversely,  P(X = x) decreases as x moves further away 
from xm.

In addition, we compare the fitting results of 
logistic regression with polynomial regression. As 
shown in Fig. 2, it is evident that logistic regression 
fits better, avoiding the continuous growth pattern seen 
in population exponential models. On the other hand, 

Fig. 2. The fitting results of population forecasts based on logistic regression are compared with polynomial regression.
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polynomial regression results in continuous population 
growth, which clearly does not align with the actual 
situation in China. According to the logistic model, 
when population growth approaches the maximum value 
xm, the population will stabilize at this level without 
significant changes, which conforms to China’s future 
population development trend. The forecasting results 
are presented in Appendix II.

Economic Forecasting Model 

ARIMA is a commonly used approach for 
forecasting regional GDP based on time series data. 
We define a function for the Augmented Dickey-Fuller 
(ADF) unit root test, and the test results on the original 
series indicate that when differencing at the first order, 
the t-test value is far below the 1% critical value, and the 
P-value is also far below 1%. Therefore, we can consider 
the series to be stationary. The result shows the lag 
order (lag order) on the x-axis and the autocorrelation 
coefficient or partial autocorrelation coefficient on the 
y-axis. By observing the sample autocorrelation function 
(ACF) and partial autocorrelation function (PACF), we 
select the optimal order of the model as (0,1,0), compute 
the coefficients of each autoregressive term and moving 
average term, and further perform ARIMA model 
testing.

Based on the ARIMA model (0,1,0) test, the residual 
degrees of freedom were found to be 9, with a sample 
size of 11. The Q statistic (Q6) value was 0.282, with 
a corresponding p-value of 0.596, suggesting no 
significance at the 5% level. The model’s information 
criteria showed an Akaike Information Criterion 
(AIC) of 159.27 and a Bayesian Information Criterion 
(BIC) of 159.875. The goodness of fit, represented by 
R², was calculated at 0.998, reflecting excellent model 
performance. Based on the AIC information criteria 
for automatic parameter selection, the model result is 
presented in the ARIMA Model (0,1,0). Analyzing the 
results of the Q statistic, Q6 does not show significance 
at the 5% level, indicating that we cannot reject the 
hypothesis that the model’s residuals are white noise 
series. Additionally, the goodness of fit R² is 0.998, 
indicating excellent model performance. The GDP 
forecast values for 2021 to 2060 are presented in 
Appendix III.

Energy Consumption Forecasting Model 

Linear regression models can effectively handle 
linear relationships, fit historical data, and predict 
future trends. In this paper, we use a linear regression 
model to predict energy consumption based on changes 
in population and economy. We first use data from 
2010 to 2020 as the training set to predict population 
and economic (GDP) changes from 2021 to 2025. 
We establish a multiple linear regression model with 
population and GDP as explanatory variables and energy 
consumption as the response variable. The model can 

be represented as: E(t) = α + β1 × G(t) + β2 × P(t) + ϵ. 
Where t represents the year, α is the intercept, β1 and 
β2 are coefficients, and ϵ ϵ is the error term. Based on 
the forecasted population and GDP for 2021 to 2025, we 
then conduct a linear regression prediction for energy 
consumption. Considering the two-time nodes (2035 
and 2050) of China’s modernization, we further predict 
changes in population, economy (GDP), and energy 
consumption for the Fourteenth Five-Year Plan (2021-
2025) to the Twenty-First Five-Year Plan (2056-2060). 
The forecasted total energy consumption results are 
presented in Appendix III.

Regional Carbon Emission Forecasting Model 

Long Short-Term Memory (LSTM) is a special 
structure that addresses the vanishing gradient and 
exploding gradient problems in Recurrent Neural 
Networks (RNNs). LSTM networks utilize gated 
mechanisms for retaining and forgetting information, 
enabling them to exhibit strong memory capabilities 
when processing long-term dependencies. In this paper, 
as carbon emissions are correlated with population, 
GDP, and energy consumption forecasts, we apply 
LSTM neural networks. This enables the model to 
effectively capture long-term dependencies (such as 
the relationship between carbon emissions, population, 
GDP, and energy consumption in various sectors) and 
achieve good fitting results. 

