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Abstract

PM2.5 is a significant contributor to air pollution, and complete air quality monitoring data is the 
key to effective prevention and control of PM2.5. However, there are many missing values in real-time 
monitoring data due to the instability of the monitoring system, machine failures, or human error. 
Taking the Yangtze River Delta (YRD) region as an example, this study compared the filling effect 
of various algorithms in the absence of PM2.5 concentration ground monitoring data, then selected the 
optimal algorithm and combined it with the K-Shape clustering partitioning results to fill the missing 
PM2.5 concentration data values. The results showed that the Conditional Score-based Diffusion Models 
for Imputation (CSDI) had better interpolation accuracy than Autoregressive Integrated Moving Average 
(ARIMA), K-Nearest Neighbors (KNN), and Multiple Imputation (MI) in the missing values imputation 
task. The historical PM2.5 data from the YRD, when analyzed using CSDI with K-Shape clustering, 
showed that Partition III had the highest accuracy and Partition II had the lowest. This variance was 
due to both the clustering accuracy and the inherent characteristics of each partition regarding PM2.5 
fluctuations. Analyzing the daily variation characteristics of PM2.5 concentrations in different partitions 
revealed approximately 9 am, 3 pm, and 9 pm as the three main time nodes with large CSDI filling 
errors in the YRD region. These findings have significant implications for air quality monitoring and 
PM2.5 concentration prediction.
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Introduction

According to the World Health Organization 
(WHO) assessment report, approximately 7 million 
individuals globally succumb to air pollution annually 
[1]. Consequently, air pollution has emerged as the * e-mail: zhangzhen@aust.edu.cn

Pol. J. Environ. Stud. Vol. XX, No. X (XXXX), 1-12



Xiaodong Ge, et al.2

paramount environmental health risk worldwide [2, 3]. 
As one of the major air pollutants, PM2.5 has been shown 
in numerous studies to pose undeniable hazards to 
human health [4-7]. Air quality monitoring data are the 
primary source for analyzing air pollution trends and 
modeling pollutant concentrations, holding immense 
significance for research in air pollution prevention 
and control. However, several factors—including the 
instability of automatic air quality monitoring systems, 
machine malfunctions, and human error—result in 
a substantial number of missing values in real-time 
air quality monitoring data [8]. This poses significant 
limitations on related air pollution research [9]. 
Therefore, the challenge of effectively imputing missing 
values in historical time-series data urgently needs to be 
addressed.

The current approaches for interpolating missing 
values are derived from data classification and 
regression prediction basic theory [10]. Based on the 
autocorrelation of data, Junger and Deleon used the 
Autoregressive Integrated Moving Average (ARIMA) 
model to estimate random missing values in time 
series, with experiments confirming that this method 
resulted in a satisfactory filling effect in univariate 
time series [11]. However, as missing data are often 
associated with multiple factors, some scholars [12, 
13] used the K-Nearest Neighbors (KNN) algorithm to 
measure the degree of similarity between the data from 

the interconnections between the data values, thereby 
estimating the values of missing data through the 
same class of observations. KNN has a wide range of 
applications in real-world missing data imputation and 
has been applied to various fields with higher accuracy 
than regression interpolation [14-16]; however, the 
selection of value K (the number of neighboring labeled 
values) has a significant impact on the interpolation 
accuracy, so selecting the appropriate value for K is still 
a challenge [17]. Multiple Imputation (MI) generates a 
set of complete datasets through estimation and repeated 
simulation, filling the missing data in each dataset using 
the estimation model [18, 19]. However, this approach is 
sensitive to the models’ assumptions, and inappropriate 
assumptions may lead to bias [20]. Tashiro et al. [21] 
proposed the Conditional Score-based Diffusion Models 
for Imputation (CSDI) for missing values imputation 
of time series data, demonstrating that CSDI could 
fill the missing data by utilizing the observed valid 
information. However, CSDI has not been used to fill in 
missing air quality monitoring data. The variables of air 
quality monitoring data are not only spatiotemporally 
correlated but also interdependent with other variables. 
Therefore, it is necessary to deeply analyze the missing 
data characteristics of air quality monitoring data and 
explore the filling effect under different scenarios.

