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Abstract

Satellite remote sensing has low spatial resolution and is easily affected by weather, making 
monitoring difficult in real-time. Near-ground lidar equipment is expensive, and data processing 
is complex, so its scope of application is narrow. This paper uses UAV (Unmanned Aerial Vehicle) 
remote sensing images and hyperspectral recognition models to estimate the impact of cadmium stress 
(CD stress) on soybean yield, analyze the physiological and ecological characteristics of soybeans, and 
provide a scientific basis for crop management and environmental pollution control. This paper uses 
UAV hyperspectral images to collect soybean field data and calibrate CD stress through soil and plant 
samples. After preprocessing the data, the vegetation index and other features were extracted to analyze 
the effect of CD stress on soybean growth. A hyperspectral recognition model was constructed to predict 
the effect of CD stress on soybean yield. The experimental results showed that increased cadmium 
concentration inhibited soybean photosynthesis and sugar metabolism and aggravated plants’ oxidative 
damage. The red edge and short-wave infrared bands showed obvious reflectivity changes. Based on the 
spectral characteristics, a hyperspectral recognition model was constructed. The transformer model was 
used to effectively classify and identify soybeans under CD stress and predict their yield changes. In the 
model evaluation, the Transformer model showed excellent performance with an accuracy of 92.8%, 
a recall rate of 95%, and an F1 score of 92.1%. The 10-fold cross-validation showed that the model 
performed stably on different data sets, and the accuracy and recall rates remained high. Using UAV 
remote sensing images combined with the hyperspectral recognition model for soybean physiological 
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Introduction

As one of the world’s most important food and 
oil crops, soybeans play a vital role in agricultural 
production and economic development. With the rapid 
advancement of industrialization and urbanization, 
the problem of soil heavy metal pollution is becoming 
increasingly serious, among which cadmium pollution 
is particularly prominent [1, 2]. Cadmium is a highly 
toxic heavy metal element that not only significantly 
inhibits the growth and development of plants but 
also threatens human health through the food chain. 
Studies have shown that CD stress can inhibit soybean 
photosynthesis, interfere with material accumulation 
and physiological metabolism, reduce soybean yield, 
and affect quality. This problem poses a huge challenge 
to food security [3] and ecological and environmental 
protection [4]. Monitoring and controlling cadmium 
pollution [5] requires not only a clear understanding of 
the impact of CD stress on crop growth and yield but also 
effective methods for rapidly assessing crops in polluted 
areas. Satellite remote sensing [6] has low spatial 
resolution and is easily affected by weather, making 
monitoring difficult in real-time. Near-ground laser 
radar [7] is expensive and has complex data processing, 
so its application range is relatively narrow. Therefore, 
developing an efficient and accurate method to assess 
the impact of CD stress on soybeans has become an 
important research topic in current agricultural science 
and environmental science. 

This paper uses UAV remote sensing images and 
hyperspectral data combined with learning models 
to analyze the effects of CD stress on soybean growth 
and yield. Soybean field image data with different 
cadmium pollution gradients were used to analyze 
the effects of cadmium on photosynthesis and cell 
stability. The spectral features related to CD stress 
were extracted through wavelet transform and principal 
component analysis, and a CD stress recognition model 
was constructed based on the Transformer model. In 
addition, a model for predicting the impact of cadmium 
on soybean yield was established by combining multi-
source data, effectively estimating the yield changes 
under different cadmium concentrations, and providing 
new ideas for agricultural assessment of cadmium 
pollution.

Related Work

In recent years, with the continuous development 
of remote sensing technology, its application potential 
in agricultural and environmental monitoring has 
become increasingly prominent. Remote sensing 

technology [8] can quickly and extensively monitor 
crop growth and environmental stress responses under 
non-destructive conditions by acquiring spectral, 
spatial, and temporal information about crops. Satellite 
remote sensing technology [9] has been widely used 
in agricultural production monitoring due to its wide 
coverage and strong periodicity in acquiring data. 
However, its spatial resolution is low and easily 
restricted by weather conditions such as cloud cover. 
Satellite remote sensing has limited practical effect in 
high-precision crop monitoring in small areas. Near-
ground sensing technologies such as ground sensors and 
lidar [10] can provide higher resolution and accuracy 
monitoring data. Still, the equipment is expensive, 
the operation is complex, and the coverage is limited, 
so it cannot be widely used in large-scale agricultural 
production monitoring. The limitations of these methods 
have resulted in significant deficiencies in the current 
research on the impact of CD stress on crops in terms 
of large-scale monitoring methods, data accuracy, and 
timeliness, which has further prompted researchers to 
seek more efficient monitoring technologies to fill the 
gaps in current research.

In the application field of remote sensing technology, 
UAV remote sensing technology has the characteristics 
of flexibility, high resolution, and relatively low cost. 
It has gradually become an emerging means in crop 
monitoring research. By carrying multispectral [11] and 
hyperspectral [12] imaging equipment, drones can obtain 
crop growth information with high spatial and spectral 
resolution, which is suitable for agricultural monitoring 
and environmental assessment in small and medium-
scale areas. Some studies have successfully used UAV 
hyperspectral images to extract vegetation indices such 
as the Normalized Difference Vegetation Index (NDVI) 
[13] and the Red-Edge Vegetation Index [14], achieving 
rapid detection of crop stress and quantitative analysis 
of health status. However, most studies have focused 
on monitoring general stresses such as water stress [15] 
and nitrogen stress [16]. There are fewer studies on CD 
stress, especially on the relationship between crop yield 
and physiological and ecological characteristics under 
CD stress. In addition, existing studies have certain 
limitations in optimizing data preprocessing and feature 
extraction methods and have failed to fully utilize the 
potential of hyperspectral data. This paper uses UAV 
remote sensing technology combined with hyperspectral 
image analysis to propose an integrated method to 
study the impact of CD stress on the physiological 
and ecological characteristics and yield of soybeans, 
achieve efficient estimation of soybean yield under CD 
stress, and provide a scientific basis for environmental 
pollution control and agricultural management.

and ecological characterization can effectively capture the characteristics of CD stress and provide 
scientific prediction data for classification and yield estimation.

