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Abstract

The power generation of renewable energy sources is directly related to meteorological conditions 
like wind speed and sunlight. Integrating large-scale unstable power sources into the power system 
generates a need for adjustment and introduces operational risks. To improve the system’s adjustment 
performance and address the impact of uncertainties, this paper analyzes the operational characteristics 
and adjustment differences of various flexible resources and proposes a collaborative robust 
scheduling model for multi-flexible resources of source, grid, load, and storage, considering multiple 
uncertainties. The model aims to minimize system operation costs, including technical modifications, 
fuel consumption, start-up and shutdown, and energy curtailment, while satisfying constraints such 
as real-time supply-demand balance, system adjustment margin, and unit operation. An improved 
robust optimization theory is introduced to handle the uncertainties in renewable energy, transforming  
the model into an easier-to-solve problem. Finally, the case study results show that various flexible 
resources of source-grid-load-storage have different adjustment performances, and all types of resources 
are indispensable for a power system with a high proportion of renewable energy. Applying the proposed 
collaborative robust scheduling model can achieve a balanced decision-making process between risk 
and economy, ensuring complementary advantages and optimal allocation of various source-grid-load-
storage resources.

Keywords: new power system, source-grid-load-storage, flexible resources, light robust optimization, 
scheduling model
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Introduction

Climate change has become a challenge faced by 
all of humanity, and achieving carbon neutrality has 
become a global consensus and strategic choice in 
addressing and mitigating climate change. With their 
clean and low-carbon advantages, renewable energy 
sources such as wind power and photovoltaics are 
experiencing unprecedented development opportunities. 
By the end of 2023, the installed capacity of wind 
power and photovoltaics in China accounted for 36% 
of the total [1]. Due to the significant variability and 
intermittency in the spatiotemporal distribution of wind 
power and photovoltaic generation, their uncertainty 
is much greater than the load’s, and their temporal 
variation patterns are not synchronized with load curves 
[2]. Studies have shown that the high proportion of 
wind power and photovoltaic integration brings new 
challenges to the flexibility requirements and secure 
and stable operation of the power system [3]. Therefore, 
the reasonable allocation and efficient utilization of 
flexible resources of source, grid, load, and storage have 
become core factors in maintaining real-time power 
supply-demand balance and are key to the high-quality 
development of the new power system.

Recently, the flexibility of the power system 
has drawn significant attention from scholars, as it 
encompasses a wide range of meanings. Whether 
considering the power fluctuations of renewable energy 
on the supply side or the randomness of electric vehicle 
charging on the demand side, both impose higher 
requirements on the flexibility of the power system [4]. 
The International Energy Agency (IEA) [5] proposed the 
concept of flexibility, referring to the ability to respond 
to foreseeable and unforeseeable fluctuations on both the 
supply and demand sides while considering economic 
efficiency. Huang et al. [6] define power system 
flexibility as the ability to respond to changes in net 
load within a predetermined time frame. In this paper, 
flexibility is viewed as a broader concept, referring to 
the power system’s adaptability to various changes, 
encompassing aspects such as stability, reliability, and 
adequacy. This includes not only the ability to respond 
to different time scales (e.g., hours, minutes) but also the 
capacity to handle various types of risks (e.g., power 
fluctuations, outages). Flexibility is key to the operation 
of the power system and requires ensuring sufficient 
power supply security at all times.

The enhancement of power system flexibility 
relies on various flexible resources, which are widely 
distributed across different power system sectors. 
Scholars have conducted in-depth studies on various 
types of flexible resources. Wang et al. [7] compared 
the performance of different coal-fired power units from 
a flexibility perspective and analyzed the impact of 
flexibility retrofitting technologies on the adaptability of 
renewable energy. Jin et al. [8] explored the regulatory 
role of cascade hydropower in the power system and 
found that wind and photovoltaic power generation can 

reduce the adjustment efficiency of hydropower. Qin et 
al. [9] provided a comprehensive comparison and review 
of various long-distance transmission technologies, 
highlighting that long-distance, high-capacity 
transmission lines can mitigate the issue of the inverse 
distribution between renewable energy production and 
consumption. Cui et al. [10] considered the electricity 
consumption preferences of different types of users 
and developed a demand response model for multi-type 
user loads, revealing the importance of load control 
for the secure operation of the power system. Chen et 
al. [11] constructed a multi-temporal storage capacity 
expansion model that considers both the characteristics 
of renewable energy generation and the load demand 
at the receiving end, analyzing the demand scale for 
various storage technologies with different durations.  
As the proportion of variable renewable energy increases, 
the adjustment potential of resources of source, grid, 
load, and storage sectors cannot be overlooked. Existing 
research suggests that the adjustment methods and 
performance of flexible resources vary. It is necessary to 
guide them to actively participate in system regulation, 
such as auxiliary service mechanisms.

The collaborative operation of a power system’s 
source, grid, load, and storage refers to optimizing 
and integrating resources such as power generation, 
transmission, distribution, and storage to reduce energy 
usage costs and improve energy efficiency [12]. Hao 
et al. [13] pointed out that the spatial and temporal  
symmetry between source and load is of significant 
importance for resource allocation in the power 
system. In their work, they proposed the concept of 
distribution-side source-load symmetry and analyzed 
its impact on the optimal scheduling of distribution 
networks. However, they did not consider the influence 
of energy storage on source-load symmetry. Yang et 
al. [14] proposed an optimized electrothermal system 
model for collaborative hydrogen production by 
integrating generation, load, and storage, considering 
refined flexible load response. However, they did not 
explore the potential of the transmission network to 
accommodate renewable energy. Xiang et al. [15] 
developed an expansion planning model for distribution 
systems based on the coordination of source, grid, load, 
and storage, enhancing the adaptability of distribution 
networks to renewable energy. The aforementioned 
studies primarily focused on traditional power system 
dispatching, focusing on the balance of power supply 
and demand, without examining the adjustment 
potential of collaborative operation from a flexibility 
perspective. However, this is a critical issue in building 
a power system with a high proportion of renewable 
energy, which is the focus of this paper.

