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Abstract

With the strengthening of environmental protection awareness, constructed wetlands are  
an important part of urban ecosystems, and their environmental status assessment is paid more 
attention. This study aims to construct and validate a new model for the environmental state assessment 
of constructed wetlands, which integrates the analytic hierarchy process and backpropagation 
neural network to improve the accuracy and efficiency of assessment. This study collects a large 
amount of wetland environmental data, uses the analytic hierarchy process to determine the weights 
of key evaluation indicators, and then uses an improved backpropagation neural network to carry  
out in-depth learning and prediction to accurately assess the environmental state of constructed 
wetlands. An adaptive variation genetic algorithm was used to optimize the BP neural network model, 
along with L1 and L2 regularization techniques and Adam and RMSprop optimization algorithms 
were used to further improve the model performance. The results show that the model converges  
at the 20th iteration, the convergence speed is increased by 34%, 80% of the data falls within the error 
range of plus or minus 0.2, the R2 value is as high as 0.99163, and the mean square error is close to 
zero, which shows that the model has significant advantages in improving the evaluation accuracy and 
efficiency. The comprehensive score shows that the overall environmental status of the constructed 
wetland is not ideal; there may be pollution problems, and improvement measures need to be taken.  
This model provides a scientific basis for wetland environmental protection and management, helps 
optimize protection measures, and realizes the sustainable development of wetland ecosystems.  
It is also of great significance for improving the efficiency and effect of wetland management.

Keywords: big data technology, analytic hierarchy process, BP neural network, artificial wetland 
environment, status evaluation model, GA
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Introduction

With the continuous expansion of human activities, 
the environmental status assessment and protection 
of constructed wetlands, as an important ecosystem, 
have attracted increasing attention. Traditional wetland 
environmental assessment methods are often limited 
by incomplete data collection and analysis method 
limitations, making it difficult to reflect the real state 
of wetlands accurately. Therefore, it is particularly 
important to use modern scientific and technological 
means, especially big data technology, to conduct  
a more comprehensive and in-depth assessment of the 
wetland environment [1, 2].

The development of big data technology provides  
a new perspective for wetland environmental assessment. 
Collecting and analyzing large wetland environmental 
data can reveal wetland ecosystems’ complexity and 
dynamic changes. The application of big data technology 
can not only improve the comprehensiveness of data 
collection but also identify and predict the changing 
trend of wetland environments through advanced data 
analysis methods, such as machine learning and artificial 
intelligence [3, 4]. Although big data technology 
provides a powerful tool for wetland assessment,  
the environmental status assessment of constructed 
wetlands still faces many challenges. These challenges 
include the selection and quantification of evaluation 
indicators and the acquisition and processing of sample 
data. To overcome these challenges, researchers are 
beginning to explore new assessment models that 
combine traditional methods with modern techniques.

Analytic Hierarchy Processing (AHP) and Back 
Propagation Neural Network (BPNN) are two widely 
used methods in decision analysis and predictive 
modeling. AHP can decompose a complex decision 
problem into multiple levels and factors by constructing 
a hierarchical structure model and determining the 
weight of each factor by combining qualitative and 
quantitative methods. BPNN has strong learning and 
prediction ability, can extract useful information from 
a large amount of data, and can establish a nonlinear 
mapping relationship between input and output. This 
paper combines these two methods to construct a 
new type of environmental state assessment model 
of constructed wetlands to improve the accuracy and 
efficiency of assessment [5].

This study aims to construct and validate an 
environmental state assessment model of a constructed 
wetland based on AHP and BPNN to improve  
the accuracy and efficiency of the assessment.  
The research innovatively combines AHP and BPNN, 
fully utilizing the advantages of both to provide 
new ideas for assessing the environmental status of 
artificial wetlands. By constructing an evaluation model 
based on AHP and BPNN, a comprehensive and in-
depth evaluation of wetland environmental status can 
be achieved, improving the accuracy and reliability 
of the evaluation. This evaluation model provides 

wetland managers with a scientific and objective 
decision-making basis, helps them better understand 
the environmental status of wetlands, and formulates 
more effective protection and management strategies. 
It also helps improve the efficiency and effectiveness of 
wetland management and promotes the sustainable use 
of wetlands.

The article is divided into four parts. The first 
discusses and analyzes the current research status of 
artificial wetland environmental status assessment 
models using big data technology AHP and BPNN at 
home and abroad. The second constructs an artificial 
wetland environmental status assessment model based 
on AHP and improved BPNN. The third verifies 
the performance of the algorithm model through 
experiments, and the fourth summarizes the research 
findings.

Literature Review

Recently, with the advancement of big data, 
researchers have utilized AHP, BPNN, and other 
manners in the field of evaluation. In response to 
the subjective judgment of individual risk criteria in 
current timber mining operations in China, which 
raises doubts about the credibility of evaluation results, 
Unver et al. adopted the AHP method to weight and 
rank the primary and secondary risk indicators, identify 
the major and sub-risks faced by logging operators, 
calculate the weights, and establish a prevention plan 
framework [6]. To accurately delineate the potential 
groundwater recharge zone, Dar et al. used GIS and 
AHP methods, combined with remote sensing data 
and other data sources, to determine the potential 
groundwater area northwest of the Himalayan Kashmir 
Valley. The research results showed that the method 
used had a very critical and reliable effect on the study 
area [7]. To seek an indicator method suitable for any 
location and water usage conditions, calculating the 
algorithm more conveniently, Sarkar et al. determined 
the weights of various alternative parameters through 
methods such as multi-indicator decision-making. 
They used classification-based evaluation techniques 
to measure their attractiveness. Experimental 
results showed that this algorithm has high accuracy  
and less workload, thus simplifying the process [8].  
The evaluation of risk associated with knowledge fusion 
in the innovation ecosystem is linked to the success 
or failure of the ecosystem. Wang et al. constructed  
an innovation ecosystem knowledge fusion model based 
on BPNN and verified the effectiveness of this method 
through experiments [9]. Debris flow is a major disaster 
that endangers human survival and property, posing  
a great threat to the lives and property of surrounding 
people. Zhang et al. proposed a new method based on 
BPNN, which has a faster convergence speed and higher 
prediction accuracy than traditional BPNN models [10]. 
Structural health monitoring is crucial in preventing 
catastrophic failures in mechanical systems. Mousavi 
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et al. introduced a novel deep neural network approach 
that is well-suited for detecting damage in mechanical 
systems despite modeling errors, measurement errors, 
and environmental noise uncertainties. Compared with 
other comparative methods, its detection accuracy was 
higher, providing strong technical support for the health 
monitoring of mechanical systems [11].