Keywords: remote sensing, hyperspectral model, cadmium stress, soybean physiology, transformer model
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Materials and Methods

Hyperspectral Recognition Model Design

UAV Video Collection

This study used a UAV with a hyperspectral sensor 
to collect remote sensing images of soybean fields. In 
order to ensure the quality and accuracy of the data, 
a detailed design was carried out for different flight 
altitudes, speeds, and image resolutions to obtain wide 
coverage and clear and detailed image data.

The choice of flight altitude was set according to the 
overall situation of the soybean field. A higher flight 
altitude of 120-150 m is selected in relatively open and 
uniform fields. This altitude can ensure a larger range 
of image coverage and effectively reduce local image 
distortion caused by individual differences in soybean 
plants during flight. In areas with more complex terrain 
or uneven plant distribution, the flight altitude is 
appropriately lowered to 60-80 m to improve the spatial 
resolution of the image. By flexibly adjusting the flight 
altitude, the image coverage is ensured to be extensive, 
and the details are clear, thereby improving the accuracy 
of subsequent data analysis. In terms of the choice of 
flight speed, a moderate flight speed is set according 
to the requirements of image resolution and acquisition 
accuracy. A moderate flight speed ensures the continuity 
of image acquisition and data stability and avoids image 
blur caused by flying too fast. Moderate flight speed 
control also provides a sufficient time window for multi-
band data collection of hyperspectral sensors, which 
helps fully record data in different bands and ensure data 
diversity. The UAV flight parameter design is shown in 
Table 1.

Table 1 is the design of the UAV flight parameters, 
including the basic parameters such as the model and 
specifications of the UAV, and clearly states that the 
maximum take-off weight is 25 kg and the flight time is 
up to 40 min. The selection of the hyperspectral sensor 

is crucial. This study uses a hyperspectral sensor that 
can cover visible light, near-infrared, and short-wave 
infrared bands, with a band range of 400-2500 nm, 
ensuring the multidimensionality of the image data. The 
hyperspectral sensor has a high spectral resolution and 
can effectively capture the reflectance characteristics of 
soybean plants in different spectral bands. Hyperspectral 
data can more accurately analyze the physiological status 
of soybeans at different growth stages and distinguish 
the effects of CD stress. In order to ensure the timeliness 
and representativeness of the data, the image acquisition 
plan is strictly carried out according to the growth cycle 
of soybeans. The physiological changes of soybeans at 
different growth stages have different effects, and the 
impact of CD stress on soybean growth is especially 
obvious. In this regard, multiple flight missions were 
arranged to collect high-frequency images at key growth 
stages of soybeans, such as seedling, bud, flowering, and 
maturity. This collected data covers different ecological 
states of soybean growth and can better reflect the 
impact of CD stress on soybean crops at various stages. 
Table 2 shows the UAV payload equipment.

Table 2 lists the UAV-mounted equipment used in 
studying the effects of CD stress on soybean physiology 
and yield, including hyperspectral sensors, multispectral 
sensors, thermal imaging sensors [17], RGB sensors 
[18], and positioning and navigation equipment. The 
frequency and timing of data collection were adjusted 
according to climate and soybean growth conditions. 
Before and after the physiological changes that may be 
caused by CD stress occur, the acquisition frequency 
can be increased to obtain as much data as possible that 
can reflect the stress effect. In good weather conditions, 
image errors caused by strong sunlight and cloud 
changes can be avoided, and flight missions can be 
carried out as much as possible to ensure the clarity and 
accuracy of the images. During the flight mission and 
data collection process, in order to ensure the stability 
of the flight path and the continuity of data collection, an 
advanced flight control system [19] is used to ensure that 

UAV flight parameter design

Model: LSA-10 Color: Gray (4 axes) Wheelbase (mm):1200

Specification (mm): Folded 770*650*580 mm

Unfolded 1200*1200*58 0(without pulp)

Arm diameter:40 m flight Speed: 5 m/s

Low altitude mode:complex terrain, local fine acquisition, 60-80 m

High height mode:uniform field, large coverage, 120-150 m

Maximum take-off weight: 25 kg

It can be equipped with a hyperspectral sensor, GPS module, RTK, etc.

Applicable tasks:cagricultural spraying and remote sensing image collection

Flight time: 30-40 min Operation efficiency: 10-15 acres/flight

Table 1. UAV flight parameter design data.
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the UAV flies according to the plan through preset flight 
routes and real-time monitoring, avoiding deviations 
from the route and repeated collection. The execution of 
the flight plan is combined with GPS (Global Positioning 
System) and inertial measurement unit data [20] to 
perform real-time correction of the image’s geographic 
location to ensure that each image’s data has accurate 
geographic coordinate information.

Through precise flight strategies and coordinating 
hyperspectral sensors, high-quality remote sensing 
images covering soybean fields were successfully 
obtained, providing a reliable basis for subsequent 
hyperspectral data processing, feature extraction, and 
physiological and ecological analysis. The diversity 
and high resolution of the data provided sufficient 
information to support the analysis of the effects of 
CD stress on soybean growth and laid a solid data 
foundation for the subsequent establishment of accurate 
physiological and ecological models and yield estimation 
models.