The dimensions of the training and test sets were as 
follows: from 2010 to 2017, the input data consisted of 
8 samples with 23 features each, while the output data 
had 23 samples corresponding to 8 features. From 2018 
to 2020, the input data comprised 3 samples with 23 
features each, and the output data included 23 samples 
with 3 features. During the training process, the loss 
function is the mean squared error (MSE) function, 
defined as: MSG = (yi – y͂i)

2. Where yi represents the true 
carbon emission value, and y͂i represents the predicted 
carbon emission value. Using a grid search, the optimal 
hyperparameters suitable for carbon emission prediction 
were found to be 6 layers for the network, a learning rate 
of 0.001, a batch size of 1, and 100 iterations. The data is 
then fitted using the optimal model.

Appendix III contains the results of carbon emission 
prediction from 2021 to 2060 using the LSTM model. 
Combined with population, economy, and energy 
consumption predictions, carbon emission predictions 
based on the LSTM model exhibit a close correlation 
with population, economy, and energy consumption.

In the following graph, the x-axis represents the 
predictions for the forty years from 2021 to 2060. 
Energy consumption intensity is a crucial indicator of 
energy utilization efficiency in the region. As shown 
in the graph, energy consumption intensity gradually 
decreases, indicating an improvement in energy 
utilization efficiency and a gradual reduction in carbon 
emissions. Without further intervention, as the economy 
develops, carbon emissions decrease, indicating  
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the effective implementation of national green and low-
carbon policies.

Dual Carbon Targets

In this section, we design scenarios for achieving 
regional dual carbon targets and path planning without 
human intervention, according to the natural scenario, 
on-time peak carbon and carbon neutrality baseline 
scenarios, and ambitious scenarios for leading in peak 
carbon and carbon neutrality.

Natural Scenario without Human Intervention

In this scenario, we assume that achieving regional 
dual carbon targets relies entirely on natural processes 
and the self-regulation of ecosystems. We focus 
on methods such as improving energy efficiency, 
developing renewable energy, and protecting and 
restoring ecosystems to achieve peak carbon and carbon 
neutrality. Based on the LSTM model from Section 4, 
we simulate the natural state of carbon emissions in this 
scenario. The left graph below illustrates an increasing 
trend in the proportion of non-fossil energy and total 
energy consumption. The right graph illustrates a 
gradual decrease in energy intensity, indicating an 
increase in energy utilization efficiency, while the 
proportion of non-fossil energy also gradually increases.

Baseline Scenario for On-Time Peak 
Carbon and Carbon Neutrality

In this scenario, we adhere to the government-set 
targets of peak carbon emissions by 2030 and carbon 
neutrality by 2060, requiring the region to achieve these 
goals within the specified timeframe. This implies that 
governments and enterprises need to take more proactive 
measures to reduce carbon emissions, including 
enhancing the variety of energy consumption in various 
sectors (increasing the proportion of non-fossil energy 
consumption) and improving energy efficiency. In the 
baseline scenario, we consider the timelines set by the 
government for peak carbon emissions by 2030 and 
carbon neutrality by 2060, ensuring that these targets 
are achieved within the specified timeframes. In the 
baseline scenario, from 2021 to 2060, as shown in Fig. 3, 
the proportion of non-fossil energy gradually increases, 
reaching over 80% by 2060, and energy utilization 
efficiency also gradually improves.

Ambitious Scenario for Leading in Peak 
Carbon and Carbon Neutrality

In this scenario, we set a higher target for the region 
to lead in achieving China’s peak carbon emissions 
and carbon neutrality goals, placing it at the forefront 
of the nation’s dual carbon efforts. This implies that 
governments and enterprises need to achieve greater 
breakthroughs in the variety of energy consumption 

and energy efficiency improvements in various energy-
consuming sectors. In the ambitious scenario, from 
2021 to 2060, as shown in the right graph above, the 
proportion of non-fossil energy gradually increases, 
reaching close to 90% by 2060, and energy intensity 
shows a significant downward trend, indicating a 
decrease in energy consumption per unit of GDP and 
continuous improvement in energy utilization efficiency.