In recent years, researchers have proposed various 
models for evaluating the environmental status of 
artificial wetlands to protect the ecological environment. 
The symbiotic network of functional bacteria within the 
horizontal subsurface flow microbiota is diverse and 
complex, among which the cooperation and competition 
between bacteria are particularly significant. Zeng et al. 
adopted a partial least squares path model to investigate 
the microbial characteristics closely related to nitrogen, 
phosphorus, and Chemical Oxygen Demand (COD) 
removal in three pilot-constructed wetlands. Research 
revealed that high dissolved oxygen and redox potential 
create favorable conditions for bacterial community 
diversity, while the presence of noncritical bacteria 
reduces external pressure on functional bacteria and 
indirectly promotes nutrient removal efficiency [12]. 
Wetlands play a crucial role in urban ecosystems, and 
their environmental benefits cannot be ignored. Kumar 
et al. constructed a hybrid model that combines mature 
two-dimensional hydrodynamic models with physics-
based one-dimensional distributed parameter models for 
simulating and drawing flood scenario maps. Through 
simulation of the water flow in the proposed artificial 
wetland, it was found that the overall flood near the 
waterway decreased by 23%, while the water depth of 
the return flow and drainage ditch also significantly 
decreased [13]. Pinninti et al. systematically evaluated 
the effectiveness of vertical flow constructed wetlands 
for treating domestic wastewater. The experimental data 
showed that Banana achieved high removal efficiencies 
of 87% for COD and 91% for biological oxygen demand. 
In addition, the removal rates of total nitrogen and total 
phosphorus were also high, reaching 97% and 98%, 
respectively [14]. Abdelhay et al. developed a regression-
based nonlinear model to predict the BOD concentration 
in the system’s effluent, given the increasing water 
scarcity problem in Jordan. This model conformed to the 
first-order dynamic law and provided an effective tool 
for predicting the effluent BOD value. Its R2 value was 
0.78, demonstrating good predictive performance [15]. 
To further enhance the removal efficiency of organic 
matter and nutrients in urban wastewater by tidal flow 
microbial fuel cells and tidal flow wetlands, Saeed et al. 
proposed a continuous stirred tank reactor model based 
on Monod kinetics to predict the removal rates of NH3-N, 
TN, and COD in wetland systems. This dynamic model 
confirmed the important influence of matrix pollutants 
and environmental parameters on pollutant removal 
pathways [16]. Shukla et al. conducted a purification 
study on primarily treated domestic wastewater with 
a horizontal subsurface flow constructed wetland with 
a size of 10×3.5 m. By establishing and transforming 

different continuous wave systems, they found that all 
three continuous water treatment systems can effectively 
clean the primary treated wastewater, providing new 
ideas for designing and operating constructed wetlands 
[17]. In order to address the limitations of traditional 
wetland treatment systems in pollutant removal 
efficiency, Huang et al. proposed a method combined 
with ecological engineering landscape measures for 
wastewater treatment. By monitoring the water quality 
index of 4 typical wetland parks in Hangzhou City, 
the relationship between hydrological factors such as 
ground wetland, vertical flow wetland, free surface 
flow wetland, and pollutant removal contribution was 
analyzed. The research results show that a variety of 
geo-ecological factors, such as hydraulic conditions, 
plant types, and microbial microenvironments, have  
a heterogeneous impact on wastewater treatment, while 
water temperature significantly affects artificial water 
treatment performance in all seasons [18]. To solve the 
problem of water resource pollution, Soumyadeep B 
et al. proposed the technology of constructed wetlands 
coupled with microbial fuel cells, which combined the 
advantages of constructed wetlands and microbial fuel 
cells to achieve the dual goals of sewage treatment and 
electricity recovery. The research results show that the 
constructed wetland-coupled microbial fuel cell not 
only improves the sewage treatment efficiency but also 
improves the electricity generation performance, which 
has broad application prospects [19].

In summary, the artificial wetland environmental 
status assessment model based on big data technology 
is an effective environmental assessment method.  
It can comprehensively and accurately reflect artificial 
wetlands’ environmental status by comprehensively 
applying qualitative and quantitative analysis 
methods. However, there are still some challenges and 
shortcomings in current research in this field, such as 
the selection and quantification of evaluation indicators 
and the acquisition and processing of sample data. 
Therefore, the study proposes an artificial wetland 
environmental status assessment model based on AHP 
and improved BPNN, further exploring a more scientific 
and reasonable evaluation index system and providing 
more powerful support for designing, operating, and 
managing artificial wetlands.

Materials and Methods

Establishment of an Artificial Wetland 
Environmental Status Assessment Model 

Based on AHP and Improved BPNN

The study first uses the AHP to construct an indicator 
system for the operation status of artificial wetlands, 
establishes an evaluation indicator system framework, 
and finally constructs a BPNN model to apply to 
evaluate the operation status of artificial wetlands.
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Construction of an AHP-based Evaluation Index System 
for the Operational Status of Artificial Wetlands

Artificial wetlands refer to comprehensive 
ecosystems that simulate the structure and function 
of natural wetlands. They achieve water quality 
purification and ecological improvement through the 
synergistic effects of physics, chemistry, and biology. 
They play an important role in improving the regional 
water ecological environment, ensuring water safety, 
and promoting water resource recycling. The operating 
system of artificial wetlands is shown in Fig. 1.