The above research indicates that the economic 
scheduling model can incorporate flexible resources of 
source, grid, load, and storage into a unified framework, 
aiming for cost minimization to optimize resource 
allocation [16]. Since a secure electricity supply is 
a fundamental guarantee for social and economic 
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development, the operational risks of power systems 
are also worth attention, particularly during the current 
rapid development of renewable energy [17, 18]. With the 
increasing penetration of wind and photovoltaic power, 
as well as the growing concerns about climate change, 
the uncertainty associated with hydropower must not 
be overlooked. Some researchers have employed deep 
learning and machine learning methods to improve the 
accuracy of renewable energy and load forecasting [19]. 
Additionally, other scholars have focused on enhancing 
the power system’s optimization and scheduling methods 
to improve their reliability. Robust optimization, a pre-
analysis method in uncertain optimization, evolved from 
robust control theory and has been widely applied in 
uncertain power system dispatch [20]. Attarha et al. [21] 
constructed a polyhedral uncertainty set to address the 
uncertainties of wind power and system load, proposing 
a robust optimal power flow model for the power system. 
As the application of the model deepened, scholars 
identified drawbacks in the robust optimization model, 
particularly its conservative nature, as constraints must 
be strictly adhered to, leading to decisions that may not 
align with real-world scenarios [22]. Consequently, the 
robust optimization model has undergone improvements, 
such as the development of the distributionally robust 
optimization model [23]. Esfahani et al. [24] employed 
a data-driven distributionally robust optimization 
theory to characterize the uncertainty of production and 
consumption behavior, yielding results that mitigated 
conservatism. This paper adopts another approach 
to relax and improve the robust optimization theory, 
offering advantages such as faster solution speed and 
reduced conservatism.

In summary, existing research has already focused on 
the flexibility of power systems with a high proportion of 
renewable energy and has produced abundant results in 
the field of secure and economic scheduling. However, 
these studies did not focus on the differences in resource 
regulation performance between different links of the 
source network load storage, only on the results of 
whether the power supply and demand are balanced, and 
did not analyze the complementarity of these resources 
from the perspective of flexibility. Additionally, there 
is still considerable room for improvement in robust 
optimization models for addressing uncertainties, 
requiring more practical and efficient optimization 
strategies. Therefore, this paper proposes a collaborative 
robust scheduling model for flexible resources of source, 
grid, load, and storage, with the main contributions and 
innovations as follows:

(1) In terms of perspective, this paper explores the 
flexibility of a power system with a high proportion of 
renewable energy, delving into the new challenges and 
adjustment demands that power systems face in the 
context of large-scale renewable energy integration. 
Focusing on the volatility and uncertainty of renewable 
energy sources such as wind power and photovoltaics, 
the paper proposes collaborative scheduling strategies 
for flexible resources.

(2) In terms of research content, a comprehensive 
optimization and scheduling framework for flexible 
resources of source, grid, load, and storage is designed. 
The study emphasizes these resources’ adjustment 
potential and complementary advantages when 
coordinating. Additionally, scenarios are set up to 
compare the differences in power system flexibility 
under various combinations of source, grid, load, and 
storage resources.

(3) In terms of research methodology, the traditional 
robust optimization theory is improved by constructing 
a light robust optimization model. The model balances 
system operation costs and risks by introducing 
relaxation variables and polyhedral uncertainty sets.  
The improved model reduces conservatism and enhances 
the adaptability of the power system.

The remainder of the paper is organized as 
follows: Section 2 analyzes the collaborative operation 
mechanism of flexible resources of source, grid, load, 
and storage. Section 3 constructs the collaborative 
scheduling model for flexible resources. Section 4 
improves the robust optimization method. Section 
5 presents a case study analysis. Section 6 provides 
conclusions and an outlook.

Material and Methods

Collaborative Mechanisms for Flexible Resources

Flexible Resources Classification and Characteristics

In the new power system with a high proportion 
of wind power (WP) and photovoltaic power (PV) 
integration, sufficient flexible resources are required to 
adjust and ensure a real-time dynamic balance of power 
supply and demand. Flexible resources can be classified 
into four categories based on different functional roles: 
source, grid, load, and storage. Table 1 shows the main 
classification and characteristics of flexible resources 
considered in this paper.

Operation Model for Flexible Resources

(1) Coal-fired power
Coal-fired power produces electricity by burning 

coal, and coal consumption can be approximately 
considered as a linear function of power output. Coal-
fired power units have large unit capacities and stable 
operation. However, without flexibility transformation, 
they maintain a high minimum output, have slow ramp 
rates, and require long start-up and shutdown times.  
The operational model for coal-fired power is as follows:

 , , , , ,
coal coal

CP i t CP i CP i tF b Pρ=
 (1)

 , , , , , ,
UD up up down down

CP i t i t CP i i t CP iF u F u F= +
 (2)
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min max

, , , , , , , ,i t CP i CP i CP i t i t CP i CP iu C P u Cα α≤ ≤
 (3)

 , , , , , , 1 , ,
down up
CP i CP i CP i t CP i t CP i CP iC P P Cβ β−− ≤ − ≤

 (4)

 , , 1 , 0up
i t i t i tu u u−− − ≤  (5)

 , 1 , , 0down
i t i t i tu u u− − − ≤  (6)

 , , 1 , 0, [ , 1]on
i t i t i k iu u u k t T t−− − ≤ ∀ ∈ + −  (7)

 , 1 , , 1, [ , 1]off
i t i t i k iu u u k t T t− − + ≤ ∀ ∈ + −  (8)

where the subscript i denotes the index of coal-fired 
power units, and the subscript t denotes the time index. 