Results and Discussion

Carbon Emission Accounting 
under Multiple Scenarios 

We have the following basic assumptions [35, 36]:
Assumption 1: GDP in 2035 doubles that of the base 

period (2020), and in 2060, it quadruples.
Assumption 2: The carbon sequestration capacity 

of ecological carbon sinks in 2060 is 10% of the base 
period carbon emissions.

Assumption 3: The carbon sequestration capacity of 
engineering carbon sinks or carbon trading in 2060 is 
10% of the base period carbon emissions.

According to Assumption 1, our time series 
forecasting data cannot guarantee that the GDP in 2035 
will double that of the base period (2020) and exceed 
17,736,642 billion yuan. We set a fixed GDP growth 
rate of 6.67% for the periods 2020-2035 and 2035-2060 
based on the lowest GDP to meet the requirements of 
Assumption 1, as shown in Table 2 below.

In the baseline scenario, we consider the carbon 
emissions situation. Based on the basic formula of the 
Kaya model , where P represents 

the population,  represents the GDP per capita,  
represents the energy consumption per unit of GDP, and 

 represents the carbon dioxide emissions per unit of 
energy consumption. By taking the logarithm of both 
sides and taking the partial derivative with respect to 
time, we have:  where δ 
represents the relative change rate of a parameter with 
respect to a certain baseline year. The requirement  
for peak carbon emissions is before 2030: δC = 0.  
The requirement for carbon neutrality is before 2060: 
δC2<0, and the proportion of non-fossil energy 
consumption is >80%. According to Assumption 2, SC 
represents the carbon sequestration capacity of 
ecological carbon sinks and C0 represents the carbon 
emissions in the base period of 2020. To estimate the 
carbon sequestration capacity of ecological carbon sinks 
in 2060, we used the following formula: SC = 10% of 
the base period (2020) carbon emissions, i.e., SC = C0 × 
0.1. Similarly, according to Assumption 3, we use MC to 
represent the carbon sequestration capacity of 
engineering carbon sinks or carbon trading, then we 
have the following formula: MC = C0 × 0.1. According 
to the carbon emissions = sum of emissions from various 
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Fig. 3. Comprehensive carbon emission predictions under different scenarios: natural, baseline, and ambitious, highlighting the impact 
of population, economic growth, and energy consumption trends.
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sectors + carbon sequestration capacity of ecological 
carbon sinks + carbon sequestration capacity of 
engineering carbon sinks or carbon trading, we can 
construct the carbon emission accounting formula:  
C = C1 + Cs +Ci + Ct + Cb + Cp + SC + MC, and calculate 
the carbon sequestration capacity of engineering carbon 
sinks and carbon trading in 2060 [37, 38].

We consider policy-mandated timelines for carbon 
peaking and neutrality, along with a gradually increasing 
energy efficiency and the proportion of non-fossil 
energy consumption scheme. Based on the population 
and energy consumption values calculated under the 
baseline scenario, we compute the average growth 

rate, advance the years, and determine the population 
and energy consumption for 2035/2060. Then, we 
calculate the carbon emissions for each year based on 
the carbon emission factors. Leveraging the LSTM 
model and focusing on improving energy efficiency 
and increasing the proportion of non-fossil energy, we 
adjust the parameters to implement progressive energy 
efficiency improvements and increase the proportion 
of non-fossil energy consumption annually during the 
period of carbon peaking and neutrality (from 2030 to 
2050). Finally, we predicted the carbon emissions under 
the scenarios of natural, baseline, and ambitious designs 
and plotted the carbon emission trends from 2010 to 

Table 2. Accounting under multiple scenarios.

Scenario Year Actual 
GDP

Predicted GDP 
(Lowest GDP)

Per Capita 
GDP Population

Predicted Non-
fossil Energy 

Proportion (%)

Unit GDP 
Energy 

Consumption

Carbon 
Emissions

Natural

2020 88683.21 / 10.461 8477.260 / 0.35735 191385.840

2030 / 147805.3577 
(177366.42) 17.067 8660.223 14.54982 0.23684 204766.282

2060 / 266049.6
(354732.84) 40.761 8702.767 36.98826 0.14415 171610.791

Baseline

2020 88683.21  / 10.461 8477.260 / 0.357356 191385.840

2030 / 350737.1291 40.49978 8660.223 18.15091 0.114246 190209.1033

2060 / 499914.5 57.44317 8702.767 42.45412 0.144152 132019.6281

Ambitious

2020 88683.21 / 10.461 8477.260 / 0.357356 190497.0372

2030 / 349295.3678 40.33330 8660.223 20.74423 0.114642 175840.3400

2060 / 543423.1 62.44256 8702.767 46.88765 0.1441519 78533.07224

Note: GDP values are in billion-yuan, population is in millions, and carbon emissions are in 10,000 tCO2