Data Acquisition and Calibration of CD Stress

In order to accurately construct a quantitative model 
of the effects of CD stress on the physiological and 
ecological characteristics and yield of soybeans, the soil 
cadmium concentration and soybean plant physiological 
indicators were systematically collected and calibrated. 
The sensors carried by drones are primarily designed 
for remote sensing monitoring of the ground surface and 
vegetation, but their measurement range does not extend 
directly below the soil surface. Soil sample collection 
and analysis were performed independently to ensure 

an accurate assessment of soil cadmium concentrations. 
The sampling areas were divided according to the degree 
of cadmium pollution in the fields, and sampling points 
were set in each area. The sampling points were evenly 
distributed, which could reflect the spatial heterogeneity 
of soil cadmium distribution. The boundary points of 
the cadmium pollution gradient were appropriately 
increased, and soil samples were collected at two 
depths, 0-20 cm and 20-40 cm, at each sampling point. 
These soil samples will be used for subsequent analysis 
of cadmium concentrations in the soil. This data is the 
basis for understanding the impact of cadmium stress 
on soybeans and will be combined with drone remote 
sensing image data to build and verify the model. It was 
also necessary to ensure that the outside world did not 
contaminate the soil during the sampling process. The 
soil samples were air-dried, ground, and sieved through 
a 100-mesh sieve, and the microwave digestion method 
[21] was used for sample pretreatment. The cadmium 
concentration of each treated sample was measured by 
inductively coupled plasma mass spectrometry [22]. 
This method has high sensitivity and can effectively 
eliminate interference. Standard reference materials 
were used for quality control. A blank sample and a 
standard sample were inserted every 20 samples to 
ensure data accuracy. Fig. 1 shows the sampling and 
sample pretreatment diagram.

Fig. 1 describes the collection, processing, 
and analysis process of soil and plant samples. 
Representative soybean plants were selected from 
different cadmium pollution gradient areas, and the 
samples covered the seedling stage, bud stage, flowering 
stage, and maturity stage. No less than 30 plants were 

Device Category Device Name Spectral Range/Function Application Features

Hyperspectral Sensor Headwall Nano-
Hyperspec

400-2500 nm (VNIR, 
Visible, and Near-

Infrared)

Analyze spectral 
characteristics of 

vegetation, detect CD 
stress impacts on growth

High spectral resolution, 
precise data

Multispectral Sensor MicaSense RedEdge
Blue, Green, Red, Red 
Edge, NIR(Enhanced 

Vegetation Index)

Evaluate vegetation 
health and calculate 
indices like NDVI, 

EVI(Enhanced 
Vegetation Index)

Compact data, easy to 
process

Thermal Imaging 
Sensor FLIR Vue Pro R 7.5-13.5 μm (Thermal 

Infrared)

Detect temperature 
changes in crops, 

indirectly analyze water 
and CD stress

High thermal sensitivity, 
versatile for multiple 

scenarios

RGB Sensor Sony α7R IV Visible Light

High-resolution image 
capture for surface 

observation of CD stress 
effects

High resolution 
complements 

multispectral sensors

Positioning & 
Navigation RTK Module

Real-Time Kinematic 
(centimeter-level 

accuracy)

Provides precise flight 
path positioning and 
ensures the accurate 
georeferencing of 

images

High positioning 
accuracy, suitable for 

precise analysis

Table 2. UAV payload equipment.
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randomly selected from each area, and their growth 
status and obvious stress symptoms were recorded. 
Leaf and stem samples were collected from the plants, 
and the functional leaves of the stems were measured 
leaf by leaf using a portable chlorophyll meter. The 
average value was taken to represent the chlorophyll 
level of the individual plant. The measured value can 
directly reflect the effect of CD stress on photosynthesis. 
The activities of superoxide dismutase [23], catalase, 
and peroxidase were determined by spectrophotometry 
[24]. Specifically, it includes making leaf homogenate, 
centrifuging and separating the supernatant, and 
reacting with the corresponding substrate system. The 
spectrophotometer can monitor changes in enzyme 
activity at a specific wavelength. The thiobarbituric 
acid reaction method determines the malondialdehyde 
content, which reflects the degree of lipid peroxidation 
in the plant and evaluates the effect of CD stress on 
cell membrane stability. The soluble sugar content is 
determined by the sulfuric acid-anthrone colorimetric 
method, and the free amino acid content is determined 

by the ninhydrin method [25] to reveal changes in the 
plant’s osmotic regulation ability.

To ensure the data’s accuracy and relevance, special 
attention was paid to the positional correspondence 
between plant and soil samples during sampling. When 
selecting the 30 plants to obtain chlorophyll and other 
physiological data, we ensured that their sampling 
locations were the same as the locations of the soil 
samples used for ICP analysis. The physiological data 
of each plant can be directly correlated with the soil 
cadmium content of its growing environment, providing 
a solid foundation for subsequent data analysis.

After preliminary inspection of the collected soil 
cadmium concentration and plant physiological index 
data, extreme values and outliers were removed. The 
z-score standardization method was used to normalize 
the data to eliminate the dimension differences of 
different indicators. With soil cadmium concentration 
as the independent variable and plant physiological 
index as the dependent variable, the Pearson 
correlation coefficient was calculated to screen the 
significantly correlated indicators. The focus was on 

Fig. 1. Sampling and sample pretreatment.
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the relationship between cadmium concentration and 
chlorophyll content, antioxidant enzyme activity, and 
malondialdehyde content. The nonlinear relationship 
between soil cadmium concentration and plant 
physiological indicators was explored by combining 
multi-distance linear regression and a generalized 
additive model. The rationality of the model was 
verified by model fitting residual analysis. R2 evaluated 
the model’s performance and root mean square error 
(MSE). A segmented regression model was further 
applied for significant nonlinear relationships to capture 
the threshold effect of soil cadmium concentration.

Based on the comprehensive analysis of soil cadmium 
concentration and plant physiological response, the CD 
stress levels were divided into no stress, mild, moderate, 
and severe. Each level corresponds to a specific range 
of soil cadmium concentration and plant physiological 
index thresholds to ensure that the CD stress level has 
clear physiological significance. The data was divided 
into a training set and a validation set. The 10-fold 
cross-validation method [26] was used to evaluate 
the stability of the CD stress model and compare the 
prediction errors of the training set and the validation 
set to avoid overfitting. To verify the repeatability of the 
measured data, the sampling was repeated three times in 
different pollution gradient areas, and the soil cadmium 
concentration and plant physiological indicators were 
measured, respectively. The error of the results was 
controlled within 5% to ensure the reliability of the 
experimental data.