In Fig. 1, when the artificial wetland is well 
managed and maintained, it can effectively purify 
water quality and maintain ecological balance. At this 
point, plants, microorganisms, and substrates in the 
wetland are in good condition and can work together to 
remove pollutants from the wastewater. In some cases, 
artificial wetlands may be overloaded due to excessive 
wastewater treatment or pollutants. This may lead to 
the disruption of ecological balance within wetlands, 
a decrease in water purification function, and even the 

problem of effluent indicators being inferior to inflow 
indicators. Therefore, to improve the operational status 
and effectiveness of artificial wetlands, research is 
needed to establish an environmental status assessment 
model for artificial wetlands, monitor the wetland status 
in real-time, and promote the sustainable development 
of artificial wetlands. The AHP decomposes complex 
problems into various constituent elements based on 
data and evaluation criteria, grouping them into ordered 
hierarchical structures according to their dominant 
relationships. Next, based on a certain ratio calibration, 
the judgment is quantified through pairwise comparison, 
forming a comparative judgment matrix. Ultimately, this 
method boils down the system analysis to determine the 
relative importance weights of the lowest level relative 
to the overall goal or the sorting problem of the relative 
optimal order, thereby providing a basis for selecting 
decision-making options [20-22]. The architecture of the 
AHP is shown in Fig. 2.

Fig. 2 presents the architecture of the AHP, which is 
according to the problem’s nature and the overall goal. 
The problem is broken down into individual factors, 

Fig. 1. Operation system of constructed wetland.

Fig. 2. Analytic hierarchy process architecture.

Plants

Low Permeability Section View

Receiving 
Water

Berm

Inlet Device Outlet Device

Target layer

Intermediate 
indicator layer 2

Intermediate 
indicator layer 3

Intermediate 
indicator layer 1

Indicator 3 Indicator 4Indicator 2 Indicator 5Indicator 1



5The Environmental Status Assessment Model...

worked out using the feature vector method of AHP.  
The evaluation index system for the operational status 
of artificial wetlands is a comprehensive evaluation 
framework that comprehensively measures the 
operational efficiency and management effectiveness of 
artificial wetlands. This system integrates multiple key 
element layers for detailed analysis and evaluation of the 
overall performance of wetlands [23, 24]. 

The basic principles of constructing the evaluation 
index system of constructed wetlands include 
scientificity, systematicness, operability, dynamics, and 
comparability. The index selection has been carefully 
considered when constructing the wetland evaluation 
index system. First, a series of key indicators are 
identified based on wetland ecosystems’ key functions 
and values, such as water purification, biodiversity 
conservation, flood regulation, etc. Secondly, through 
expert consultation, literature review, and field research, 
the existing knowledge and practical experience on 
wetland assessment were collected to ensure the 
rationality and validity of the selected indicators. In 
addition, the sensitivity and responsiveness of the 
indicators are also considered, that is, whether they 
can reflect the change of wetland environmental state 
in a timely manner. In order to ensure the scientific 
rationality of indicator selection, correlation analysis 
of indicators is also carried out to avoid selecting 
highly correlated indicators to reduce redundancy and 
improve the efficiency of the indicator system. At the 
same time, through pre-evaluation and pilot study, the 
preliminary selected indicators are tested and validated 
to evaluate their effectiveness and reliability in practical 
applications. Finally, according to the test results 
and feedback, the index system was optimized and 
adjusted to ensure its applicability and accuracy in the 
environmental state assessment of constructed wetlands. 
The specific evaluation index system for the operation 
status of artificial wetlands is shown in Fig. 3.

In Fig. 3, wetland indicators mainly focus on 
wetlands’ physical and biological characteristics. Among 
them, the ponds’ design involves the wetlands’ layout, 

which are then combined and aggregated at various 
levels based on their interrelationships and membership 
relationships, creating a multi-level analytical structure 
model. The AHP method finds the eigenvector 
corresponding to its maximum eigenvalue, as indicated 
in Equation (1).

 maxAP Pλ=  (1)

In Equation (1), λmax represents the eigenvalues, 
A represents the corresponding eigenvectors, and P 
represents the matrix. Next, it normalizes A and uses 
the normalized values of A to represent the relative 
coefficients of different indicator weights. This 
study uses the sum product method to calculate the 
eigenvectors corresponding to the maximum eigenvalue 
of P, as indicated in Equation (2).
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1
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In Equation (2), (AP)i means the i-th element in the 
AP result. Consistency testing is an important method 
for evaluating the rationality of judgment matrices. The 
judgment matrix is usually used to decide the relative 
importance of each indicator and is an important 
component of decision analysis methods such as 
AHP. To determine whether the matrix is reasonable,  
a consistency test is conducted as shown in Equation (3).
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1 1
nC

n
λ −

=
−  (3)

In Equation (3), C1 represents the consistency index 
and n represents the order of the judgment matrix P. 
Research determines the weights of each evaluation 
indicator through AHP. Based on expert opinions and 
data analysis, a hierarchical structure is constructed, 
followed by the construction of pairwise judgment 
matrices, and the weights of each indicator are 

Fig. 3. Evaluation index system of operation state of constructed wetland.
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size, and shape, directly affecting the wetlands’ water 
flow pattern and purification capacity. Filler design 
focuses on wetland materials, significantly impacting the 
wetland’s biodiversity and water purification efficiency. 
Plant design involves wetland plants’ types, distribution, 
and density, which play important roles in wetland 
ecosystems, including providing habitat and absorbing 
pollutants. Operational indicators focus on the wetlands’ 
various parameters and conditions during operation. 
Hydraulic load refers to the ability of wetlands to process 
water, which directly affects the purification effect of 
wetlands. The hydraulic retention time determines 
the flow rate and retention time of water in wetlands, 
which is crucial for the removal efficiency of pollutants. 
Temperature and pH are important factors affecting 
wetland biological activity and chemical reactions, 
while dissolved oxygen is related to the respiration 
and metabolism of microorganisms in wetlands.  
In addition, water quality stability is a critical indicator 
for evaluating wetland operational performance.  
The effluent quality indicators directly reflect the 
removal efficiency of pollutants by wetlands. 