Fig. 4. Forecasted carbon emission trends across three scenarios.
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2060, as shown in the following Fig. 4. The data for 
2010-2020 are plotted based on available data; hence, 
the carbon emission trends under the three scenarios 
are identical. It is worth noting that due to the lack of 
data on the carbon emission factors of sectoral energy 
consumption in 2012, the carbon emissions for that year 
cannot be accurately calculated, resulting in a dip in the 
trend.

The carbon emission trends from 2021 to 2060 are 
predicted based on the three scenarios using the LSTM 
model. From the graph, it is evident that the predicted 
trends closely align with the expected development of 
carbon emissions under corresponding policies. All 
three scenarios show carbon peaking, but considering 
the timing, the ambitious scenario precedes the baseline 
scenario, which, in turn, precedes the natural scenario. 
This indicates that carbon peaking can be achieved 
earlier under proactive policy frameworks.

Dual Carbon Path Planning

Based on the predicted results in this paper, we have 
determined the target values for GDP, population, energy 
consumption, energy efficiency, and the proportion of 
non-fossil energy consumption as follows (for the years 
2025, 2030, 2035, 2050, and 2060).

Energy efficiency improvement: According to Table 
3 above, energy efficiency improvement is specifically 
reflected in reducing energy consumption per unit of 
GDP. The lower the energy consumption per unit of 
GDP, the higher the energy efficiency improvement. 
From Table 3, the energy consumption per unit of 
GDP gradually decreases from 0.293468472 in 2025 to 
0.183623471 in 2060, indicating that energy efficiency 
improvement has played a positive role in ensuring the 
achievement of the carbon peak and carbon neutrality 
on time or ahead of schedule [39].

Industrial upgrading: During economic 
development, industrial upgrading can manifest itself in 
the development of low-carbon industries. The increase 
in the proportion of low-carbon industries will help the 
government achieve carbon peak and carbon neutrality 
on time or ahead of schedule. The government can 
achieve this by formulating related preferential policies 
and increasing support for low-carbon industries  
from the source of industrial emissions reduction [40, 
41]. 

Decarbonization of energy: Decarbonization of 
energy refers to using technologies to produce fewer 
carbon products during the release of equivalent 
energy from fuels [42, 43]. This helps to reduce carbon 
emissions while ensuring GDP growth. From Table 3, 
although the GDP in 2060 (375832.859 billion yuan) is 
nearly double that of 2025 (123244.486 billion yuan), 
the energy consumption per unit of GDP continuously 
decreases throughout the process. This indicates that 
the effect of energy conservation and emission reduction 
achieved through technological upgrades is significant. 

Electrification of energy consumption: Electrification 
refers to the widespread use of electricity in industrial, 
agricultural, and urban and rural residents’ daily lives 
[43]. Electrification mainly relies on clean energy as 
the main power source, which can be reflected by non-
fossil energy consumption in Table 3. The proportion of 
non-fossil energy consumption increased from 20.98% 
in 2025 to 90.34% in 2060, indicating a significant 
increase in the proportion of non-fossil energy 
consumption. By increasing the use of non-fossil energy, 
carbon dioxide emissions can be reduced, and the final 
effect is significant, making a significant contribution to 
achieving carbon peak and carbon neutrality ahead of 
schedule.

In conclusion, to achieve carbon peak and carbon 
neutrality on time or ahead of schedule, it is necessary 
to promote industrial upgrading, optimize related 
technologies to reduce carbon dioxide emissions in 
industrial production processes, and promote the 
electrification of energy consumption. This involves 
gradually increasing the proportion of non-fossil energy 
consumption and reducing energy consumption per unit 
of GDP through various proactive policies. The research 
findings align with similar findings by Li et al. [39-41, 
44, 45].