, ,
coal

CP i tF  is the fuel cost of coal-fired power, ρcoal is the 
coal price, and bCP,i is the coal consumption rate. PCP,i,t  
denotes the power output of the coal-fired unit. , ,

UD
CP i tF  

denotes the start-up and shutdown costs, with ,
up

CP iF  
and ,

down
CP iF  being the start-up and shutdown costs for 

a single operation, respectively. ui,t
up and ui,t

up are 0-1 
binary variables indicating start-up and shutdown 
actions of the coal-fired unit, respectively. ui,t denotes 
the operational status of the coal-fired unit, with a value 
of 0 or 1. CCP,i  is the rated capacity of the coal-fired unit. 

min
,CP iα  and max

,CP iα  denote the minimum and maximum 
output percentages, respectively. ,

down
CP iβ  and ,

up
CP iβ  are 

the ramp-up and ramp-down limits, respectively. Ti
on  

and Ti
off are the coal-fired unit’s minimum on-time and 

minimum off-time, respectively.
(2) Flexibility transformation CP
The flexible transformation of coal-fired power offers 

significant economic advantages, making it a primary 
source of flexibility. After transformation, the minimum 
output is reduced, the ramp rate is increased, and the 
start-up time is shortened. The operational model of 
coal-fired power plants after transformation is similar to 
the previous one. The differences lie in the addition of 
transformation costs, an increase in coal consumption 
rate under low-load conditions, and optimized unit 

adjustment parameters [25]. After the coal-fired power 
flexibility transformation, the operation model still 
needs to meet the requirements of formulas (1), (2), (5), 
and (6), but the parameters in formulas (3), (4), (7), and 
(8) have changed.

 , , , ,
FT FT

FTCP j t FTCP j tF Pρ=
 (9)

min max
, , , , , , , ,ˆ̂j t FTCP j FTCP j FTCP j t j t FTCP j FTCP ju C P u Cα α≤ ≤

(10)

, , , , , , 1 , ,
ˆ down up

FTCP j FTCP j FTCP j t FTCP j t FTCP j FTCP jC P P Cβ β−− ≤ − ≤
 

(11)

 , , 1 ,
ˆ0, [ , 1]on

j t j t j l ju u u l t T t−− − ≤ ∀ ∈ + −
 (12)

 , 1 , ,
ˆ1, [ , 1]off

j t j t j l ju u u l t T t− − + ≤ ∀ ∈ + −
 (13)

where the subscript j represents the index of coal-fired 
power units after flexibility transformation, , ,

FT
FTCP j tF  

denotes the cost of the flexibility transformation for 
coal-fired power plants. ρFT denotes the transformation 
investment cost allocated per unit of power.  
The parameters with an ^  above the symbols indicate 
the optimized parameters of coal-fired power plants 
after the flexibility transformation.

(3) Regulated hydropower
Hydropower has strong adjustment capabilities, 

with very fast ramp-up and start-up rates, so ramping 
and start-up constraints can be ignored. The generation 
capacity of hydropower is related to water inflow and 
exhibits seasonal variations. Therefore, water allocations 
for regulated hydropower need to be scheduled over a 
long-term annual timescale. The operational model for 
hydropower is as follows:

 , ,HP t HP HP tF Pρ=
 (14)

 
min max

,HP HP HP t HP HPC P Cα α≤ ≤
 (15)

Table 1. Flexibility resources classification and characteristics.

Classification Resources Operation characteristics Regulation 
range

Regulation 
speed

Source

Coal-fired power, (CP) Fast adjustment, limited range, slow start and stop 50%~100% 1%-2%
Flexibility transformation 

CP, (FT-CP)
Fast adjustment, expanded downward range, fast 

start and stop 30%~100% 3%-6%

Regulated hydropower, 
(HP) Fast adjustment, seasonal differences 0%~100% 20%

Grid Transmission line, (TL) Dependent on the receiving end, limited adjustment -100%~100% <1%
Load Flexible load, (FL) Incentive-driven, fast response 3%~5% 100%

Storage Energy storage, (ES) Fast adjustment, short duration, small scale -100%~100% 100%
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and interruption, respectively. ,
in
TFL tL  and ,

out
TFL tL  denote 

the amounts of transferable load transferred in and out, 
respectively. 

max
TFLδ  denotes the maximum transfer ratio 

for transferable loads. LIFL,t denotes the reduction amount 
for interruptible load. 

max
IFLδ  denotes the maximum 

reduction amount for interruptible loads. Lt
0 denotes the 

total system load demand.
(6) Energy storage
The energy stored in a storage system is determined 

by the amount of energy stored at the previous time step 
and the charging or discharging amount at the current 
time step. Energy storage must adhere to constraints 
on charging and discharging power, state of charge, 
and energy balance. Energy storage costs primarily 
include charging costs, energy losses, and operation  
and maintenance costs; charging costs and energy 
losses are already accounted for in the model and do not  
need to be considered separately. The operational 
models for electrochemical storage and pumped storage 
are similar:

 , ,
dis dis

ES t ES ES tF Pρ=  (24)

 
, , 1 , ,

1= chr dis
ES t ES t ES ES t ES t

ES

C C P Pη
η− + −

 (25)

 , , ,
chr chr,min chr chr chr,max
ES t ES ES t ES t ESP P Pµ µ≤ ≤  (26)

 , , ,
dis dis,min dis dis dis,max
ES t ES ES t ES t ESP P Pµ µ≤ ≤

 (27)

 , , 1chr dis
ES t ES tµ µ+ ≤

 (28)

 ,
min max
ES ES t ESC C C≤ ≤

 (29)

 ,1 ,ES ES TC C=
 (30)

where FES,t denotes the operational cost of storage, 
dis
ESρ  

denotes the unit cost of storage per unit of electricity.  
CES,t denotes the amount of energy stored. ,

chr
ES tP  and 

,
dis

ES tP  denote the charging and discharging powers of 
the storage, respectively. ηES denotes the charging and 

discharging efficiencies. ,
chr
ES tµ  and ,

dis
ES tµ  are 0-1 state 

variables for charging and discharging, respectively. 
chr,min

ESP , 
chr,max

ESP , dis,min
ESP , dis,max

ESP  denote the limits 
for charging and discharging power, respectively. min

ESC
and 

max
ESC  denote the maximum and minimum capacity 

limits of the storage, respectively. CES,1 and CES,T denote 
the energy levels at the scheduling period’s initial and 
final time steps, respectively. T denotes the scheduling 
period.

