
Introduction

Impervious surfaces include roads, driveways, 
sidewalks, parking lots, and roofs covered by 
impervious building materials, such as tiles, asphalt, 
cement concrete, and other materials. Such surfaces 

negatively affect the urban ecological environment 
by replacing the vegetation-based natural landscape, 
hindering surface water infiltration, and aggravating 
the surface runoff process [1]. Expanding impervious 
urban surfaces has significantly impacted urban and 
near-urban meteorological and hydrological dynamics 
[2-4]. The heat-absorbing characteristics of artificial 
building materials and increases in particulate matter 
in the air alter monsoon patterns. These effects 
result in surges in rain in the summer, causing urban 
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Abstract

Impervious urban surfaces critically impact ecological environments, necessitating precise 
and efficient mapping for sustainable urban planning. While hyperspectral remote sensing is widely 
used for feature extraction, single-source data often face challenges like homospectral heterogeneity 
and heterospectral homogeneity in complex urban areas. This study addresses these limitations by 
integrating Zhuhai-1 hyperspectral imagery with Sentinel-1 radar data, proposing an innovative 
method to enhance impervious surface mapping accuracy through multi-source remote sensing 
synergy. Further, we compared four tree-based ensemble-learning algorithms for use with multi-source 
remote sensing data. The results of the pilot study using this approach can be summarized as follows:  
(1) The four tree-based ensemble learning methods using multi-source remote sensing features perform 
better than single-source spectral data extraction. Specifically, the Kappa coefficient for the lightweight 
gradient boosting tree algorithm (LightGBM) in the impervious surface mapping of built-up areas and 
urban fringes increased by 0.014 and 0.017, respectively. (2) The LightGBM algorithm using multi-
source remote sensing features exhibited the best mapping accuracy for extracting impervious surfaces 
compared to other algorithms, with an accuracy of 93.2% in built-up areas and 92.1% at urban edges. 
Further, it is also shown to be the most efficient model, with 19.7- and 20.3-second running times  
in built-up areas and urban edges, respectively. The findings in this study provide a new approach  
for high-efficiency and high-precision impervious urban surface mapping.
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flooding [5]. Additionally, an increase in urban surface 
runoff due to the expansion of cities carries pollutants 
(heavy metals, major nutrients, road garbage, and 
rubber residue) into water bodies, affecting water 
quality [6]. Rapid urbanization has led to increasingly 
severe environmental problems. Therefore, the timely 
and accurate mapping of impervious urban surfaces 
should be carried out to protect the urban ecological 
environment. 

Numerous studies have been conducted on 
impervious urban surface classification using two 
major classification strategies [7, 8]. The first only uses 
the spectral features from a single satellite sensor, and 
the second uses multi-source remote sensing features. 
The rationale of the first strategy is that different land 
cover types have distinct spectral characteristics, 
and these spectral features, in turn, could be used for 
classification. These approaches provide remote sensing 
images with different spatial resolutions for estimating 
impervious surfaces [9-12]. However, bare soil, water, 
and impervious surfaces with low spectral reflectance 
values usually have similar spectral information, 
making classification challenging. Furthermore, cloud 
contamination of optical data poses a significant 
challenge for accurate land-cover classification. The 
second strategy utilizes both spectral and SAR data [13, 
14], improving classification accuracy. SAR is sensitive 
to the dielectric and geometric properties of urban land 
surfaces, including the structure and surface roughness 
[15]. SAR is also effective at all times and under all 
weather conditions. Generally, the backscattering 
intensity of natural features, such as water-permeable 
and water surfaces, is low; in contrast, urban land with 
artificial features has high backscattering intensity. 
Additionally, significant past research has proven that 
using images derived from InSAR pairs (e.g., coherence) 
improves the ability to distinguish natural features from 
man-made ones [16]. This mainly depends on artificial 
ground features having very high phase stability 
characteristics and maintaining high coherence over 
long intervals (35 days or more). In contrast, water 
bodies, vegetation, and bare land vary within a span 
of a few days; this indicates that textural features are 
also helpful when classifying impervious surfaces [17]. 
Therefore, backscattering intensity, textural features, 
and data coherence intensity provide complementary 
information for land-cover classification. 