COD is a crucial indicator for measuring the degree 
of organic pollution in water, while ammonia nitrogen, 
total nitrogen, and total phosphorus are key parameters 
for assessing the risk of eutrophication in water bodies. 
Management indicators focus on the daily management 
and maintenance of wetlands. Online monitoring can 
provide real-time monitoring of the operational status 
of wetlands, enabling timely detection and resolution 
of issues. Plant management involves pruning and 

replanting wetland plants to ensure the health and 
stability of wetland ecosystems. Congestion management 
aims to prevent and address potential blockage issues 
in wetlands, ensuring their normal operation [25, 26]. 
The single-level ranking of indices for every level can 
be obtained through the judging matrix. This ranking is 
then used to calculate the overall ranking of the relative 
target layer. Table 1 shows the weight of index layer C 
relative to target layer A.

In Table 1, the weight values of 8 indicators, including 
filler design, plant design, hydraulic load, hydraulic 
retention time, water quality stability, effluent COD, 
TN, and TP, are above 0.05, which are relatively critical 
and have a significant influence on the operation status 
of artificial wetlands. When conducting hierarchical 
analysis, the dimensions and degree of variation of 
different indicators may lead to bias in the results. 
Therefore, standardization or dimensionless processing 
of data is crucial. Standardization can not only  
eliminate the influence of dimensionality but also make 
different variables numerically comparable, thus more 
accurately reflecting the relative importance between 
indicators. For qualitative data, it is usually necessary  
to assign values based on scoring criteria or expert 
scoring methods to convert them into numerical 
values that can be used for mathematical operations.  
For quantitative data, actual measured values can be 
directly used. A common method in data standardization 
is “minimum-maximum normalization”, also called 
dispersion normalization. This method requires 
performing a linear transformation on the initial data, 

Table 1. Weight coefficient of constructed wetland environmental state evaluation system.

Target layer A Element layer B Number Weight Index layer C Number Weight

Environmental 
state evaluation 
of constructed 

wetland

Effluent quality 
index B1 0.4393

Effluent COD C1 0.2336

TP C2 0.0814

TN C3 0.0814

NH3-N C4 0.0427

Wetland index B2 0.1925

Plant design C5 0.0825

Tank body design C6 0.0825

Packing design C7 0.0275

Management 
index B3 0.0738

Plant management C8 0.0426

On-line monitoring C9 0.0060

Congestion management C10 0.0252

Operating index B4 0.2945

Temperature C11 0.0134

DO C12 0.0297

Hydraulic load C13 0.0578

pH C14 0.0163

Water quality stability C15 0.0604

Hydraulic retention time C16 0.1170



7The Environmental Status Assessment Model...

mapping the resulting values to a range between 0  
and 25. For the case where a larger indicator value is 
better, the conversion function is shown in Equation (4).

 

min

max min

ˆ 0.1 0.9
i

i
i i

X XX
X X

−′ = + ×
−  (4)

In Equation (4), Xi indicates the raw data, X imin and 
X imax are the minimum and max values in the data, and 
X̂ ' is the standardized data. For the case where a smaller 
indicator value is better, the conversion function is 
shown in Equation (5).
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When conducting hierarchical analysis, the 
standardized data can be directly utilized to build a 
judgment matrix and then calculate the weights of 
each indicator. This method can eliminate the impact 
of dimensionality and degree of variation, making the 
analysis results more accurate and reliable.

Construction of Artificial Wetland Operation 
Status Model Based on BPNN

The study uses the evaluation results obtained 
from the previous section of the AHP method  
as the learning and training samples for the BPNN, takes 
the artificial wetland data reflecting various indicators  
as the inputting of the BPNN, and uses the corresponding 
evaluation results obtained from the AHP method  
as the outputting of the BPNN. In order to enhance  
the prediction ability of the model, more dimensions  
of environmental data are introduced. Integrating 
climate, land-use change, biodiversity, hydrology, 
water quality, and biological activity, data enables 
models to more accurately capture the complexity 
and dynamic changes in the environmental state of 
constructed wetlands, improve prediction accuracy, 
and provide scientific and real-time decision support 
for wetland management. Data preprocessing is a 
key step in building efficient and accurate models. 
In order to improve the performance of the model, 
wavelet transform technology is introduced, which is 
excellent in processing non-stationary signals and can 
effectively separate the trend and periodic components 
from the original data to reduce noise interference.  
In addition, using principal component analysis to 
reduce dimensionality, PCA helps simplify model 
complexity by extracting the major variation factors in 
the data while preserving the most critical information. 
This method not only reduces the computational burden 
of the model but also improves the robustness to outliers 
and noise. In order to further enhance the generalization 
ability of the model, the data enhancement technique 
is used to expand the training set. By applying various 

transformations, such as scaling, rotating, and adding 
slight noise, data enhancement techniques are able 
to generate new training samples without actually 
collecting more data. Combining these advanced data 
processing methods, the model can extract useful 
information from complex environmental data more 
effectively and maintain stable predictive performance 
under diverse environmental conditions. 