 
,

1

T

HP t HP
t

P E
=

≤∑
 (16)

where FHP,t denotes the cost of hydropower, ρHP  denotes 
the unit generation cost of hydropower. PHP,t is the 
power output of the hydropower unit. CHP is the rated 
capacity of the hydropower unit. min

,HP iα  and max
,HP iα  

are the minimum and maximum output percentages, 
respectively. EHP,t is the amount of electricity allocated 
to a typical day based on the annual generation plan.

(4) Transmission line
The power of the transmission line is primarily 

determined by the receiving end. When local generation 
at the receiving end cannot meet its load, the sending 
end optimizes the cross-regional allocation of electricity 
through the transmission network. Transmission 
lines can enhance the security and reliability of the 
receiving end and increase the capacity for renewable 
energy accommodation at the sending end. The flexible 
adjustment model for transmission lines is as follows:

 , ,TL t TL TL tF Pρ=  (17)

 
min max

,TL TL TL t TL TLC P Cλ λ≤ ≤
 (18)

where FTL,t denotes the transmission cost. ρTL denotes  
the unit transmission cost. PTL,t denotes the power of the 
transmission line. CTL denotes the rated capacity of the 
transmission line. min

TLλ  and max
TLλ  are the minimum 

and maximum output percentages, respectively.
(5) Flexible load
Flexible load participation in demand response can 

be categorized into Transferable Flexible Load (TFL) 
and Interruptible Flexible Load (IFL). Transferable 
flexible loads, such as electric vehicle charging, can 
change usage times. Interruptible flexible loads, such 
as industrial manufacturers, can reduce consumption 
during peak load periods [26]. The flexible adjustment 
model for flexible load is as follows:

 , , ,
in in

FL t TFL TFL t IFL IFL tF L Lρ ρ= +  (19)

 
, ,

1 1

T T
in out
TFL t TFL t

t t
L L

= =

=∑ ∑
 (20)

 
max 0

,0 in
TFL t TFL tL Lδ≤ ≤  (21)

 
max 0

,0 out
TFL t TFL tL Lδ≤ ≤  (22)

 
max 0

,0 IFL t IFL tL Lδ≤ ≤  (23)

where FFL,t denotes the demand response cost, 
in
TFLρ  and ρIFL denote the unit costs for load transfer  
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Collaborative Operation Mechanism 
for Flexible Resources

Different flexibility resources of source, grid, load, 
and storage have distinct operational characteristics, 
with significant differences in adjustment ranges, 
ramp rates, and start-up speeds. The diversity of 
flexibility requirements in power systems is reflected 
in the timescale, requiring the accommodation of 
load fluctuations in the short term as well as resource 
optimization and allocation in the long term. In terms 
of regulation, flexibility requirements include upward 
regulation to address increased load and downward 
regulation to respond to load reductions. Regulation 
depth is characterized by varying degrees of resource 
adjustment capacity to accommodate different scales 
of supply and demand changes. The development of 
each flexibility resource has its associated strengths, 
weaknesses, opportunities, and threats [27]. The 
flexibility requirements of power systems exhibit diverse 
characteristics, including varying time scales, adjustment 
directions, and depths of adjustment. Therefore, each 
type of resource provides complementary advantages in 
delivering flexibility to the power system. It is essential 
to comprehensively consider these flexible resources’ 
economic costs and technical features, define their 
development roles clearly, and strategically combine 
and leverage their strengths while mitigating their 
weaknesses to achieve collaborative development of 
various flexible resources.

Specifically, coal-fired power transformation 
involves large existing units and currently offers certain 
economic advantages. Hydropower has significant 

adjustment potential in regions with abundant water 
resources and requires a well-planned annual water 
allocation. Transmission lines enable cross-regional 
optimization of resources, provide accommodation 
space for the sending end, and enhance supply security 
for the receiving end. Demand-side flexible loads have 
low investment costs and fast response rates, making 
them suitable for quickly addressing extreme events. 
Energy storage can shift energy across different time 
periods, transferring surplus renewable energy to peak 
load periods. The collaborative operation mechanism of 
source, grid, load, and storage resources is illustrated in 
Fig. 1.

The Collaborative Scheduling 
Model for Flexible Resources

Previous studies have obtained the operational 
characteristics of flexible resources from generation, 
grid, load, and storage (source-grid-load-storage) into 
mathematical models, achieving a unified description 
of different resources at the mathematical level.  
Then, a collaborative scheduling model for flexible 
resources is established based on the fundamental 
principles and requirements of power system operation. 
For example, the supply-demand balance of energy 
can be obtained as a power balance constraint, and the 
supply capacity of energy can be obtained as a system 
reserve constraint. These constraints ensure that the 
scheduling solution remains within the feasible domain, 
with various resources from generation, grid, load, 
and storage working together to maintain balance. 
For instance, different power sources provide energy, 

Fig. 1. Collaborative mechanism for flexibility resources. 

Hydropower

Flexible load

Uncertain source

Load
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loads represent the energy demand but can be flexibly 
adjusted, and storage can be seen as energy supply 
during discharging and energy demand during charging. 
The objective function of the collaborative scheduling 
model is to minimize the overall system operating 
cost. Optimization methods are used to perform global 
optimization under the premise of satisfying various 
constraints. In this process, the model considers the 
synergies between different resources until it finds 
the optimal combination of resources and scheduling 
strategy to achieve the best objective function.

Objective Function

When wind power and photovoltaic outputs are 
high, there is a risk of electricity supplies exceeding 
demand. When flexible resources have insufficient 
upward adjustment capability, wind power and 
photovoltaic curtailment may occur. Conversely, 
insufficient downward adjustment capability can lead 
to load-shedding events. Penalty terms are included 
in the objective function to prevent the curtailment of 
wind power, photovoltaics, and load shedding. The 
collaborative scheduling model integrates various 
types of flexible resources of source, grid, load, and 
storage into a unified optimization framework, with 
the objective function of minimizing comprehensive 
operation costs.