Suitable spatial and spectral resolution satellite 
data inputs to classifiers are required for accurate 
classification [18]. The greatly increased dimensionality 
of a hyperspectral sensor could remove the sensor-
related limit on the number of end members available 
[19]. Furthermore, high spatial resolution image data can 
achieve high-efficiency and high-precision impervious 
urban surface mapping [20]. Therefore, the fusion of 
Zhuhai-1 hyperspectral data (with a spatial resolution 
of 10 m and 32 bands) and Sentinel-1 radar data could 
effectively overcome the limitations concerning spectral 
information in classifying complex urban areas [21]. 

Previous studies based on the V-I-S model used 
remote sensing images for impervious surface mapping 
[22]. The V-I-S method simplifies land surface 
classification and enhances processing efficiency and 
extraction accuracy. It is widely applied in remote 
sensing image analysis, particularly for extracting 
impervious urban surfaces. However, complex ground 
features hinder the application of the V-I-S model 
in extracting impervious urban surfaces from high-
resolution remote sensing images. Therefore, researchers 
have proposed extraction methods that effectively 
integrate machine learning techniques to handle high-
resolution remote sensing images [23, 24]. Various 
ML-based approaches have been conducted to extract 
impervious surfaces, such as the support vector machine 
(SVM) and convolutional neural network (CNN) [25, 
26]. The aforementioned methods have achieved good 
results and have been widely applied.

Recent studies have reported that tree-based 
ensemble-learning algorithms (e.g., random forest 
[RF], gradient boosting decision tree [GBDT], extreme 
gradient boosting [XGBoost], and the lightweight 
gradient boosting tree algorithm [LightGBM]) are 
more effective than other ML-based approaches [27-
29]. Tree-based ensemble models are relatively simple 
but powerful algorithms for classification and regression 
problems. They have been widely applied in the fields 
of agriculture, landslide susceptibility mapping, 
forecasting, and analysis of daily average PM2.5 
concentrations [30-32]. However, there is little relevant 
research in the field of the extraction of impervious 
urban surfaces.

Therefore, this study applies tree-based ensemble-
learning algorithms to extract and estimate impervious 
urban surfaces. Zhuhai-1 hyperspectral images combined 
their spectral data, and Sentinel-1 radar data was used 
as the feature data. From these, 11 characteristic bands 
were identified and selected, including eight spectral 
features, two radar data features, and one spatial texture 
feature. The eight spectral features correspond to the 
first eight hyperspectral bands with a contribution rate 
greater than 75% through the minimum noise fraction 
rotation (MNF) transform. Based on the data of GF-1 
(Gaofen-1) images, the artificial vectorization label 
of GF-1 is used to study RF, GBDT, XGBoost, and 
LightGBM algorithms for mapping impervious urban 
surfaces. The findings of this study provide a feasible 
and efficient method for building a sponge city with 
natural accumulation, penetration, and purification 
abilities.

 Materials and Methods

Study Area

Suzhou City is in the southern plain of Jiangsu 
Province, China. It is characterized by several water 
systems and has a mild climate, distinct seasons, 
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and abundant rainfall. A water transportation system 
is present in this region, which is often referred 
to as a “water village”. Suzhou has experienced 
rapid urbanization and has a complex construction 
environment. This urban expansion has contributed to 
increased impervious surface areas, leading to various 
environmental and socio-economic concerns. 

Therefore, there is a need to map high-efficiency and 
high-precision impervious urban surfaces in this region. 
However, separating water from impervious surfaces 
with low spectral reflectance is challenging, and bare 
soil and impervious surfaces are often easily conflated. 
Furthermore, extracting small water bodies is a difficult 
task. Thus, two regions in the built-up area of Suzhou 
and the city fringes (with more bare soil and small water 
bodies) were selected as the experimental areas (Fig. 1).

Fig. 1A) shows a portion of the built-up area.  
The study site comprises various ground objects, such 

as water bodies, polluted water bodies, buildings, roads, 
vegetation, and bare soil. The image size in this figure 
is 742 × 824 pixels. Fig. 1B) represents the urban fringe 
areas. The region is covered in bare soil, small water 
bodies, and densely packed buildings. The image size 
here is 775 × 834 pixels.  