Hyperspectral Data Preprocessing

Remote sensing image data has errors caused by 
sensor noise and environmental interference. In order 
to improve the data quality, the wavelet transform 
and principal component analysis method were used 
to remove the noise. The Daubechies wavelet basis 
is selected to decompose the image signal [27], and 
the image is divided into sub-band coefficients of 
different frequencies. In the high-frequency sub-band, 
the threshold can be estimated according to the noise 
variance, and the high-frequency coefficients can be 
clipped using the soft threshold function to retain the 
main signal information and suppress the noise signal. 
The corrected high-frequency and low-frequency 
coefficients are subjected to inverse wavelet transform 
to reconstruct the image and generate denoised image 
data. It can reduce the impact of random noise and avoid 
excessive loss of important details.

The signal-to-noise ratio is further improved through 
principal component analysis; the covariance matrix 
of the image data is calculated, the eigenvalues and 
eigenvectors are extracted, and the principal components 
of each band are obtained. The principal components 
are sorted according to their contribution rate, and 
the principal components with a contribution rate of 
more than 99% are retained. The rest are considered 
noise components and removed. Combining the main 

components to reconstruct the image, the multi-band 
data is generated after noise reduction. This can remove 
the secondary components to reduce the redundancy of 
image data, optimize the correlation of image data, and 
ensure that the hyperspectral data reflects the vegetation 
characteristics more accurately.

The geometric deformation of hyperspectral 
images can directly affect the subsequent geographic 
information analysis and feature extraction. In order to 
ensure the accuracy of the image’s geographic location, 
ground control points and image registration technology 
are used for geometric correction. Differential GPS 
is used to obtain high-precision ground control point 
coordinates, and easily identifiable features in the image 
are selected as control points, and the corresponding 
pixel positions are manually marked. Based on the 
ground control point data, a quadratic polynomial model 
is used to establish the transformation relationship 
from the image coordinate system to the geographic 
coordinate system. The multivariate regression model 
can consider the image between multiple independent 
variables (pixel coordinates of the image) and one or 
more dependent variables (geographic coordinates) to 
more accurately describe and predict the relationship 
between them. By fitting this relationship, the conversion 
coefficient can be obtained to accurately locate each 
pixel in the image into the geographic coordinate 
system. The model form is:

  (1)

  (2)

In the formula, (A, B) are geographic coordinates, 
(M, N) are image pixel coordinates, and α1 and β1 are 
fitting coefficients. Compared with the reference image, 
the nearest neighbor interpolation method is used to 
resample the pixel values to ensure that the image is 
not distorted after geographic correction and that the 
geographic coordinate system can be calibrated at the 
same time. This process can effectively eliminate the 
image’s tilt, rotation, and local stretching errors, ensure 
the image’s spatial accuracy, and provide a basis for 
comparative analysis of multi-temporal images.

In order to eliminate the interference of atmospheric 
scattering and absorption on hyperspectral data and 
make the image data closer to the true reflectance of the 
ground, the ATCOR (Atmospheric Correction) model 
[28] is used for atmospheric correction. According 
to the collection area’s climate conditions and terrain 
characteristics, the mid-latitude summer atmospheric 
model was selected, and the parameters such as aerosol 
optical thickness, water vapor content, and initial ground 
reflectivity of the study area were input. The radiative 
transfer model (RTM) [29] was used to calculate the 
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effects of atmospheric molecular scattering and aerosol 
scattering. The path radiation correction formula is:

  (3)

Δ is the total radiation received by the sensor, Δp 
is the path radiation, and Δs is the surface reflected 
radiation. After correcting for atmospheric scattering, 
the surface reflectivity is inverted according to the 
radiation transfer formula:

  (4)

Pd is solar radiation, T is atmospheric transmittance, 
and Tatm is atmospheric transmission coefficient. 
Interpolation is used to replace bands with strong 
water vapor absorption in the image to eliminate the 
influence of abnormal absorption in the hyperspectral 
data. After inspection, the preprocessed hyperspectral 
image has a significantly improved signal-to-noise 
ratio, the noise level is reduced to less than 5% before 
acquisition, and the geometric positioning error is 
controlled within 1 pixel. After atmospheric correction, 
the root MSE between the reflectance and the measured 
ground spectral data is less than 0.02, which verifies the 
accuracy and reliability of the data processing process. 
It provides a high-quality data foundation for subsequent 
feature extraction and model analysis. Fig. 2 shows 
the hyperspectral image preprocessing process. Fig. 2 
shows the logical relationship of the hyperspectral data 
processing process, including each step’s input, output, 
and processing methods.

Feature Extraction and Physiological 
and Ecological Analysis

Multiple parameters that can reflect the growth 
status of vegetation and the impact of stress are selected, 
including the structural sensitive vegetation index, 
the soil-regulated vegetation index, and a new index 
based on the blue edge and green edge reflectance 
characteristics. Through time series retrospective 
analysis, the changing trend of the index is monitored at 
different growth stages to capture the specific response 
under CD stress. In the index construction, the weight 
of the normalization factor in the NDVI calculation is 
optimized to reduce background soil reflection and 
other non-target interference, given the CD stress effect. 
By calculating the temporal change rate before and 
after stress by segmenting the time window function, 
the stress response dynamics at different stages were 
evaluated, and it was found that the exponential changes 
in the seedling and mature stages were most sensitive 
to the cadmium concentration gradient, laying the 
foundation for subsequent feature analysis.

In order to break through the limitations of single-
band reflectance, the cross-fusion method between 
bands was used to extract CD stress sensitivity features. 
Combined with the spectral difference method, the 
gradient calculation of the continuous reflectance in 
the range of 400-2500 nm was performed to enhance 
the differences in specific bands. The band combination 
screening method based on mutual information gain 
optimizes the sensitivity of different band combinations 
to CD stress characteristics. The screening results show 
that the index after the fusion of 680 nm red light, 740 
nm red edge, and 810 nm near-infrared bands is the most 
significant in distinguishing CD stress.