Based on an in-depth analysis of the characteristics 
of missing data values in actual sample data, this study 

Fig. 1. Overview of the study area.
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designed experiments from the perspectives of missing 
data rates and missing data scenarios. Then, multiple 
algorithms were compared, and the missing data 
from air quality monitoring sites in the Yangtze River 
Delta (YRD) were interpolated and analyzed based on 
K-Shape to complete the air quality monitoring datasets.

Materials and Methods

Study Area

The YRD region is in the lower reaches of the 
Yangtze River in China, between latitude 26°58’N 
and 35°10’N and longitude 114°54’E and 122°50’E. 
It consists of 41 cities in the Shanghai Municipality, 
Jiangsu, Zhejiang, and Anhui Provinces and covers 
an area of 358,000 km2. Spanning north and south, 
the YRD presents great variations in topography 
and geomorphology, with plains in its north, mostly 
mountainous and hilly areas in its southwest, and cities 
in its east adjacent to the Yellow Sea and the East China 
Sea (Fig. 1). The YRD has a predominantly subtropical 
monsoon climate, characterized by high temperatures 
and rainy summers and cold, dry winters [22]. The 
YRD is densely populated and is one of China’s most 
seriously air-polluted regions [23, 24]. It is also one 
of the key regions in China that promotes the joint 
prevention and control of air pollution [25]. There 
are 235 air quality monitoring sites and 69 national 
meteorological monitoring sites in the YRD, with most 
of the air quality monitoring sites located in urban 
areas and meteorological monitoring sites sporadically 
distributed in most cities. 

Data

This study collated PM2.5 hourly concentrations 
from 235 monitoring sites in the YRD during 2015-
2020 via the China Environmental Monitoring General 
Station (http://www.cnemc.cn/). The monitoring process 
of PM2.5 concentrations is strictly in accordance with 
the ‘Technical Specification for Operation and Quality 
Control of Continuous Ambient Particulate Matter 
Automatic Monitoring System’ (HJ817-2018). Each 
PM2.5 hourly concentration value is the arithmetic 
average of the data output from the instrument every 
five minutes during an hour, and all valid data have gone 
through a series of audit steps to ensure their accuracy 
and validity. After cleaning and sorting the data from 
the 235 monitoring sites, 172 valid sites were retained, 
excluding those with a missing rate of more than 20% 
and those that did not include all the years in the study 
period.

Methods

Imputation Methods

(1) The ARIMA model is a differential autoregressive 
moving average model combining the autoregressive 
model (AR), moving average model (MA), and difference 
method. It is denoted as ARIMA (p, d, and q), where p 
is the self-regulating order, d is the differential number, 
and q is the mobile average number. It is one of the most 
common methods for time series analysis in practical 
applications [26-29]. The advantages of the ARIMA 
model are its simplicity and ease of use, as it only 
requires the autoregressive variables to forecast rather 
than other covariates; its disadvantage is that it requires 
the time series data to be stable after differentiation and 
cannot capture the nonlinear relation [11, 30]. The basic 
steps of the ARIMA model are as follows:

(a) Observe whether the time series is stationary 
by plotting. For a non-stationary time series, perform 
d-order differencing to transform it into a stationary 
series.

(b) For the stationary time series obtained in step 
(a), calculate its autocorrelation coefficient (ACF) and 
partial autocorrelation coefficient (PACF). Analyze 
the autocorrelation and partial autocorrelation plots to 
determine the optimal order of the autoregressive term p 
and the moving average term q.

(c) Based on the p, d, and q values determined in 
the previous steps, conduct model diagnostics for the 
ARIMA (p, d, and q) model to select the best model for 
data forecasting.

This study used the Forecast package in the R 
programming language to determine the ARIMA 
deficiency value and automatically select the p, d, and 
q values using the Auto.arima function. Auto.arima 
was selected to automatically determine (p, d, and q) 
parameters due to its robustness in optimizing Akaike 
Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) metrics, as validated by Hyndman and 
Khandakar [31]. In this study, the number of monitoring 
sites was large, so the automatic tuning of parameters 
using Auto.arima also had significant scalability 
compared with manual tuning [32].