Hyperspectral Data Reprocessing

Zhuhai Orbit Corporation provided the hyperspectral 
remote sensing images of Suzhou City used in this 
study (https://www.myorbita.net) on October 1, 2018. 
The second batch of Zhuhai-1 microsatellites was 
successfully launched on April 26, 2018. This batch 
included four Orbita hyperspectral satellites (i.e., 
OHS-A, OHS-B, OHS-C, and OHS-D) and one video 
satellite (i.e., OVS-2A) with excellent hyperspectral 
data acquisition abilities. The hyperspectral satellite 

Fig. 1. Overview of the study area with a) a built-up area and b) an urban fringe. 
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camera can obtain images with a 10-m resolution,  
150-km width, and 32 spectrum segments. The single-
start continuous sweeping work time was no less than  
2 min, and the one-track working time was no more than 
8 min, with a global coverage ability within 5 days [33]. 
Rich spectral information is important for the extraction 
and classification of the features of ground objects.  
The spatial scale of the image was suitable for city-wide 
research.

Radiation calibration, atmospheric correction 
(ENVI Fast Line-of-sight Atmospheric Analysis of 
Hypercubes (FLAASH) module), and orthographic 
correction were carried out on hyperspectral data. 
Additionally, Gaussian low-pass filtering was used 
to filter orthographic hyperspectral images and 
eliminate the effect of geometric distortion and 
noise in satellite imaging. Hyperspectral data were 
geographically registered with GF-1 data, leading to 
a one-to-one correspondence of the spectral features 
to the classification labels. Minimum noise fraction 
rotation (MNF) transformation was performed on 
the hyperspectral data to eliminate redundancy and 
reduce the number of calculations during classification.  
The amount of hyperspectral data used in this 
experiment was large. Therefore, we concentrated on 
the remote sensing feature information within a few 
bands. The first eight bands, with a contribution rate 
greater than 75%, were used as the remote sensing 
spectral features in this study. The spatial co-occurrence 

measures of hyperspectral remote sensing images in the 
study area were calculated to obtain the spatial texture 
information. This was done to achieve spatial spectrum 
integration and fully extract spectral information from 
the optical remote sensing images. Fig. 2 shows the 
hyperspectral curves of several typical features of 
Zhuhai-1 after data reprocessing.

SAR Data Reprocessing

The Sentinel-1 radar data was provided by the 
European Space Agency (https://search.asf.ala-ska.edu). 
The primary imaging time was October 1, 2018, while 
the secondary imaging time was November 6, 2018. 

The radar backscatter intensity and radar interference 
information supplement the thematic information of the 
urban features. Backscatter intensity data were obtained 
after radiometric calibration on October 1, 2018. 
Additionally, we obtained interference coherence from 
the long-time-baseline (35 days) interferometric radar 
signal using the differential interferometry synthetic 
aperture radar (D-InSAR) process [34]. The fusion of 
Sentinel-1 radar feature data and Zhuhai-1 hyperspectral 
feature data was used as mapping data, and the tree-
based ensemble-learning algorithm was used to extract 
impervious urban surfaces. The process is shown  
in Fig. 3.

Fig. 2. Hyperspectral curves of typical features of Zhuhai-1. 
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were resampled to a spatial resolution of 10 m to ensure 
that data fusion and classification evaluation took place 
under the same spatial resolution.

Principles of the Tree-based Ensemble-Learning 
Algorithm Using Multi-source 

Remote Sensing Features

Tree-based ensemble learning is an algorithm 
that creates a strong assessment model by integrating 
multiple weak assessment models [37]. It is highly 
accurate, effective for processing high-dimensional big 
data, and stable in terms of model training. Each weak 
learner (decision tree) calculates the gain of each feature 
during node splitting and selects the feature with the 
best gain value for splitting. 

In this study, the tree-based ensemble-learning 
algorithm classifies fused multi-source remote sensing 
feature data pixel-by-pixel to obtain a highly precise  
and efficient thematic map of impervious urban 

Artificial Vectorization Label

GaoFen1 (GF1), China’s first high-resolution  
Earth observation satellite, was launched in April 
2013. This satellite has one panchromatic sensor and 
four wide field-of-view (WFV) sensors [35]. A single 
image collected by one sensor has a swath of nearly 
200 km.Therefore, when all four sensors collect images 
simultaneously, an area with a total width of 800 km 
can be covered, allowing the satellite to achieve global 
coverage in four days [36]. 