Fig. 2. Hyperspectral image processing flow chart.
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The dynamic spectral index is used to capture the 
difference in reflectance changes of soybean plants 
at different times. The characteristic bands of multi-
temporal images were differentiated to construct a 
dynamic difference matrix. The segmented threshold 
optimization method based on curve fitting was used 
to capture the inflection points of stress characteristic 
changes, and the dynamic characteristics of spectral 
response were accurately extracted. The vegetation 
reflectance data was transformed from the time 
domain to the frequency domain for analysis, and the 
low-frequency characteristic components caused by 
CD stress were extracted with the help of the Fourier 
transform model. The original spectral curve is 
decomposed by sliding the window to remove high-
frequency noise during the processing. Through 
spectrum reconstruction, the key low-frequency 
components reflecting the stress effect are retained, and 
the changes in their energy concentration are analyzed. 
The effects of CD stress on the reflectance spectrum 
of soybeans are mainly reflected in the enhancement 
of low-frequency components and the contraction of 
spectrum width.

Using the physiological index data sampled in the 
field, a multivariate nonlinear model is constructed 
and coupled with the hyperspectral reflectance 
characteristics for analysis. Using the kernel function 
optimized support vector regression algorithm, the 
relationship between reflectance and physiological 
data was nonlinearly fitted based on the radial basis 
function. After model training and verification, the R² 
value between the red edge reflectance feature and the 
antioxidant enzyme activity was obtained, proving its 
significant correlation. In order to explore the interaction 
between multiple indicators, the partial least squares 
regression method was applied to map the reflectance 
features to the low-dimensional latent variable space 
and calculate the feature weight contribution rate. To 
verify the significance of the extracted features, the 
non-parametric test method Mann-Whitney U [30] was 
used to conduct a significance analysis of the feature 
distribution under different stress levels. Based on the 
significance test results, the critical threshold of the 
effect of cadmium concentration on vegetation index 
was defined in combination with segmented regression 
analysis, and the distribution range of the characteristic 
parameters under cadmium concentration stress of 0, 
0.5, 1, 2, and 5 mg/kg was clarified.

Construction of Hyperspectral Recognition Model

To accurately classify soybeans under CD stress, 
a recognition model based on hyperspectral data was 
constructed, using machine learning algorithms such as 
Transformer, support vector machine, and random forest 
suitable for hyperspectral data processing. This model 
was combined with feature screening and optimization 
technology to improve classification effect and model 
stability.

Hyperspectral data contains hundreds of continuous 
bands with a lot of redundant information. In order to 
reduce the computational complexity and highlight the 
characteristics of CD stress, the maximum correlation 
and minimum redundancy method is used for feature 
screening. The mutual information value between each 
band and the CD stress classification label is calculated 
to evaluate the correlation between the band and the 
classification target. Then, the mutual information value 
between each band is used to evaluate the redundancy 
between bands. The most representative feature bands 
are selected by maximizing the correlation between the 
band and the target and minimizing the redundancy 
between bands.

On this basis, further dimensionality reduction is 
performed, and the high-dimensional feature space is 
mapped to the low-dimensional principal component 
space by combining the principal component analysis 
method, retaining the principal components with more 
than 99% cumulative variance contribution rate. The 
principal component analysis method can not only 
effectively reduce data redundancy but also retain the 
main information structure of hyperspectral features, 
providing concise and effective input features for 
subsequent model training. When constructing a random 
forest model, the performance is optimized by adjusting 
key parameters. The number of decision trees is set 
at intervals of 50-300 steps to determine the balance 
between classification accuracy and computational 
efficiency. The maximum tree depth can be set to a 
dynamic adjustment mode, and the error curve of the 
validation set can be used to avoid overfitting. The 
number of small sample splits can be adjusted to balance 
the generalization ability and accuracy of the tree. 
The random forest model constructs multiple decision 
trees by randomly selecting feature subsets and sample 
subsets to enhance the robustness of the model to 
hyperspectral data noise.

The model is fully evaluated using a confusion 
matrix, classification accuracy, recall rate, and F1 
value indicators. The real and predicted distribution 
of each type of sample in the classification results 
can be calculated to clarify the classification effect of 
the model on different CD stress levels. The diagonal 
elements in the confusion matrix can be observed to 
evaluate the model’s accuracy for the main classification 
target. It can be defined as the ratio of the number of 
correctly classified samples to the total number of 
samples, which can measure the overall classification 
ability of the model. The off-diagonal elements 
analyze the misclassification pattern of the model. 
For small sample categories, such as the severity level 
of CD stress, the recall rate is calculated to reflect the 
model’s ability to identify small categories. Combining 
precision and recall rate, the F1 value comprehensively 
evaluates the balanced performance of the model in 
each classification task. Based on cross-validation, the 
model’s generalization ability is further verified using 
an independent test set. Comparing the performance 
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with the training set ensures that the model does not 
overfit or underfit.

Yield Estimation Model

In order to accurately establish the relationship 
between CD stress and soybean yield, it is necessary to 
construct a comprehensive input feature set, combining 
multi-source data, including key spectral features of 
hyperspectral images, soil cadmium concentrations, and 
plant physiological and ecological indicators. The feature 
extraction process focuses on representativeness and 
simplicity to ensure the effectiveness of model training 
and generalization capabilities. Band combinations 
and derived indices sensitive to CD stress, such as 
the structure-sensitive vegetation index and red edge 
spectral features, were screened from hyperspectral 
images. These features can reflect the physiological 
changes and stress levels of vegetation. Soil cadmium 
concentration was used as the core variable to 
characterize stress intensity, and physiological and 
ecological characteristics such as soybean chlorophyll 
content, antioxidant enzyme activity, and soluble sugar 
content were integrated to enhance the characterization 
of crop stress responses. Multicollinearity analysis 
was used to calculate the variance inflation factor 
between features and eliminate redundant variables 
with significant collinearity to optimize the feature 
combination. A recursive feature elimination algorithm 
further screened the most important variables to ensure 
that the input feature set had minimal redundancy and 
maximum representativeness.