( ) ( ), , , , , , , ,
1 1

, , , , , ,

min

            

I J
coal UD coal UD

CP i t CP i t FTCP j t FTCP j t
i j

HP t TL t FL t ES t RE t SL t

f F F F F

F F F F F F
= =

= + + +

+ + + + + +

∑ ∑

 
(31)

where FRE,t denotes the penalty cost for curtailment of 
wind power and photovoltaics, FSL,t denotes the penalty 
cost for load shedding. The calculations are as follows:

 ( ), , ,
curt curt

RE t RE WP t PV tF P Pρ= +
 (32)

 , ,SL t SL SL tF Lρ=
 (33)

where ρRE is the unit penalty cost for curtailment 

of wind power and photovoltaics, ,
curt

WP tP  and ,
curt

PV tP  
denote the power of curtailment of wind power and 
photovoltaics, respectively. ρSL is the unit penalty cost 
for load shedding. LSL,t is the power associated with load 
shedding.

Constraints

In addition to the operational models for the 
various types of flexible resources mentioned above,  
the following constraints must be satisfied:

(1) Curtailment of wind power and photovoltaic 
constraints

When there is no curtailment of wind power and 
photovoltaics, the actual power output of wind power 
and photovoltaics is equal to the forecasted power output. 
When curtailment occurs, the actual power output of 
wind and photovoltaics is less than the forecasted power 
output.

 
0

, , ,
curt

WT t WT t WP tP P P= −
 (34)

 
0

, ,0 curt
WP t WT tP P≤ ≤

 (35)

 
0

, , ,
curt

PV t PV t PV tP P P= −
 (36)

 , ,0 curt
PV t PV tP P≤ ≤

 (37)

where PWT,t and PPV,t denote the actual power of wind 
power and photovoltaics, respectively, P0

WT,t and 
P0

PV,t  denote the forecasted power of wind power and 
photovoltaics, respectively.

(2) Power balance constraint
Power balance is a fundamental safety and stability 

issue in the power system. A traditional power system 
primarily focuses on balancing power generation and 
consumption at peak load times, which generally 
ensures balance at other times. However, the balancing 
standards are more complex in a new power system 
with a high proportion of renewable energy. Power 
consumption and generation need to be balanced in real 
time, relying on the adjustment capabilities of various 
flexible resources.

 
( ) 0

, , , , , , , , , , , , , ,
1 1

I J
dis chr in out

WT t PV t CP i t FTCP j t HP t ES t ES t t TL t TFL t TFL t IFL t SL t
i j

P P P P P P P L P L L L L
= =

+ + + + + − = + + − − −∑ ∑
  

 
( ) 0

, , , , , , , , , , , , , ,
1 1

I J
dis chr in out

WT t PV t CP i t FTCP j t HP t ES t ES t t TL t TFL t TFL t IFL t SL t
i j

P P P P P P P L P L L L L
= =

+ + + + + − = + + − − −∑ ∑
 (38)

(3) System reserve constraints
To ensure real-time power balance and to account 

for imbalances caused by renewable energy forecast 
deviations, load forecast errors, and various operational 
incidents, a certain amount of standby regulation 
capacity needs to be reserved. When deviations occur, 
the power supply-demand balance will be disrupted. 
At this point, the balance can be restored by adjusting 
the output. The auxiliary services mechanism includes 
various types, with reserves being the main focus of this 
study.

( ) ( )max max 0
, , , , , , , , , ,

1 1

ˆ
I J

U
i t CP i CP i CP i t j t FTCP j FTCP j FTCP j t t t
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= =

− + − ≥∑ ∑
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, , , , , , , , , ,

1 1

ˆ
I J

U
i t CP i CP i CP i t j t FTCP j FTCP j FTCP j t t t
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u C P u C P r Lα α
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− + − ≥∑ ∑  (39)
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− + − ≤∑ ∑  (40)

Where rt
U and rt

D denote the positive and negative 
reserve rates, respectively.

Robust Optimization Method Improvement

The above-mentioned collaborative scheduling model 
for flexible resources is deterministic. In traditional 
deterministic optimization scheduling models, the 
predicted power output of renewable energy is typically 
treated as the actual value. However, the reality is 
that predictions always have inevitable deviations. In 
practice, renewable energy generation is influenced by 
meteorological factors, such as wind speed, sunlight, 
and precipitation, resulting in uncertainty in output, 
which reduces the safety of system scheduling. Robust 
optimization theory can be employed to enhance 
decision robustness. The general form of a traditional 
robust optimization model is:

 

min  
. .   ,   1, 2, ,

T

T T
i i is t i nϖ




≤ = 

c x
a x b

 (41)

where cT denotes the objective coefficients, x denotes 
the decision variables. ai

T denotes the coefficients of 
the constraints. ϖi

T denotes the uncertain parameters. bi 
denotes the uncertainty in the parameters.

The traditional robust optimization model 
requires that the above constraints be met under all 
circumstances, often leading to decisions based on the 
worst-case scenario, which rarely occurs in practice. 
This results in overly conservative decision-making. 
On the other hand, the number of hard constraints in 
the model is increased, making the model unsolvable. 
Therefore, traditional robust optimization models have 
some limitations.

This study makes some improvements to the 
traditional robust optimization model. Slack variables γ  
are introduced to relax the constraints in the traditional 
robust optimization model, allowing the model to 
violate some constraints within the uncertainty set 
range, meaning that the power of renewable energy 
can fluctuate within a certain interval. However, the 
violation of constraints is given a certain upper limit 
and converted into a loss cost included in the objective 
function. These adjustments are also in line with 
the actual operation of power systems. For example, 
when there is a power shortage, managers guide users 
to reduce electricity consumption through demand 
response and provide compensation, temporarily 
breaking the original supply-demand balance constraint 
by incurring some costs.