We acquired GF-1 data from the study area 
during the survey period. The data were fused with 
the panchromatic and multispectral bands, followed 
by ortho-correction. The processed GF-1 data (with  
a spatial resolution of 2 m) was artificially vectorized. 
The land cover in the study area was then divided into 
three types: impervious surfaces, permeable surfaces, 
and water surfaces (Fig. 4). In this study, the intensity 
data, the coherence intensity map, and vectorized labels 

Fig. 3. Flowchart of the process of this study. 
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surfaces. The first eight bands, the 9th band, the 10th 
band, and the 11th band denote the spectral features, 
interference coherence characteristic magnification with 
a value scaled up by 100-fold, backscatter intensity, and 
the spatial texture features, respectively (Fig. 5). The 
results show that impervious surface objects have high 
coherence (with coherence coefficients greater than 0.5). 
Bare soils in built-up areas and polluted waters have 
high coherence and unique spectral characteristics, 
whereas general natural ground objects have low 
coherence. Thus, the fusion of SAR data features and 
Zhuhai-1 hyperspectral data enhanced the selection 
of the segmentation node of the tree-based ensemble-
learning algorithm.

Principle of the XGBoost Algorithm

GBDT is a tree-based ensemble algorithm that builds 
an integrated prediction model through the gradient 

boosting process. The specific principle behind this 
algorithm has been expounded in previous research 
[38]. In comparison to the classic GBDT, XGBoost has 
significantly better performance. Firstly, GBDT expands 
the objective Taylor function to the first order, while 
XGBoost expands the objective Taylor function to the 
second order. More information about the objective 
function is retained, which improves the performance. 
Secondly, XGBoost introduces the regularization 
term in the objective function to prevent overfitting.  
The principle of the algorithm is as follows:

Loss function

  (1)

where n, ŷ, and y are the number of input training 
samples, predicted value, and label, respectively.

Fig. 4. Results of artificial vectorization labeling for (a) a built-up area and (b) an urban fringe. 
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Objective function

  (2)

where Ω(θ) is the regularization term to prevent 
model overfitting. The objective function uses T-base 
classification tree models: { f1 f2 ... fT}. We assume 
that the predicted value of the i-th input sample is 

, where xi is the input sample and ŷi  
is the corresponding predicted value. Therefore 

  (3)

Ensemble-learning algorithms use errors 
as optimization criteria. Taylor’s second-order 
approximation expands the loss function to establish a 
link between the node-splitting guidelines of the binary 
tree model and the objective function: 

  
(4)

The XGBoost algorithm is shown in Fig. 6.

Principle of LightGBM

The LightGBM algorithm is an optimization 
algorithm for the XGBoost algorithm. Unlike the 
XGBoost algorithm, the LightGBM algorithm uses  
a histogram optimization method to discretize the 
feature data. The histogram optimization method 

mitigates this limitation in that the split node  
in the base classification model needs to sort all of the 
feature data. Meanwhile, this algorithm supports a 
parallel strategy. 

The LightGBM algorithm structure is shown  
in Fig. 7.

Sample Data

The urban cover in the study area is divided 
into impermeable surfaces, permeable surfaces, and 
water surfaces (with a ratio close to 1:1:1). We used 
manual interpretation to select the training samples 
and classification evaluation samples based on field 
survey data and high-resolution GF-1 images obtained 
during the survey period. Data were scrambled and 
dichotomized into “train” (66.7% of the data) and “test” 
(33.3% of the data) sets. Details of the selected samples 
are given in Table 1.

The range of common hyperparameter values for the 
ensemble algorithms used is shown in Table 2.

Results 

Experimental Results and Accuracy Assessment

We carried out eight comparative tests to 
demonstrate the superiority of the LightGBM model 
using multi-source remote sensing features. The four 
algorithms performed surface extraction experiments on 
the single-source spectral feature data and multi-feature 
remote sensing data. Pixel-level classification caused 
a salt-and-pepper effect; therefore, post-classification 
processing technology eliminated false pixels generated 
during classification.

Fig. 5. Typical features of multi-source remote sensing (Fig. 4 ground objects correspond to Fig. 2). 
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As indicated by tags 1-4 in Fig. 8a), the random forest 
algorithm – which fused multi-source remote sensing 
feature data – was used to map the impervious surface. 
This algorithm mistakenly classified impervious urban 
surfaces with low reflectances as water surfaces. The 
GBDT, XGBoost, and LightGBM algorithms, based 

on the gradient boosting tree algorithm, give better 
descriptions of the edge information of the urban cover 
than the random forest algorithm (tag 5 in Fig. 8). 
Additionally, these algorithms retain the structural 
information of impermeable surfaces better and greatly 
reduce the conflation of impermeable surfaces and water 

Fig. 7. LightGBM algorithm flowchart. 