A variety of machine learning and statistical 
modeling methods were used to explore the quantitative 
relationship between CD stress and soybean yield and 
optimize the model’s performance. When constructing 
the benchmark regression model, the input feature set 
was used as the independent variable, and soybean 
yield was used as the dependent variable. The model 
fitted the regression coefficients using the least squares 
method to explain the direct linear contribution of the 
explanatory variables to yield. In order to enhance the 
explanatory power, the interaction term regression 
was further introduced to capture the interaction effect 
between cadmium concentration and plant physiological 
characteristics. Given the nonlinear relationship in the 
data, the radial basis kernel function [31] was used 
to support vector regression modeling. The method 
maps high-dimensional space and transforms complex 
nonlinear relationships into linear fitting problems, 
which can optimize hyperparameters and improve 
model fitting accuracy. Random forest constructs 
multiple regression trees in an integrated learning 
manner and builds a robust model through random 
sampling of features and sample subsets. Its advantage 
is that it can automatically capture the nonlinear 
relationship between features and yield and evaluate 
the importance of features. The model complexity and 

generalization ability are balanced by adjusting the 
number of regression trees and the maximum depth.

A nonlinear regression model based on a multi-layer 
perceptron [32] with input, hidden, and output layers is 
constructed. Nonlinear activation functions are used to 
improve the model’s ability to fit complex relationships. 
Stochastic gradient descent is used to optimize weight 
parameters, combined with an early stopping strategy 
to avoid overfitting. The grid search method [33] and 
the Bayesian optimization method [34] are used to 
jointly adjust key parameters. The optimal parameter 
combination is determined through the validation set 
results. The results of multiple models are integrated 
through weighted averaging or stacked regression 
methods, combining the advantages of linear and 
nonlinear models to improve prediction accuracy and 
stability. Stacked regression uses the secondary model 
to learn the prediction results of the primary model and 
further optimizes the yield estimation.

Method Effect Evaluation

This paper combines UAV remote sensing images 
with hyperspectral recognition models to analyze 
the impact of CD stress on soybean physiological 
and ecological characteristics and achieve yield 
estimation. In order to evaluate the effectiveness of 
the proposed method, multi-level evaluation indicators 
are set, covering different links such as classification, 
model fitting, and yield estimation to ensure the 
comprehensiveness and scientificity of the analysis.

Classification Evaluation

Classification evaluation includes classification 
accuracy, recall rate, F1 value, and confusion matrix. 
Classification accuracy is the ratio of the number of 
correct samples to the total number of samples, which 
is used to measure the accuracy and reliability of the 
classification model in classifying CD stress levels:

  (5)

TP, TN, FP, and FN are true positive, true negative, 
false positive, and false negative, respectively. They 
reflect the proportion of samples predicted correctly by 
the model and are the primary criterion for measuring 
overall performance. They evaluate the comprehensive 
performance of the classification model on all samples. 
A high accuracy rate means that the model can 
accurately identify the CD stress level of most samples.

The recall rate evaluates the model’s sensitivity 
to different CD stress levels, especially the detection 
effect on samples of a specific category. It is defined as 
the ratio of correctly identifying a certain category of 
samples and pays more attention to the ability to identify 
small samples of severe stress categories.
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  (6)

The F1 value can comprehensively balance the 
precision and recall rate and is suitable for unbalanced 
data sets. The high or low F1 value indicates the ability 
of the model to accurately and comprehensively identify 
the target category during classification and quantifies 
the model’s comprehensive classification performance in 
various categories.

  (7)

The confusion matrix can show each stress level 
classification’s actual and predicted distribution, 
clearly showing the categories and numbers of 
misclassifications. This helps analyze the model’s failure 
points at specific CD stress levels.

Evaluation of the Fit of the Hyperspectral 
Recognition Model

The coefficient of determination measures the 
model’s ability to fit the data. The closer the R2 value 
is to 1, the stronger the model’s explanatory ability is. 
A lower value indicates that the relationship between 
hyperspectral data and soybean characteristics has not 
been fully explored. The R2 value can well reflect the 
degree of explanation of hyperspectral characteristics 
on soybean physiological and ecological indicators and 
stress responses.

  (8)

In the formula, αi is the actual value,  is the 

predicted value, and  is the mean. The root MSE 
measures the deviation between the model’s predicted 
value and the true value. The smaller the value, the more 
accurately the model fits the data. It is suitable for the 
quantitative relationship between different physiological 
indicators and spectral characteristics.

  (9)

Performance Evaluation of CD Stress 
Yield Estimation Model

The mean absolute error (MAE) measures the 
average absolute deviation between the predicted value 
and the true value. The smaller the MAE, the higher the 
model’s accuracy in predicting yield. It can evaluate the 
overall error margin of the model in predicting soybean 
yield and reflect the practical applicability of the method.

  (10)

The relative error represents the ratio of the 
prediction error to the true value, which can explain 
the model’s adaptability to different production ranges 
and provide a relative measure of the prediction error, 
making it easier to compare model performance under 
different conditions.

  (11)

The cross-validation method evaluates the model’s 
robustness to assess its generalization ability on unseen 
data, avoiding overfitting and underfitting problems. 
The 10-fold cross-validation can comprehensively test 
the model’s stability under different data distributions to 
ensure high reliability.