Conclusions

This paper systematically reviews the current 
status of carbon emission prediction and proposes a 
carbon emission prediction and accounting framework 
for City X based on the LMDI and Kaya models. The 
prediction models utilized in this framework include 
logistic regression, ARIMA, the least squares method, 
and LSTM neural networks. Finally, the paper presents  

Table 3. Determination of dual carbon (peak carbon and carbon neutrality) targets and paths.

Year 2025 2030 2035 2050 2060

GDP (billion yuan) 123244.486 171454.358 203873.429 313786.287 375832.859

Population (ten thousand people) 8477.26 8852.28 9243.90 10205.31 10856.33

Energy Consumption (million tons of standard coal) 36168.371 40009.138 46536.224 57996.975 69011.734

Energy Utilization Efficiency 0.293468472 0.233351537 0.228260368 0.18482954 0.183623471

Proportion of Non-fossil Energy Consumption 20.98% 26.78% 37.37% 72.15% 90.34%
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a pathway plan for City X to achieve its dual carbon 
goals under three scenarios.

This paper’s contributions are as follows: First, it 
analyzes the carbon emissions and variables influencing 
them in City X from 2010 to 2020 using the LMDI 
decomposition and Kaya models. Second, the study 
develops a population prediction model using logistic 
regression, an ARIMA-based GDP prediction model, 
a least squares method-based energy consumption 
prediction model, and an LSTM neural network-based 
carbon emission prediction model. Third, the study 
creates three scenarios: the standard scenario, which 
calls for no action; the aggressive scenario, which calls 
for reaching carbon peak and carbon neutrality earlier 
than expected; and the baseline scenario, which calls 
for neither intervention nor delay. In these scenarios, 
different approaches to optimizing energy consumption 
patterns and boosting energy efficiency across sectors 
are suggested in order to meet the government’s 2030 and 
2060 carbon peak and carbon neutrality targets. Fourth, 
this study provides valuable guidance for City X’s 
green dual-carbon policy, serving as a reference point 
for other cities globally in their pursuit of sustainable, 
low-carbon development. The adaptable LSTM model 
framework demonstrates its potential to be applied in 
diverse economic and environmental contexts, offering 
tailored insights that can inform region-specific carbon 
reduction strategies. Furthermore, the framework’s 
flexibility allows for cross-sectoral applications, 
particularly in the industrial and energy domains, where 
precise emissions forecasts are crucial for sustainable 
planning and policy adjustment. These extended 
capabilities highlight the framework’s versatility across 
various contexts and industries, making it a powerful 
tool for broad implementation. The findings of this 
study also hold practical significance for China’s dual-
carbon objectives – achieving a carbon peak by 2030 
and carbon neutrality by 2060. By examining carbon 
emission dynamics and establishing robust predictive 
models, this research provides policymakers with 
actionable insights to accelerate progress toward these 
critical environmental goals. The study’s methodological 
innovations and scenario analyses present essential tools 
for decision-makers, supporting the balance between 
economic growth and sustainability and emphasizing 
the importance of timely intervention in achieving 
China’s ambitious carbon targets.

Due to limitations in sample size, this study employs 
various prediction models to better capture key variables 
such as population, economic indicators, energy 
consumption, and carbon emissions. However, potential 
random errors may still arise when analyzing real-world 
issues [46]. We acknowledge the value of accounting 
for external uncertainties, such as policy changes and 
technological advancements, which could impact the 
robustness of our predictions. Therefore, to improve the 
precision and applicability of predictions, future research 
should aim to acquire more comprehensive data for 
upcoming years and explore carbon emission predictions 

under additional scenarios to offer supplemental 
solutions. Future studies will integrate both uncertainty 
[23, 47-49] and sensitivity analyses to enhance model 
robustness and applicability. Specifically, probabilistic 
methods like Monte Carlo simulations will be employed 
to evaluate potential outcomes under varying external 
conditions, including policy and economic dynamics 
shifts.

Additionally, we can consider utilizing approaches 
based on system dynamics [50] and the “scenario-
response” paradigm [51] to predict carbon emissions 
under unforeseen events, making the predictions 
more scientifically sound. Subsequently, validating 
the effectiveness of these new models in practical 
applications will be essential.
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