Fig. 6. XGBoost algorithm flowchart. 
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surfaces compared with the random forest algorithm. 
The XGBoost and LightGBM algorithms performed 
better in dividing bare soil and buildings, with the 
lowest misclassification and improved retention of 
edge information, as shown by the true label with tag 
6. The XGBoost and LightGBM algorithms expand 
the objective Taylor function to the second order. This 
retains more information about the objective function, 
which improves the performance. However, overly 
small water bodies were difficult to extract from remote 
sensing data based on a 10-meter spatial resolution in 
urban boundary areas. Further, discriminating between 
bare soil and impervious surfaces was challenging.

We quantified the mapping precision of extracting 
the urban cover to quantitatively analyze the extraction 
effects of the four algorithms. The extraction results 
of the four ensemble-learning algorithms used in this 
study were compared with the real labels. Table 3 
provides discernible information regarding four pixel-
based classifiers. The random forest algorithm had the 
highest misclassification rates, with 2.12%, 2.04%, and 
0.09% errors in terms of impervious surfaces, pervious 
surfaces, and water surfaces, respectively. The XGBoost 
and LightGBM algorithms performed better in terms 
of mapping the impervious urban surfaces with multi-
source remote sensing data. Notably, LightGBM was 
found to be the best classification model, with 1.56%, 
1.33%, and 0.22% errors in the impervious surfaces, 
pervious surfaces, and water surfaces, respectively.

Result Analysis

The overall accuracy (OA) and Kappa coefficient 
of the four ensemble-learning classification model 
methods were calculated using a confusion matrix. 
The coefficient measures the results of the impervious 
surface extraction. The analysis showed that the four 

ensemble-learning algorithms fused multi-source 
remote sensing features and improved impervious urban 
surface mapping performance compared to only using 
spectral features (Table 4). From Table 4, it can be seen 
that compared to the single-source data, the OA of the 
LightGBM using multi-source remote sensing features 
was improved by 3.6% and 4.6% in the built-up areas 
and urban fringes, respectively. Furthermore, the Kappa 
coefficient was increased by 0.014 and 0.017 in the built-
up areas and urban fringes, respectively. In the single-
source spectral data extraction process, these models 
ignored the homologous heterospectra and homospectral 
foreign objects in the complex urban environment. 
However, radar backscatter intensity information and 
radar interference information supplement the thematic 
information regarding urban features.

Based on the gradient boosting tree algorithm, the 
GBDT, XGBoost, and LightGBM algorithms performed 
better than the random forest algorithm [39-41].  
The XGBoost algorithm performed better than the 
GBDT. Firstly, the loss function of the XGBoost 
expanded by Taylor’s second-order approximation is 
more precise than Taylor’s first-order approximation. 
Moreover, depending on the leaf node weight and the 
tree depth, the complexity of the binary tree model in 
XGBoost differs. LightGBM was more efficient than 
XGBoost, with a 235.4- and 257.7-second improvement 
in the built-up areas and urban fringes, respectively. 
The LightGBM algorithm uses a histogram optimization 
method to discretize the feature data, unlike the 
XGBoost algorithm. The histogram optimization 
method alleviates the limitation whereby the split nodes 
in the base classification model need to sort all the 
feature data.

In summary, the LightGBM algorithm using multi-
source remote sensing features achieved optimum results 
with 93.2% and 92.1% OA in the built-up areas and 
urban fringes and 0.885 and 0.845 Kappa coefficients in 
the built-up areas and urban fringes, respectively.

Discussion

Classification of Images

Considering previous studies, remotely sensed 
data used for impervious classifications could be 
classified into three types based on spatial resolution: 
coarse, medium, and high [42]. Because of their high 
temporal resolution, coarse spatial-resolution data 
(e.g., MODIS) are only suitable for large-scale remote 
sensing applications or as an auxiliary source for local 
and regional data [43]. Medium spatial-resolution data 
(e.g., SPOT4 and Landsat) can be applied in regional 
land-cover classification, which comprises a large 
number of mixed pixels because of the presence of 
complex ground coverings. High-spatial-resolution data 
(e.g., WorldView, IKONOS, and QuickBird) could help 
acquire accurate ground-object classification in complex 

Table 1. Sample details (number of pixels).