Data Appropriateness Evaluation

The signal-to-noise ratio [35] evaluates the noise 
level to assess the quality of the denoised hyperspectral 
data. The noise level should be less than 5% of the 
noise level before acquisition. Too high a noise level 
can interfere with extracting CD stress features. The 
purpose is to ensure that the raw data is fully processed 
and provides high-quality input. The geometric error is 
the spatial registration error of the remote sensing image. 
The geometric correction error of the remote sensing 
image is controlled within 1 pixel to avoid the deviation 
between the spectral characteristics and the actual 
distribution of objects and ensure the accuracy of the 
spatial positioning of the data. The spectral reflectance 
after atmospheric correction must be consistent with 
the ground-measured data to reflect the accuracy of the 
correction algorithm. An error that is too large can lead 
to failure of trench feature extraction.

Comprehensive Performance Evaluation

The model interpretability is to analyze the 
feature weight distribution of the model to clarify 
that the hyperspectral band and remote sensing 
features contribute the most to the detection and yield 
estimation of CD stress, which can help understand 
the data rules and is beneficial to further optimize the 
model. Time efficiency evaluates the time cost of data 
collection, preprocessing, and model training to ensure 
the operability of the method in practical applications, 
especially its practicality in large-scale agricultural 
management.

Results

In order to explore the effects of CD stress on 
the physiological and ecological characteristics and 
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hyperspectral response of soybeans, this experiment 
conducted a systematic analysis from multiple aspects. 
The following can present the experimental results 
from five aspects: changes in soybean physiological 
characteristics, screening of hyperspectral sensitive 
bands, evaluation of classification model effects, 
verification of yield prediction models, and division of 
physiological thresholds. The detailed analysis of the 
experimental data not only reveals the multi-level impact 
of CD stress on soybeans but also provides a scientific 
basis for the use of hyperspectral technology to monitor 
crops under heavy metal stress. Fig. 3 shows the impact 
of CD stress on soybeans’ physiological and ecological 
characteristics, measured at different flight altitudes.

Fig. 3 shows the measurement results of chlorophyll 
content, malondialdehyde content, soluble sugar content, 
and antioxidant enzyme activity of soybeans with 
different cadmium concentrations at different flight 
altitudes. As the cadmium concentration increases, 
the chlorophyll content, soluble sugar content, and 
antioxidant enzyme activity show a downward trend, and 
the malondialdehyde content increases significantly. At 
an altitude of 60 m, the SPAD (Soil and Plant Analyzer 
Development) value of chlorophyll decreased from 50.3 
to 30.4, and the antioxidant enzyme activity decreased 

from 180 U/g FW to 100 U/g FW, indicating that CD 
stress would inhibit plant photosynthesis, interfere with 
sugar metabolism, and aggravate oxidative damage. The 
change in the UAV’s flight altitude has a certain impact 
on the measured value. Due to the change in ambient 
light intensity and airflow disturbance, the measured 
data at different flight altitudes have certain deviations, 
but the deviation image is within an acceptable range. 
When conducting field scans, the flight altitude of the 
drone is adjusted according to the terrain and collection 
needs. In relatively open and uniform fields, the drone 
chooses a higher flight altitude of 120-150 m to ensure 
a wider image coverage. In areas with more complex 
terrain or uneven plant distribution, the flight altitude 
is appropriately reduced to 60-80 m to improve the 
spatial resolution of the image. This change in flight 
altitude will have a certain impact on the measured 
values. Due to changes in ambient light intensity and 
airflow disturbances, there is a certain deviation in the 
data measured at different flight altitudes. By using 
data processing technology, this deviation is effectively 
corrected and compensated for in subsequent analysis 
so that the final data results have acceptable accuracy 
and reliability. Therefore, despite the change in drone 
altitude, data such as CD, chlorophyll, and antioxidant 

Fig. 3. Effects of CD stress on soybean physiological and ecological characteristics measured at different altitudes. a) Chlorophyll content 
measured at different flight altitudes under different cadmium concentrations. b) Malondialdehyde content measured at different flight 
altitudes under different cadmium concentrations. c) Soluble sugar content measured at different flight altitudes under different cadmium 
concentrations. d) Antioxidant enzyme activity measured at different flight altitudes under different cadmium concentrations.
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enzyme activity can still be effectively compared 
and analyzed within the evaluated geographical area. 
Under high cadmium concentrations, the physiological 
metabolism of plants shows a significant inhibitory 
effect, providing reliable data support for studying the 
impact of CD stress on plants.

Further studies of the sensitivity of CD stress to 
the spectrum cover a wavelength range of 400-2500 
nm. The stress response pattern of a specific area can 
be identified by analyzing the changes in reflectance 
under different cadmium concentrations. This provides 
important information for exploring how CD stress 

Fig. 4. Effects of different cadmium stresses on reflectance in different bands.

Fig. 5. Machine learning model to classify soybean CD stress level. a) Classification accuracy, recall, precision, and F1 value. b) 
Classification time efficiency and relative error. c) Classification determination coefficient, root MSE, and MAE.
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changes soybean plants’ physiological and structural 
characteristics. Fig. 4 shows the effect of different 
cadmium stresses on reflectance in different bands.

The data in Fig. 4 show that with the increase in 
cadmium concentration, the reflectance of plants in 
different spectral bands shows a certain regular change. 
The reflectance of blue and red light in the visible light 
region of 400-700 nm shows an upward trend with the 
increase of cadmium concentration, which is related 
to the destruction of chlorophyll and the decrease of 
photosynthesis efficiency. The decrease in green light 
reflectance can clearly reflect the reduction in chlorophyll 
content. The reflectance at the red edge of 740 nm and 
the near-infrared region of 700-1000 nm has decreased 
significantly, indicating that the plant cell structure has 
been damaged by CD stress. In the short-wave infrared 
region of 1000-2500 nm, the reflectance continues to 
decrease, which is caused by the impact of CD stress on 
the water content and biochemical components of plants. 
Among them, the red edge and short-wave infrared 
bands are most sensitive to CD stress and can be used 
as key spectral indicators for monitoring and evaluating 
soybean stress status.