BPNN is a supervised learning algorithm that 
utilizes gradient descent. It is a multi-layer feedforward 
neural network that typically includes inputting, hidden, 
and outputting layers. The training process of BPNN 
can be broken down into two sections: forward and 
backward propagation. During forward propagation, 
inputting samples are passed through the inputting layer 
of the network to the hidden layer (HL) and outputting 
layer, and the outputting value of each neuron is 
calculated. The outputting value is mapped nonlinearly 
through an activation function. Back propagation 
reduces errors by adjusting network parameters based 
on the error between the outputting and the actual 
values. Firstly, it calculates the outputting error and then 
uses the chain rule to calculate the error contribution 
of each neuron in the order from the outputting layer 
to the inputting layer and updates the weights and 
biases. The training of BPNN is an iterative process, 
which continuously adjusts weights and biases to make 
the network’s outputting approximate the actual value  
[27-29]. It assumes that there are n nodes in the inputting 
layer, m nodes in the outputting layer, and l nodes 
in the HL. The excitation function is the functional 
relationship between the inputting and outputting of 
hidden and outputting layer nodes in a neural network, 
as shown in Equation (6).

 

1( )
1 xg x

e−=
+  (6)

In Equation (6), g(x) represents the excitation 
function. The outputting of the HL is shown in Equation 
(7).

 1
( )

n

j ij i j
i

H g w x a
=

= +∑
 (7)

In Equation (7), wij indicates the weight from 
the inputting layer to the HL, Hj represents the HL’s 
outputting, and aj represents the biased term of the 
j-th neuron. The outputting of the outputting layer is 
indicated in Equation (8).

 1

l

k j jk k
j

O H w b
=

= +∑
 (8)

In Equation (8), Ok represents the output value  
of the k-th output neuron, bk represents the offset term  
of the k-th output neuron, wjk represents the weight 
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from the outputting layer to the HL. The error back 
propagation process of BPNN is actually a process in 
which the outputting error of the network is reversed 
layer by layer through the HL to the inputting layer in a 
certain form, and the error is distributed to the neurons 
and neural units of each layer. This process is carried 
out in a loop, and the weights are constantly adjusted 
until the error in the network outputting is reduced to an 
acceptable level or until the pre-set number of learning 
iterations is reached. In BPNNs, the error is determined 
by the difference between the actual outputting of the 
outputting layer and the expected outputting. To reduce 
this difference, the network will adjust the weights 
of each neuron layer by layer based on the path of 
error back propagation, to minimize the total error.  
This adjustment process is grounded on the gradient 
descent method, which calculates the gradient of the 
error function on the weight and adjusts the weight 
along the gradient descent direction to gradually reduce 
the error. In training, the network continuously learns 
the mapping relationship between inputting data and 
expected outputting and updates the weights through 
back propagation, gradually making the network’s 
outputting approach the expected outputting. When the 
network reaches a certain number of training iterations 
or an acceptable level of error, the training process ends, 
and the network weights are fixed, which can be used 
for predicting new data [30]. The flowchart of the BPNN 
is shown in Fig. 4.

In Fig. 4, the inputting data is propagated through 
the network, and the outputting values of the HL and 
outputting layer are calculated. It calculates the error 
by comparing the predicted and actual values of the 
outputting layer and updates the weights and bias 
values using gradient descent. Forward propagation 
and backward propagation are repeated until the stop 
condition is arrived. The number of input layer nodes 
depends on the dimension of the inputting vector, and 
the optimal number of HL nodes can be determined, as 
denoted in Equation (9).

 m n l a′ ′= + +  (9)

In Equation (9), m', n', and l represent the amount 
of hidden, inputting, and outputting layer nodes, 
respectively. a is a constant from 1 to 10. However, the 
BPNN has some obvious drawbacks. The optimization of 
the BPNN relies on the gradient descent method, which 
is susceptible to becoming trapped in local minima while 
searching for the global optimal solution. This can cause 
the network to fail to find the true optimal solution. 
Therefore, the study adopts an adaptive mutation genetic 
algorithm (GA) to raise the BPNN model. GA is an 
optimization algorithm that simulates natural selection 
and genetic mechanisms. It can perform a global 
search in the search space and has a certain degree of 
adaptability and robustness. The adaptive mutation 
GA can dynamically adjust the mutation rate based on 
the problem’s characteristics and the search’s progress, 
thereby improving the algorithm’s performance. In the 
search for the optimal global solution using GAs, the 
adaptability of each living organism is dynamically 
changing. Therefore, it is recommended that adaptive 
mutation probability (MP) be adopted. When the 
population’s fitness is poor, MP should be enhanced 
to increase the population’s diversity and increase the 
number of excellent individuals. Conversely, the MP 
should be lowered when the fitness is good, i.e., close 
to the globally optimal solution [31]. The calculation of 
adaptive MP P' is denoted in Equation (10).

 1 2 0 0 min 0( ) / 2 ( ( )* / * max ( ) / ) / 2
K

KX
P P P P P P m M P F X F

∈Ω
′ ′′= + = − − +  
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In Equation (10), P0 is the assumed initial MP, Pmin  

is the MP range’s min value, and F̅  and max ( )
K

KX
F X

∈Ω
 

are the population’s average and max fitness values, 
respectively. M is the max evolution generation and m''  
is the current evolution generation. The research uses 
adaptive mutation GA to improve the BPNN model. 
There is a positive correlation between the amount of 
experimental samples and the accuracy of reaction 

Fig. 4. BPNN flowchart.
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results. However, when the sample size reaches  
a certain level, the accuracy will remain stable within  
a range, and no significant changes will occur. The 
larger the network size, the more complex the mapping 
relationship of the network. There are two common 
methods for selecting initial weights: one is to choose a 
sufficiently small initial weight, and the other is to make 
the number of initial weights equal to +1 and -1. 
Typically, several networks can be trained, and the most 
appropriate one can be chosen based on the analysis 
findings. In this study, a single HL neural network 
vector model was used in MATLAB, as depicted  
in Fig. 5.