Category
Built-up area Urban fringes

Train Test Train Test

Impervious surface 35724 17862 35724 17862

Pervious surface 34267 17136 34267 17136

Water surface 32916 16459 32916 16459

Table 2. Hyperparameter values of ensemble-learning algorithms.

Category Hyperparameter ranges

Learning rate 0.01, 0.05, 0.1, and 0.5

Min samples leaf 1 to 21 (increment of 1)

Max depth 1 to 15 (increment of 1)

Subsample 0.2 to 1 (increment of 0.1)

Number of estimators 10, 100, 200, and 1000
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Fig. 8. Classification results of the four ensemble-learning algorithms. 
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urban environments. Moreover, previous studies 
have used remote sensing image series to improve 
classification accuracy. However, spectral data is easily 
affected by clouds and weather, resulting in issues with 
satellite imaging. Instead, a uni-temporal image could 
rapidly establish a regional impervious map with fewer 
restrictions and less data computation [42]. Furthermore, 
the hyperspectral data could remove the limit on the 
number of end members available. Therefore, we 
selected uni-temporal Zhuhai-1 hyperspectral data 
(spatial resolution of 10 m and 32 bands). This strategy 
utilizes both spectral and SAR data [13, 14], improving 
the classification accuracy compared to only using the 
spectral features from a single satellite sensor. Using 
hyperspectral data in complex urban environments, 
the latter ignores the homologous heterospectra and 
homospectral foreign objects.

Classification Methods

In previous studies, image classification methods 
applied in impervious classifications include sub-pixel-
based methods (e.g., the V-I-S model) [22], object-based 
methods [43], and machine learning algorithms [23-26]. 
Nevertheless, sub-pixel-based methods are only suitable 
for an original low-resolution image. Users should know 
how to select the segmentation scale and which features 

must be selected before using an object-oriented 
method. These two factors substantially determine 
classification accuracy and computational efficiency 
[44]. ML-based approaches (e.g., SVM, CNN, tree-
based ensemble-learning algorithms) applied to high-
resolution images have high classification accuracy. 
Furthermore, tree-based ensemble-learning algorithms 
are more effective than other ML-based approaches [27-
29]. Notably, LightGBM is the most efficient among 
tree-based ensemble-learning algorithms because it 
uses a histogram optimization method to discretize 
the feature data, improving the algorithm’s efficiency. 
Previous studies have evaluated other machine 
learning algorithms for impervious surface mapping 
with approximately 90% accuracy [45]. Although the 
extraction effect is comparable, the mapping process 
takes longer to achieve higher accuracies. Therefore, 
the LightGBM algorithm uses multiple remote sensing 
features for complete impervious urban surface mapping 
with high precision and efficiency compared to those 
reported in previous studies.

Classification Results

Impervious urban surfaces are key factors that shape 
urban ecological environments [46, 47]. Research into 
high-precision and high-efficiency impervious urban 

Features (a) Category
Overall accuracy (%) Kappa Time (s)

Built-up area Urban fringe Built-up area Urban fringe Built-up area Urban fringe

Spectral 
(8 bands)

Random 
forest 84.6 83.7 0.803 0.794 48.4 51.4

GBDT 86.7 85.6 0.822 0.812 37.8 42.5

XGBoost 89.4 87.0 0.871 0.824 209.0 219.0

LightGBM 89.6 87.5 0.871 0.828 19.6 20.8

Spectral 
(8 bands)

spatial texture 
(2)

SAR (1)

Random 
forest 90.5 89.7 0.824 0.801 74.5 83.9

GBDT 91.6 90.9 0.837 0.826 45.6 51.2

XGBoost 92.9 91.8 0.880 0.839 255.1 278.0

LightGBM 93.2 92.1 0.885 0.845 19.7 20.3

Table 3. Mapping accuracy of impervious surfaces using four algorithms.

Table 4. Accuracy evaluation parameters of the multi-feature fusion ensemble learning method.