In the experiment, a variety of machine learning 
models were used to classify and identify the CD stress 
level of soybeans. By analyzing the model’s classification 
accuracy, recall rate, precision, and F1 value, as well as 
the model’s time efficiency, determination coefficient, 
root MSE, MAE, relative error, and other multi-
dimensional indicators, it is ensured that the model is 
highly practical and reliable in practical applications. 
Fig. 5 is a radar chart of various indicators.

The machine learning models used by A-I in Fig. 
5 are support vector machine, multi-layer perceptron, 

K-nearest neighbor algorithm, GBDT (Gradient 
Boosting Decision Trees), XGBoost (eXtreme Gradient 
Boosting), convolutional neural network, Transformer 
model, random forest, and extreme learning machine. 
A variety of common machine learning methods were 
selected for comparison with deep learning methods. 
The data shows that the Transformer model has the best 
effect, with an accuracy of 92.8%, a CD stress recall 
of 85.7%, and an F1 score of 87.4%. Overall, XGBoost 
and convolutional audit networks also showed strong 
performance, especially in terms of the balance between 
precision and recall. In terms of time efficiency, the 
k-nearest neighbor algorithm and extreme learning 
machine are relatively more efficient.

In the experiment, 10-fold cross-validation was 
used to evaluate the model’s performance based on the 
Transformer model. In order to more comprehensively 
evaluate the model’s performance, accuracy, recall, 
precision, and F1 score were selected. In each fold, the 
performance of the model may be different. In order to 
comprehensively display the performance indicators of 
each fold, the results are analyzed in detail below, and 
the performance differences of the model in different 
folds are displayed through heat maps. Fig. 6 is a heat 
map of the indicators for each fold.

As can be seen from Fig. 6, the accuracy of each 
fold is between 91% and 92.8%, indicating that the 
performance of the model in the 10-fold cross-validation 
is relatively stable. The highest accuracy of the fifth fold 
reaches 92.8%. The precision varies between 87.2% and 
89.5%, which is slightly larger than the accuracy, which 
means that the false positive performance of the model 
varies in different folds. The recall rate remains at 92%-
95%, which is relatively stable, and the highest rate of 

Fig. 6. 10-fold cross-validation indicator heat map.
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95% is also reached in the fifth fold. This indicates that 
the model can correctly identify positive samples and 
reduce the false negative rate. The F1 value for each fold 
changes slightly. The F1 value combines precision and 
recall, reflecting the model’s overall performance. Small 
fluctuations indicate that the model maintains good 
consistency in predicting the positive class. The 10-fold 
cross-validation results show a stable state overall.

The paper further understood the impact of CD 
stress on soybean yield in the experimental analysis. 
Comparing the actual yield of soybeans under different 
cadmium concentrations with the model-predicted 
yield can better help understand the potential harm 
of cadmium pollution to soybean production. Table 3 
shows the data on the impact of CD stress on soybean 
yield.

From the data in Table 3, it can be seen that with the 
increase of cadmium concentration in the soil, the actual 
yield of soybeans decreased significantly, showing a 
negative correlation. When the cadmium concentration 
increased from 0 mg/kg to 5 mg/kg, the actual yield 
decreased from 250 kg/mu to 150.3 kg/mu, a decrease 
of about 40%. The model’s predicted yield and actual 
yield were roughly consistent, but at high cadmium 
concentrations, the prediction error increased, especially 
at 5 mg/kg, when the actual yield was lower than the 
predicted yield. This shows that although the model can 
predict soybean yield well at low concentrations, under 
high-concentration CD stress, the model may not fully 
reflect the decline in actual yield and needs further 
optimization.

Discussion

This study combined unmanned aerial vehicle 
hyperspectral remote sensing images with machine 
learning models to deeply analyze the effects of 
CD stress on soybean physiological and ecological 
characteristics and yield. It discussed the application 
potential of hyperspectral technology in agricultural 
pollution monitoring. Using soybean field data obtained 
from UAV remote sensing images, the paper analyzed 
the effects of CD stress on soybean chlorophyll, 
malondialdehyde content, soluble sugar, and antioxidant 
enzyme activity. The results showed that increased 
cadmium concentration would inhibit soybean 

photosynthesis and sugar metabolism and aggravate 
oxidative damage to the plant. The red edge and short-
wave infrared bands showed obvious reflectance 
changes by comparing the reflectance of different bands 
to analyze the effects of CD stress on soybean cell 
structure, photosynthesis, and water content. Based on 
the spectral characteristics, a hyperspectral recognition 
model was constructed, and the Transformer model was 
used to effectively classify and identify soybeans under 
CD stress and predict their yield changes. In the model 
evaluation, the Transformer model showed excellent 
performance with an accuracy of 92.8%, a recall of 
95%, and an F1 score of 92.1%. The 10-fold cross-
validation showed that the model performed stably on 
different data sets, with accuracy and recall maintained 
at a high level. This study shows that the combination of 
UAV hyperspectral remote sensing images and machine 
learning models provides effective technical support for 
the detection and yield prediction of cadmium-stressed 
soybeans.

Conclusions

This paper uses UAV hyperspectral images to study 
the effects of CD stress on soybeans. It constructs a 
stress impact model by preprocessing remote sensing 
images through wavelet transform and principal 
component analysis, as well as cadmium concentration 
and plant physiological indicators. The Transformer 
model was used to optimize feature selection, identify 
different stress levels, and finally establish a yield 
prediction model through collinearity analysis and 
recursive feature elimination. However, the model is 
limited by the spatial and temporal resolution of the 
impact. In the future, the prediction accuracy can be 
optimized by increasing the image frequency and multi-
temporal data to improve the reliability and application 
scope of the model.
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Cadmium Concentration (mg/kg) Actual Soybean Yield (kg/acre) Model Predicted Yield (kg/acre)

0 250 249.5

0.5 240.3 239.7

1 225.6 226.3

2 200.8 201.6

5 150.3 152.7

Table 3. Impact of CD stress on soybean yield.
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