Therefore, relaxation variables γ are introduced to 
balance economic efficiency and security, transforming 
the robust optimization model into a light robust 
optimization model. Box-set constraints and 1-norm 
constraints are used to describe the polyhedral set of 
uncertain parameters [28].

 
max
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        0 ,      1, 2, ,
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γ γ
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 1,
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i i j i j i j i
j

b b b j Jξ ξ Ω

Ω ξ ξ ξ Γ

 = + ∈ ∈

  

= ≤ ≤ 
  

∑
 (43)

where γ denotes the relaxation variables, dT corresponds 
to the coefficient. ci

max denotes the upper limit. bi,j 
denotes the j-th uncertain parameter in bi. b̅ i,j denotes 
the mean (predicted value) of the uncertain parameter 
bi,j. b̂ i,j is the maximum fluctuation range. ξi,j denotes the 
degree of fluctuation. Ωi is the box uncertainty set for  
ξi,j. Γi controls the expected range of fluctuations, also 
called the robustness coefficient, and controls the total 
fluctuation amount.

This paper solves the light robust optimization model 
using an equivalent transformation approach. Equation 
(42) can be expressed as:

 
( ),, , ,

ˆT T
i ji i i j i j i j

j
b bϖ ξ− ≤ +∑a x γ

 (44)

Equation (44) equals:

,, , , ,
ˆmaxT T T

i ji i i j i j i j i j
j j

b bϖ ξ ϖ− ≤ −∑ ∑a x γ
 (45)

To obtain the maximum value of , , ,
ˆT

i j i j i jbξ ϖ , we 

first sort , ,
ˆT

i j i jbϖ  to get , ,
ˆT

i j i jbϖ ′
. Since ,i j i

j
ξ Γ≤∑ , 

the integer and fractional parts of Γi need to be truncated. 

Assume the floor of Γi is iΓ   . Then, the coefficients 

,i jξ  of the first iΓ    terms of , ,
ˆT

i j i jbϖ ′
 are assigned  

a value of 1 to ensure the maximum. The coefficient 

of the next term 1iΓ +    is assigned a value of 

i iΓ Γ−    ,and the remaining coefficients are set 
to zero. Thus, Equation (45) can be equivalently 
transformed into:
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 (46)

In the scheduling of source, grid, load, and storage 
flexibility resources, wind power, photovoltaic, and 
hydropower outputs all have certain uncertainties. 
However, wind power and photovoltaics have high 
uncertainties, while hydropower has relatively low 
uncertainty. Renewable energy generation is correlated, 
which is reflected in various aspects such as weather, 
geography, season, and time of day [29]. Multiple 
uncertainty factors may also have potential correlations. 
Therefore, there is a budget constraint on the total 
uncertainty. The corresponding uncertainty budget 
constraints can be expressed as:

 

1

2

3

3

1

1

1

WT PV HP
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PV

HP

ξ ξ ξ Γ

ξ Γ

ξ Γ

ξ Γ

 + + ≤ ≤


≤ ≤


≤ ≤
 ≤ ≤  (47)

where ξWT, ξPV, ξi denote the uncertain parameters for 
wind power, photovoltaic, and natural water inflow, 
respectively.

In summary, the scheduling model’s Equation (38) 
is revised using the improved method’s formula (46). 
Relaxation variables for curtailing wind power, solar 
power, and load shedding are introduced, allowing 
the power balance constraint to be relaxed at a certain 
operational cost, thereby characterizing the relationship 
between operational cost and management risk. 

Curtailing wind power, solar power, and load shedding 
can also serve as indicators for assessing the operational 
risk of the power system. Additionally, the uncertainty 
budget coefficient can be used to limit the intensity 
of renewable energy output fluctuations, providing 
decision-making references for managers with different 
confidence levels and risk attitudes. The above model 
will be built in Matlab 2022, with the Gurobi solver used 
to find the optimal solution, resulting in the optimal 
collaborative combination of flexible resources.

Results and Discussion

Case Study Introduction

This paper uses a regional power system as an 
example for simulation. The region has abundant clean 
energy and is a power-exporting area. The maximum 
local load is 12.6 GW, and the maximum export load 
is 1.8 GW. The load curves for local and exported 
electricity are shown in Fig. 2. The proportion of 
transferable flexible loads is 3%, with a unit cost  
of 0.2 CNY/kWh, and the proportion of interruptible 
flexible loads is 2%, with a unit cost of 0.4 CNY/kWh. 
The load-shedding cost is 1 CNY/kWh. The reserve 
rates for both positive and negative reserves are 5%. 

The installed capacity of coal-fired power is  
12 GW, divided into six types comprising 26 units.  
The parameters of the coal-fired power units are shown 
in Table 2. After flexible transformation, one unit of 
each type can control the minimum power to 30%, 
improve the ramp-up rate to 50% of the rated power, and 
reduce the start-up and shut-down time. The installed 
capacity of hydropower is 0.3 GW, with a typical daily 
distributed generation of 1.6 GWh and a unit generation 
cost of 0.28 CNY/kWh. The installed capacity of energy 
storage is 1 GW, with a charge and discharge duration of 
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Fig. 2. The load curves for local and exported electricity. 
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3 hours, a charge and discharge efficiency of 95%, and 
an operation and maintenance cost of 0.2 CNY/kWh. 
The installed capacity of wind power is 7.9 GW, and 
the installed capacity of photovoltaic power is 9.9 GW. 
The output of wind power and photovoltaics is predicted 
by considering their correlation. The forecasted wind 
power and photovoltaic power are shown in Fig. 3. 
The penalty cost for wind and solar curtailment is 
0.2 CNY/kWh. Based on historical samples of wind 
power, photovoltaic power, and hydropower, the 
maximum fluctuation ranges are estimated to be 0.1 
times, 0.08 times, and 0.05 times the forecast values, 
respectively, with an initial robustness factor of 2.4.