Category
Impervious surface Pervious surface Water surface

Percentage Error Percentage Error Percentage Error

Label 61.99 / 27.17 / 10.84 /

RF 59.87 2.12 29.21 2.04 10.93 0.09

GBDT 63.82 1.83 25.43 1.74 10.65 0.19

XGBoost 63.55 1.56 25.85 1.32 10.60 0.24

LightGBM 63.55 1.56 25.84 1.33 10.62 0.22
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surface mapping methods is important for guiding the 
construction of urban ecological environments [48, 
49]. The results of this study show that the fusion of 
Zhuhai-1 spectral features, spatial texture features, and 
SAR data features improves the precision and efficiency 
of the extraction of impervious urban surfaces.  
The fusion had an overall accuracy of 93.2% in the built-
up areas and 92.1% at the urban edges. Our methods 
rely on spectral features, spatial texture features, and 
SAR data features obtained from hyperspectral images 
and radar data. Therefore, they can be used in different 
urban environments. The findings of this study provide 
information for the application of ensemble-learning 
algorithms in automated remote sensing applications 
[50].

The random forest algorithm using only spectral 
features provides a satisfactory classification effect 
for impervious surfaces, with an OA value of 84.6%.  
This is important when considering using spectral 
sensors to map impervious surfaces. However, 
ensemble-learning algorithms based on gradient 
boosting have better mapping effects. Combining multi-
source remote sensing features could achieve a higher 
segmentation effect when classifying impervious urban 
surfaces than only using spectral features. Mapping 
permeable surfaces and water surfaces could yield 
different results. The mapping error percentages of the 
GBDT algorithm, XGBoost algorithm, and LightGBM 
algorithm after adding the SAR feature and texture 
feature data were relatively close (1.83%, 1.56%, and 
1.56%, respectively). Furthermore, adding the SAR and 
texture feature data improved the OA of the random 
forest algorithm, GBDT algorithm, XGBoost algorithm, 
and LightGBM algorithm by 5.9%, 4.9%, 3.5%, and 
3.6% in the built-up area, respectively. Moreover, the 
algorithm using multi-source remote sensing features 
also performed better than a single source for urban 
fringes. Thus, SAR data features and spatial texture 
features improve classification accuracy. However, the 
addition of the SAR feature and texture feature data 
does not eliminate the phenomenon of mixed pixels and 
spectral confusion. ML is a data-driven approach [51]; 
therefore, this problem can be alleviated by collecting 
more training samples at the fringes between the low-
reflectivity impervious surface, the low-reflectivity 
water surface, the impervious surface, and vegetation to 
facilitate discrimination [52, 53].

On the urban fringes, extremely small water bodies 
are difficult to accurately extract from remote sensing 
data based on a 10-m spatial resolution [54, 55]. 
Although the fusion of multi-source remote sensing 
features improves the discrimination between bare 
soil and impervious surfaces, the accurate distinction 
remains challenging [56].

In this study, the LightGBM algorithm using multi-
source remote sensing features exhibited high efficiency 
and mapping accuracy in extracting impervious surfaces 
[57]. 

Conclusions

This study reports a new high-precision and high-
efficiency impervious urban surface extraction method 
suitable at a 10-m spatial resolution. Multi-source remote 
sensing features (i.e., Zhuhai-1 and Sentinel-1 radar 
data) are used to extract impervious urban surfaces 
using the LightGBM algorithm. This article focused on 
Suzhou as the study area, and the following conclusions 
could be drawn:

(1) The fusion of Zhuhai-1 hyperspectral features 
with spatial texture features and Sentinel-1 radar data 
features performs better at extracting impervious 
urban surfaces than simply using Zhuhai-1 spectral 
characteristics.

(2) The XGBoost and LightGBM algorithms use 
the gradient boosting tree principle and combine multi-
source remote sensing features to extract impervious 
urban surfaces. Their performance is better than that of 
the GBDT and random forest algorithms. The LightGBM 
algorithm, in particular, exhibited the highest accuracy 
and efficiency.

This research contributes to developing advanced 
and efficient methods for urban surface classification, 
particularly in the context of urban planning and 
environmental monitoring. By improving the accuracy 
and efficiency of impervious surface extraction, 
the proposed method holds significant potential 
for supporting smart city initiatives, urban heat 
island studies, and sustainable urban development. 
Furthermore, it demonstrates the effective integration of 
multi-source remote sensing data, which can be applied 
to other urban regions globally, especially in developing 
countries or regions with limited data availability. The 
method’s adaptability and efficiency make it suitable for 
a wide range of geographical areas, providing a robust 
tool for urban studies, environmental management, and 
policy-making in different countries and regions.
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