(2) MI is a method for dealing with missing values 
based on repeated simulations. Basically, a set of 
complete datasets is generated from a dataset containing 
missing values, and then the same method is used to 
process each complete dataset. Finally, the processing 
results are synthesized to obtain an estimate of the 
target variable [33]. This study used the MICE package 
in the R programming language to perform MI. First, 
the Fully Conditional Specification (FCS) method in 
the MICE function generated five interpolated datasets 
based on Rubin’s rules [34] and empirical evidence 
[35]. Then, the “with” function applied a linear model 
to the interpolated five complete datasets for statistical 
analysis. Finally, the “pool” function integrates the five 
separate analysis results into a group result.
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(3) The core of the KNN algorithm is that if most 
of the K nearest samples of a sample in a feature space 
belong to a certain category, then the sample also belongs 
to this category and has the characteristics of samples in 
this category [36]. KNN can be used to interpolate the 
missing samples simply and effectively, but approaches 
for determining the optimal adjacent value K are still 
the focus of debate. In this study, the KNN imputation 
function in the DMWR package in the R programming 
language was used to fill in the KNN deficiency value. 
The K value cycled from 3 to 20 to select the value with 
the minimum error rate for the test set.

(4) CSDI is a probabilistic interpolation diffusion 
model based on conditional scores, which connotes 
the interpolation of known values as conditional 
information using a score-based diffusion model. The 
model interpolation training process is as follows:

(a) Noise data equal to the length of the original 
data sequence is prepared, and the valid values of the 
original dataset are divided into two parts: the target 

to be filled in the training process and the observed 

conditional information .
(b) The missing part of the dataset is filled into a 

complete sequence  with dummy values (set to 0 in 
the experiments). The condition information dataset and 

the noise dataset are marked using mask , which is 
set to 1 if it is an observation target and 0 otherwise.

(c) The noise data is added to the filled target, and 

the target data containing noise is denoted as .
(d) The time information, observation data, target 

data, and mask information are input into the denoising 
diffusion probability model (DDPM). The observed 
conditional information is used to simulate the true 
distribution of the data to remove the noise in the dataset 
to be interpolated. Parameterization of the denoising 
function is shown in Equation (1):

	 	 (1)

Here, μDDPM and σDDPM are untrainable functions, εθ 
is a trainable denoising function that estimates the noise 
added to the original data given the noise data and the 
observation data, and t = 1,2...,T is a hidden time series. 
For details, please refer to the original CSDI paper [21].

(e) Iterative training is performed to obtain the 
optimal estimate of the model simulation. The loss 
function for model training is shown in Equations (2) 
and (3):

	 	 (2)

	 	 (3)

Here, x0 is the original data without noise, q(x0)  is 
the distribution of x0, ε is the noise sampled from the 
standard normal distribution N(0,I), m is the observation 
mask information of the data, {a1:T} is a noise level 

sequence that satisfies 1>a1>...>aT>0, and  is the 
training sample after filling zeros.

This study selected the original dataset of the PM2.5 
concentration ground monitoring sites from 2016 to 
2017 for modeling. Data from February, May, August, 
and November were taken as observation objects; data 
from January, April, July, and October were taken as 
target objects; and data from March, June, September, 
and December were taken as test data. To avoid multiple 
estimates for each missing value, 48 consecutive time 
steps were set as one window, and each month had no 
overlap of test data. When the length of one month’s data 
was not divisible by 48, the last sequence overlapped 
with the previous sequence, but the overlapped results 
were not aggregated. During each training iteration, 
data from one month were selected as validation data, 
and the remaining data were used as training data. The 
batch size was set to 16 for the hyperparameter settings 
to balance computational efficiency and training stability 
[37]. The model was trained for 200 epochs to ensure 
thorough convergence and effective pattern extraction 
[38, 39]. We adopted the Adam optimizer with an initial 
learning rate of 0.001 [40]. A scheduled decay was 
implemented: the learning rate was reduced to 0.0001 
at 75% of the total epochs and further to 0.00001 at 
90% of the total epochs, facilitating rapid convergence 
in the early training stages and fine-grained parameter 
optimization in the later phases [41, 42]. Following the 
channel configuration of DiffWave [43] and based on 
the validation loss and parameter size, the number of 
residual layers was determined to be four, with each 
residual layer having 64 channels.