Case Study Results

The optimization model of the scenario in this 
paper considers flexible resources across all stages of 
the new power system, including source, grid, load, 
and storage. An improved robust optimization model 
is used to characterize the uncertainties of wind power, 
photovoltaic power, and hydropower. After solving 
the model, the operation costs of the power system are 
shown in Table 3. The operation costs are primarily due 

to the fuel costs of coal-fired power, while the operation 
costs of other flexibility resources are relatively low. 
Additionally, there were no incidents of wind power 
and photovoltaic curtailment or load shedding. Under 
the collaborative adjustment mechanism of flexible 
resources (source, grid, load, and storage), the power 
system achieved full renewable energy consumption 
while ensuring system safety and stability.

On the power generation side, coal-fired power 
and hydropower adjust their output to track load and 
renewable energy fluctuations. The output power of coal-
fired power and hydropower is shown in Fig. 4 and 5. 
At midday, coal-fired units reduce their output to make 
room for more photovoltaic generation. Additionally, 
six units were shut down, all of which had undergone 
flexibility retrofits. These retrofitted units feature  
faster ramp-up rates and shorter start-up and shut-down 
times, making them the preferred choice for deep peak 
shaving and start-stop regulation tasks. Compared to 
non-retrofitted units, those with flexibility upgrades 
exhibit stronger regulation capabilities. It can be 
observed that hydropower units have a fast regulation 
rate and can quickly increase output to their rated power 
at night, meeting the peak load demand. In contrast, 

Table 2. The parameters of the coal-fired power units.

No. Quantity Minimum 
power

Maximum 
power

Installed 
capacity (MW)

Ramp-up/Ramp-
down (MW)

Coal 
consumption 
rate (t/MW)

Strat-up/shut 
down time (h)

1-3# 3 50% 100% 1000 0.3 0.2732 10

4-7# 4 50% 100% 600 0.3 0.2864 8

8-12# 5 50% 100% 550 0.3 0.2847 8

13-17# 5 50% 100% 400 0.3 0.2829 7

18-22# 5 50% 100% 250 0.3 0.2811 4

23-26# 4 50% 100% 150 0.3 0.2698 3
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Fig. 3. The forecasted wind power and photovoltaic power. 
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coal-fired units have a relatively slower regulation 
rate, with their output power only able to gradually 
increase or decrease. In addition, the regulation range  
of hydropower is larger than that of coal-fired power 
units.

On the grid side, exporting high-proportion clean 
energy has promoted the region’s integration of wind 
power and photovoltaics. The export load curve 
resembles the load curve of the receiving region, aligning 
with the load demand of the receiving region and 
ensuring a stable energy supply. A total of 28820 MWh 
of electricity was delivered. Transmission lines have 
optimized resource allocation across different spatial 
scales.

On the load side, flexible loads participate in demand 
response by adjusting their electricity usage time and 
amount. Fig. 6 shows the flexible load adjustments. The 
original power load curve has a “double peak and double 
valley” shape, particularly after the large photovoltaic 
generation at midday, where the net load (load minus 
wind and photovoltaic generation) exhibits a significant 
midday dip, creating pressure for photovoltaic 
absorption. At night, as photovoltaic generation sharply 
decreases, the net load shows a pronounced peak, 
generating higher electricity demand. To alleviate the 
typical intraday resource-time mismatch, flexible loads 
shift peak loads to low-demand periods and further 
reduce peak loads through load interruption. The total 

Table 3. The operation costs of the power system (104CNY).

Fig. 4. The output power of coal-fired power. 

Fig. 5. The output power of hydropower. 
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flexible load transfer is 1590.5 MWh, and the total 
flexible load reduction is 1315.3 MWh.

After flexible load adjustments, the load curve 
becomes smoother, and the resource mismatch problem 
is somewhat alleviated on the demand side.

On the energy storage side, from Fig. 7, the energy, 
the energy storage system charges during the midday 
period of high photovoltaic generation, reaching its 
maximum charge at 15:00. The system discharges 
during the evening peak load period and then recharges 
to restore its initial state. The energy storage has a total 
charge of 2132.96 MWh and a discharge of 1952 MWh, 
with a utilization efficiency of 90%. The energy storage 
system plays a role in “peak shaving and valley filling,” 
effectively transferring electricity across different time 
periods.

In summary, the various flexible resources of 
source, grid, load, and storage have different adjustment 
capabilities and patterns. A collaborative optimization 
and scheduling model can reasonably allocate these 
resources. The collaborative operation of these resources 
can track load trends, smooth out wind and photovoltaic 

fluctuations, and ensure real-time matching of power 
supply and demand.

Scenario Comparison

By setting different scenarios and comparing 
them with the scenario in this paper, the scenario 
settings are shown in Table 4. By comparing Scenario 
I and Scenario II with the scenario in this paper, the 
adaptability of the improved robust optimization model 
can be observed. The impact of different combinations 
of flexible resources on the power system is observed 
by comparing Scenario III to Scenario VI with the 
scenarios presented in this paper.

The operation costs of the power system under 
different scenarios are shown in Fig. 8. It can be observed 
that the cost of the traditional robust optimization model 
in Scenario I is higher than that of the improved robust 
optimization model in this paper’s scenario. Although 
the traditional model provides greater security, its 
excessive conservativeness leads to some economic 
losses. In Scenario II, the deterministic optimization 

Fig. 6. The flexible load adjustments. 
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Scenario
Model Flexibility resources

Certainty Traditional 
Robust

Improved 
Robust

Flexible transformation 
coal-fired power

Transmission 
line

Flexible 
load

Energy 
storage

This Scenario √ √ √ √ √

Scenario I √ √ √ √ √

Scenario II √ √ √ √ √

Scenario III √ √ √ √

Scenario IV √ √ √ √

Scenario V √ √ √ √

Scenario VI √ √ √ √

Table 4. The scenario setting.
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model offers the best economic performance, but its 
scheduling plan lacks robustness, posing operational 
risks. The curtailment of wind and solar power 
was 1974.08 MWh. This indicator reveals that the 
deterministic optimization model carries a significant 
operational risk.