In Fig. 5, P̂  is the inputting vector with a size  
of R × 1, as denoted in Equation (11).

 1 2
ˆ [ , ,..., ]RP P P P=  (11)

b1 is the threshold vector of the inputting layer neurons, 
with a size of S1 × 1, as denoted in Equation (12).

 11 1 2 ,1[ , ,..., ]Sb b b b=
 (12)

IW1 means the connection weight vector between the 
inputting layer neurons and the inputting vector, with a 
size of S1 × R, as denoted in Equation (13).

 1 1 1

1,1 1,1 1,1
1,1 1,2 1,
1,1 1,1 1,1
2,1 2,2 2,

1

1,1 1,1 1,1
,1 ,2 ,

...

...
... ... ... ...

...

R

R

S S S R

iw iw iw
iw iw iw

IW

iw iw iw

 
 
 =  
 
    (13)

n1 is the intermediate calculation outcome of the 
first layer neuron, which is the weighted sum of the 
connection weight vector and threshold vector, with a 
size of S1 × 1, as denoted in Equation (14).

 1 1 1n IW p b= +  (14)

a1 means the outputting direction of the first layer 
neuron, with a size of S1 × 1, as denoted in Equation 
(15).

 1 1 1 1( )a f IW p b= +  (15)

The objective of the GA is to minimize the sum 
of squared errors in all evolutionary generations by 
obtaining the network weight and threshold. GA 
progresses towards higher fitness function values. 
Therefore, the fitness function is defined as the inverse 
of the individual’s learning error, as shown in Equation 
(16). Therefore, the fitness function is defined as the 
inverse of the individual’s learning error, as shown in 
Equation (16).

 

1
fitnessf

E
=

 (16)

In Equation (16), ffitness stands for fitness and E 
represents the learning error. The model uses an adaptive 
MP mutation operation to strengthen the diversity of the 
GA population, enabling it to jump out of local optimal 
solutions and search for global optimal solutions in 
a timely manner, thereby avoiding the occurrence of 
premature convergence [32]. The algorithm model is 
shown in Fig. 6.

Fig. 6 illustrates that the optimal solution is searched 
by a GA and inputted into the BPNN as the initial 
weights and thresholds of the network. The model’s 
data flow is as follows: Starting from the BPNN section, 
learning samples are determined using the data collected 
from the survey questionnaire, and the topological 
structure of the neural network is identified, including 
the number of network layers and neurons. Afterward, 
the initial population of the adaptive mutant GA is 
obtained. The adaptive mutation process in GA involves 
encoding, fitness calculation, and genetic operations 
to determine the optimal weight and threshold that 
satisfy the stopping conditions. The initial weights and 
thresholds obtained can then be utilized by the BPNN 

Fig. 5. Vector model of multilayer neural network.
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to shorten the time required to find the optimal weights 
and thresholds, thereby speeding up the convergence 
speed of the network. After meeting the learning error 
or iteration requirements, an optimal GA-BP algorithm 
model can be generated. In order to further improve the 
training efficiency and performance of the model, L1 
and L2 regularization techniques were first introduced 
to effectively control the complexity of the model and 
reduce the risk of overfitting. L1 regularization makes 
some unimportant weights zero by punishing the 
absolute value of weights, thus realizing the effect of 
feature selection. L2 regularization makes the weights 
tend to smaller values by punishing the sum of squares 
of the weights, increasing the model’s stability. At the 
same time, Adam and RMSprop advanced optimization 
algorithms have been adopted to optimize the model. 
The Adam algorithm combines AdaGrad and RMSProp 
advantages, adaptively adjusts each parameter’s learning 
rate, and makes the model converge more efficiently in 
the training process. The RMSprop algorithm provides 
a separate learning rate for each parameter by adjusting 
the cumulative average gradient square, which is 
especially suitable for dealing with non-stationary 
targets. Applying these optimization algorithms not only 
speeds up the convergence speed of the model but also 
improves the model’s ability to find the optimal solution 
in the complex data distribution.

Results and Discussion

Performance Analysis of Artificial 
Wetland Environmental Status Assessment 

Model Based on AHP and BPNN

The study first conducted simulation experiments 
on the GA-BP algorithm model to test its performance 
indicators. Then, it analyzed the water quality of the 
artificial wetland’s inflow and outflow through the 
evaluation model of its environmental status.

GA-BP Algorithm Model Performance

Research collected environmental status data of 
artificial wetlands, including indicators such as water 
quality, biodiversity, and soil conditions, and performed 
preprocessing and normalization. The optimized BPNN 
was used for training and testing, and a simulation 
experiment based on an improved GA-optimized BPNN 
for evaluating the environmental status of artificial 
wetlands was carried out using Matlab2013b. Combining 
GA-BPNN with BPNN, Extreme Learning Machine 
(ELM), Support Vector Machine (SVM), Random 
Forest (Random Forest RF), and Gradient Boosting 
Machine (GBM) for comparative analysis, the accuracy 

Fig. 6. Model of GA-BP algorithm.

Determine the training samples

Determine the neural network 
structure

Calculate the error

Calculate the output of each unit

Determine the initial weights 
intrusion value

Satisfy stopping 
condition?

End

Y

N

Satisfy stopping 
condition?

N

Determine the initial 
population

Real number coding

Calculate fitness

Selection

Crossover

Adaptive mutation

BPNN part Adaptive mutation GA part

Update 
weights Min 

value

Y



11The Environmental Status Assessment Model...

rate, recall rate, and F1 values of several algorithms are 
shown in Fig. 7.