The operating cost of the improved robust 
optimization model in this study is lower than that of 
the traditional robust optimization model, avoiding 
the high costs associated with making extensive 
preparations for extremely low-probability scenarios, 
thus improving the conservatism of the decision-making 
process. Additionally, although the operating cost of the 
improved robust optimization model is higher than that 
of the deterministic optimization model in Scenario II, 
the curtailment of wind and solar power is 0, and this 
indicator is effectively controlled. The power system 
exhibits higher safety and reliability, which is the most 
fundamental prerequisite for the system’s operation. 

In summary, the improved robust optimization model 
strikes a balance between risk and cost, effectively 
reducing operational costs while ensuring system safety. 
Notably, the improved method also reduces difficulties 
in problem-solving. Decision-makers can control the 
operational strategy by setting the uncertainty budget 
coefficient and adjusting the power system’s risk 
resilience to accommodate fluctuations in renewable 
energy output. The uncertainty budget coefficient 
enhances the model’s flexibility and applicability, 
providing decision-making references for planners with 
different confidence levels and risk attitudes.

Coal-fired power serves as the backbone of the power 
system. In Scenario III, since the coal-fired units have 
not undergone flexibility transformation, they cannot be 
shut down to ensure power security and must continue 
operating at high minimum power levels, which crowds 
out wind power and photovoltaic generation. This results 
in significant wind power and photovoltaics curtailment 

Fig. 7. The charging and discharging power of energy storage. 

Fig. 8. The cost structure under different scenarios.
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rates reaching as high as 6%. In Scenario IV, the absence 
of transmission lines prevents clean energy from being 
delivered to other regions, relying solely on local load 
consumption. However, the local consumption capacity 
is limited, leading to some wind power and photovoltaics 
curtailment. In Scenarios V and VI, the lack of flexible 
load and energy storage adjustment capabilities causes 
the power system to face load-shedding risks during 
the evening peak. At this time, photovoltaic generation 
is zero, wind power sharply decreases, and system load 
increases, making it impossible for coal-fired power 
alone to meet electricity demand.

The flexibility of the power system requires the joint 
contribution of flexible resources from all elements: 
source, grid, load, and storage. Every resource is 
indispensable for a power system with a high proportion 
of renewable energy. The core of power system operation 
is to ensure a real-time balance between power supply 
and demand. After subtracting the base load demand 
and the non-dispatchable volatile power sources (such 
as wind power and photovoltaics), the remaining gap 
must be filled by flexible resources. Different flexibility 
resources have different adjustment functions, and it is 
essential to scientifically combine various resources, 
leverage their strengths, avoid weaknesses, and 
coordinate their use to collectively meet the system’s 
adjustment needs.

Discussion

This paper applies the aforementioned model to the 
power system in Western Inner Mongolia, extending 
existing research. On the one hand, the computational 
effectiveness of the model is discussed. On the other 
hand, the model’s practicality and applicability are 
examined, and its performance in real-world scenarios 
and potential application limitations are observed. 

The project takes the Western Inner Mongolia power 
system as a case study, selecting a typical week for 
simulation. The region has a relatively high renewable 
energy penetration rate compared to the rest of China. 
By the end of 2023, the installed capacity of wind and 
solar power reached 46.4%. The system includes nearly 
200 coal-fired units and about 50 GW of wind and 
solar installed capacity. Detailed data can be found in 
reference [30]. When extending the model, additional 
variables, parameters, and constraint equations need 
to be added, with the principles remaining consistent 
with the current model. After the extension, the model 
was applied to a more complex power system, and the 
solution time was 12.29 seconds, which is still within 
an acceptable range, indicating that the computational 
difficulty of the model is manageable.

Fig. 9 shows the simulation results for the model 
in a real-world scenario. The results indicate that 
this study can improve the utilization of renewable 
energy, and no load-shedding events occurred during 
the typical week. The flexible resource collaborative 
optimization scheduling technology can achieve a 
reasonable distribution of electricity resources. The 
proposed improved robust optimization model balances 
both the economic and security aspects of power system 
operation. The model extension discussion reached 
conclusions consistent with the case study above, further 
validating the model’s practicality and applicability.

Conclusions

This paper proposes an improved robust optimization 
scheduling model that coordinates multiple flexibility 
resources of source, grid, load, and storage to address 
the adjustment needs and operational risks brought by 
the high penetration of renewable energy in the new 
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power systems. A regional power system case study 
shows various flexible resources, such as flexible 
transformation coal-fired power, regulated hydropower, 
transmission lines, and flexible loads. Energy storage 
plays an irreplaceable role in the new power system. 
These resources effectively track load changes and 
mitigate wind power and photovoltaic fluctuations 
through collaborative optimization and scheduling. 
Collaborative scheduling achieves complementary 
advantages and optimal allocation among different 
resources, which is crucial for the stable operation of a 
power system with high renewable energy penetration. 
The improved robust optimization model ensures full 
absorption of renewable energy while reducing system 
operation costs, balancing risk and economy better 
than traditional robust optimization and deterministic 
optimization models. To enhance the flexibility of power 
systems with a high proportion of renewable energy, it 
is necessary to adopt diversified strategies and design 
corresponding incentive mechanisms to encourage the 
active participation of flexibility resources in system 
regulation. Specific measures include accelerating 
the flexible transformation of coal-fired power 
plants, expanding the scale of energy storage facility 
deployment, and tapping into the potential of demand-
side flexible load regulation.

As wind power and photovoltaic capacities increase, 
the amplitude of power fluctuations becomes more 
pronounced, and hour-level optimization models are 
insufficient to reflect the actual operation of the power 
system. Future research will extend to multiple time 
scales, including more detailed short-time scales (such 
as minute-level) and the coordination between different 
time scales. This will require the model to have dynamic 
rolling and real-time updating capabilities, which may 
need to be addressed using Model Predictive Control 
(MPC) theory. Over time, the scheduling approach 
should be continuously updated based on the real-time 
changes in renewable energy generation and demand. 
Additionally, the model’s understanding of uncertain 
information is still insufficient, as it currently only 
considers forecast errors without accounting for other 
practical scenarios. The uncertainty of load will also 
impact the power system. Future work will focus on 
incorporating more uncertainty factors.
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