In Fig. 7a), GA-BPNN and BPNN rise faster and 
quickly approach higher accuracy rates. With the 
increase in the number of iterations, the accuracy of 
GA-BPNN tends to be stable. It reaches a high accuracy 
of close to 1.0 after about 100 iterations, which shows 
its fast convergence characteristic during training.  
In contrast, the accuracy of other algorithms, such as ELM, 
SVM, RF, and GBM, increases gently, fluctuates greatly  
in the iterative process, and finally stabilizes between 
0.6 and 0.8. This shows that GA-BPNN has better 
learning and generalization abilities when evaluating 
environmental states. In Fig. 7b), GA-BPNN also 
performs well in the recall rate, and its curve rises rapidly 
in the early iterations and stabilizes above 0.8 after  
about 100 iterations, showing its high efficiency in 
identifying positive samples. BPNN also had a higher 
recall rate but was slightly lower than GA-BPNN.  
The advantages of GA-BPNN in processing unbalanced 
data sets are confirmed, especially in improving  
the recognition rate of positive samples. In Fig. 7c), 
GA-BPNN also had an outstanding performance 
in the F1 score. Its curve rose rapidly in the early 
stages of iteration. It stabilized above 0.8 after about  
100 iterations, showing its superiority in its 
comprehensive consideration of accuracy and recall rate, 
as well as its comprehensiveness and stability. To further 
prove the model’s high accuracy of the raised model, the 

study analyzed and compared the training and learning 
results, as denoted in Fig. 8.

In Fig. 8a), the error of the BPNN model was 
relatively large, with some data falling outside the 
error range of plus or minus 0.2. In Fig. 8b), 80% of 
the data fell within the error range of plus or minus 
0.2, indicating that the learning speed of the model has 
been greatly improved. That is to say, the model learned 
most of the data patterns in relatively few iterations. 
The study predicted the evaluation results of the last 20 
sample data sets, as shown in Fig. 9.

In Fig. 9a), the prediction error of the BPNN model 
was relatively large. In Fig. 9b), the predicted results 
were basically consistent with the actual results, and the 
fitting degree reached over 90%. This indicated that GA 
optimization has played a critical role in improving the 
performance of BPNN models. The regression results 
could reflect the overall goodness of fit of the evaluation 
model, as indicated in Fig. 10.

In Fig. 10, regardless of the overall sample, training 
sample, or test sample, the regression results of the data 
showed excellent fit and avoided overfitting issues. This 
fully demonstrated that the model had an excellent ability 
to capture the inherent patterns and information of data, 
thereby being able to predict and interpret the dynamic 
behavior of data more accurately. The calculated R2 
value was as high as 0.99163, and the MSE was also 
approaching zero. The R2 value was extremely close to 1, 
proving the effectiveness of the model-fitting effect.

Fig. 7 The accuracy rate, recall rate, and F1 value of the six algorithms.
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Fig. 8. Model training learning results.

Fig. 9. Neural network model prediction results.

Fig. 10. Model regression result.
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Example Analysis of Artificial Wetland 
Environmental Status Assessment Model

The study preprocessed qualitative and quantitative 
indicator data to conduct a comprehensive evaluation 
of the environmental status of artificial wetlands. It 
multiplied the processed data with the weights of various 
influencing factors to obtain comprehensive evaluation 
outcomes, as indicated in Table 2.

In Table 2, the comprehensive score of the 
established wetland was low, indicating that the overall 
environmental status of the wetland is not ideal and 

there may be a series of problems. The wetland may 
suffer from pollution from surrounding areas, and 
comprehensive measures need to be taken to raise 
the environmental status of the constructed wetland. 
Therefore, further analysis of the COD purification 
effect of pollutants was conducted, as shown in Fig. 11.

In Fig. 11a), the range of COD concentration  
in the influent of artificial wetland A was large, ranging 
from 25 mg/L to 142 mg/L, indicating significant 
fluctuations in influent water quality. The COD 
concentration range in the effluent was relatively narrow, 
ranging from 8 mg/L to 34 mg/L, and overall lower than 

Fig. 11. Purification effect of pollutant COD.

Table 2. Comprehensive evaluation of constructed wetland environmental status.

Serial 
number / 1 2 3 4 5 6 7 8 9 10 11 12

C1 Effluent COD 0.42 0.42 0.76 0.90 0.85 1.00 0.76 0.42 0.51 0.90 0.90 0.42

C2 TP 0.59 0.35 0.10 0.13 0.68 0.52 0.68 0.95 0.52 0.67 0.47 0.43

C3 TN 0.75 0.52 0.60 0.59 0.81 0.83 0.69 0.65 0.66 0.64 0.60 0.59

C4 NH3-N 0.77 1.00 0.96 0.97 0.70 0.94 0.93 0.92 0.92 0.91 0.80 0.72

C5 Plant design 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

C6 Tank body design 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

C7 Packing design 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55

C8 Plant management 0.10 1.00 1.00 1.00 0.10 0.10 1.00 1.00 1.00 0.55 0.33 0.33

C9 On-line monitoring 0.40 0.70 0.40 0.70 0.70 0.70 0.40 0.70 0.10 0.70 0.40 0.70

C11 Temperature 0.45 0.52 0.82 0.86 0.94 0.96 0.84 0.59 0.34 0.37 0.19 0.11

C12 DO 0.66 0.81 1.22 0.54 0.10 0.69 0.57 0.64 0.63 0.70 0.69 0.82

C13 Hydraulic load 0.10 0.10 0.10 1.00 1.00 1.00 0.10 0.10 0.10 0.10 0.10 1.00

C14 pH 0.94 1.00 0.73 0.63 0.78 0.92 0.57 0.55 0.92 1.14 0.71 1.14

C15 Water quality stability 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

C16 Hydraulic retention time 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

Overall 
rating / 0.617 0.675 0.759 0.752 0.804 0.707 0.662 0.616 0.741 0.679 0.586 0.561
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that in the influent, indicating that the wetland system 
had a certain removal effect on COD. The average COD 
removal rate was 39%; although there was some removal 
effect, the removal rate was not high. The COD value of 
the effluent was lower than that of the inflow, indicating 
that the wetland system could play a certain role in COD 
removal most of the time. However, due to significant 
fluctuations in influent water quality and low removal 
rates, wetland systems may not fully meet water quality 
requirements in certain situations. In Fig. 11b), the 
COD concentration range of the influent in constructed 
wetland B ranged from 40 mg/L to 160 mg/L, with a 
slightly smaller fluctuation range compared to wetland 
A. The COD concentration range in the effluent was 
relatively large, ranging from 16 mg/L to 122 mg/L, 
indicating that the wetland system had an unstable 
COD removal effect. The average COD removal rate 
was 21%, which was lower than wetland A, indicating 
that wetland B had poor performance in COD removal. 

Further analysis was conducted on the purification 
effect of pollutants COD along the process, as shown  
in Fig. 12.

In Fig. 12a), artificial wetland A showed a slight 
increase in COD content in spring, mainly due to 
incomplete harvesting of plants in winter, resulting in 
residual plants starting to rot in spring. The decay of 
plant residues released organic matter into wetlands, 
thereby increasing the content of COD. In Fig. 12b), the 
secondary subsurface flow tank and the primary surface 
flow had poor performance in COD removal. Especially 
in winter and spring, the COD content in the effluent 
was even higher than that in the inflow, indicating that 
the water quality of the constructed wetland in this 
section has been polluted during these two seasons.  
The ecological and functional indicators of the constructed 
wetland environmental status evaluation model (Model 1) 
were compared with the wetland monitoring and 
evaluation model based on remote sensing technology 
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Fig. 12. Purifying effect of pollutant COD along the way.

Fig. 13. Comparison of ecological index and functional index of three models.
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(Model 2) and the wetland health evaluation model 
based on the comprehensive index method (Model 3), as 
shown in Fig. 13.

In Fig. 13a), Model 1 had the highest ecological 
index, averaging over 93%. In Fig. 13b), Model 1 had 
the highest functional indicators, averaging over 92%. 
Model 1 provides strong support for wetland protection 
and management and provides a reference for improving 
and optimizing other wetland models. A comprehensive 
performance comparison of different algorithms in the 
environmental state assessment of constructed wetlands 
is shown in Table 3.

In Table 3, from the stability index, the GA-BPNN 
algorithm leads with a score of 0.915, showing that it has 
the best stability under different test conditions. In terms 
of MSE, GA-BPNN also performs best with a low error 
value of 0.004, indicating its high prediction accuracy. 
The GA-BPNN algorithm performs well on several 
key performance indicators, especially in stability, 
prediction accuracy, anti-noise ability, and cross-domain 
generalization ability. This shows that GA-BPNN is a 
powerful tool for environmental assessment tasks that 
require high precision and efficiency. Despite its high 
model complexity, high scores on other performance 
metrics suggest that it is a comprehensive and effective 
choice.

Conclusions

With the strengthening of environmental protection 
awareness, artificial wetlands, as a crucial element of 
urban ecosystems, are increasingly valued for their 
environmental status assessment. The study used a 
combination of AHP and BPNN to construct a model 
for evaluating the environmental status of artificial 
wetlands. The AHP was applied to decide on the weight 
of each evaluation indicator, and a BPNN model was 
constructed with the evaluation index system and 
weight values. The research results indicated that the 
model’s predicted outcomes were basically consistent 

with the actual outcomes, and the fitting degree reached 
over 90%. Whether it is the overall sample, training 
sample, or test sample, the regression results of the data 
showed excellent fit, with an R2 value of 0.99163 and 
an MSE approaching zero, proving the effectiveness of 
the model’s fitting effect. This model was superior to 
traditional methods in terms of evaluation accuracy and 
efficiency and could provide strong support for wetland 
environmental protection and management. The COD 
concentration in the inflow of artificial wetland A varied 
greatly, from 25 mg/L to 142 mg/L, reflecting significant 
fluctuations in water quality. The COD concentration 
in the effluent remained stable at 8 mg/L to 34 mg/L, 
generally lower than that in the influent, indicating that 
the wetland system had a certain ability to remove COD. 
Although the average removal rate was 39% and the 
wetland system could remove some COD most of the 
time, fluctuations in the inflow and insufficient removal 
rate may result in it not meeting specific water quality 
requirements. However, there are some shortcomings  
in the research, and the current data sources and 
collection methods still need further improvement. 
In the future, it can continue to deepen our research 
on applying big data technology and artificial neural 
networks in wetland environmental assessment. It needs 
to explore more diverse data collection and processing 
methods to raise the comprehensiveness and accuracy of 
data.
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Algorithm ELM SVM GA-BPNN RF GBM BPNN

Stability index 0.855 0.780 0.915 0.865 0.845 0.875

Average prediction error (MSE) 0.011 0.014 0.004 0.008 0.007 0.009

Model complexity (number of parameters) 0.600 0.200 1.000 1.500 1.750 1.250

Interpretability 0.850 0.150 0.600 0.350 0.250 0.500

Prediction efficiency (ms/sample) 0.450 1.150 0.750 0.650 0.950 0.850

Training efficiency (normalized) 0.950 0.450 0.800 0.650 0.550 0.875

Noise resistance (normalized) 0.650 0.500 0.850 0.700 0.620 0.680

Cross-domain generalization ability (normalized) 0.550 0.400 0.700 0.600 0.520 0.580

Feature importance assessment (normalized) 0.750 0.250 0.650 0.500 0.420 0.480

Table 3. Comparison of comprehensive performance of different algorithms in environmental state assessment of constructed wetlands.
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