K-shape

K-shape is a domain-independent, high-precision, 
and efficient time series clustering method with a 
wide range of applications proposed by Paparrizos 
and Gravano [44] for the clustering of time series data 
problems. In this study, the K-Shape algorithm was used 
to classify the similarity of 172 effective air quality sites 
in the YRD region, enabling exploration of the zoning 
based on the clustering results. The basic process of the 
K-shape algorithm is as follows:

(1) The distance between the two time series is 
calculated using the distance scale shape-based distance 
(SBD) measured by the correlation-based method.

(2) The center of mass is calculated according to the 
distance algorithm in step (1) so that it has the maximum 
similarity with each sequence in the cluster. 

(3) The center of mass is recalculated based on the 
distance scale and center of mass formulae in steps (1) 
and (2). Different clusters are reassigned based on the 
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distance of each sequence from the new center of mass, 
with iterative looping until the labels no longer change.

The most important aspect of using a clustering 
model is determining the number of cluster centers, 
that is, the number of clusters to be classified [45]. In 
this study, the elbow method and contour coefficients 
were used to determine the classification effectiveness 
of the K-Shape algorithm on the PM2.5 concentration 
time series. The basic principle of the elbow method is 
that an inflection point (i.e., the ‘elbow’ point) occurs in 
the process of iteratively calculating the change of the 
sum of squared errors (SSE) of the points and cluster 
centers under different numbers of clusters; this ‘elbow’ 
point is considered to be the optimal number of clusters. 
The contour coefficient combines the two factors of 
cohesion and separation of clustering, with the greater 
the similarity between samples within clusters and 
the smaller the similarity between samples between 
clusters, the better the clustering effect. The calculation 
of the contour coefficient S is shown in Equation (4):

	 	 (4)

Here, a is the average value of the degree of 
dissimilarity from point i to other points in the same 
cluster, b is the minimum value of the average degree of 
dissimilarity from point i to other clusters, and the value 
of S is in the range of [–1, 1]. The closer S is to 1, the 
better the clustering effect.

Evaluation Index

The root mean square error (RMSE), mean absolute 
error (MAE), and continuous ranked probability 
score (CRPS) were selected to measure the model’s 
performance. RMSE and MAE were used to measure 
the deviation between the predicted and true values 
and to reflect the distribution of the predicted values 
error, respectively. The CRPS was used specifically to 
evaluate the accuracy of CSDI. RMSE and MAE were 
calculated using Equations (5) and (6) [46].

	 	 (5)

	 	 (6)

Here yi is the measured value, fi  is the model 

estimate, and  is the mean of the observations.
The compatibility of the estimated probability 

distribution F with the observations x using the CRPS 
metric can be defined as the integral of the loss function 
at the quantile level, as shown in Equation (7) [21]:

	 	 (7)

Assuming that the number of features and the 
number of time steps of the input data are K and L, 
respectively, the normalized average CRPS overall 
features and time steps is denoted as shown in Equation 
(8):

	 	 (8)

In this study, the probabilistic predictive evaluation 
of CSDI used the sum of CRPS of K features in 
the probability distribution F to compare the model 
performance. That is, the CRPS-sum is denoted as 
shown in Equation (9):

	 	 (9)

Missing Sample Construction

Taking the PM2.5 concentration samples from 2016 to 
2017 as an example, the overall missing rate of 17,544 
pieces of data was 4%. The types of missing sample 
data included missing data at random single sites for a 
given period (case 1) and missing data at multiple sites 
simultaneously for a given period (case 2). According 
to the distribution of missing values of samples, the 
missing rate of PM2.5 concentration ground monitoring 
data was far below 20%, and the missing periods 
of monitoring sites were not completely uniform. 
Therefore, based on the analysis of potential correlation 
and autocorrelation between sites and other sites, the 
missing time series of PM2.5 concentration could be 
effectively filled. According to a case 1:case 2 ratio of 
1:4, a mixed dataset with missing ratios of 5%, 10%, 
20%, 30%, and 50% was constructed (i.e., 1%, 6%, 16%, 
26%, and 46% virtual missing data were added based on 
a missing dataset of real samples).

Results and Discussion

Comparison of Imputation Methods

The comparison results of the four missing value 
imputation methods under different missing rates (Table 
1) revealed that ARIMA had the poorest prediction 
accuracy. CSDI had the highest prediction accuracy, 
with significantly lower MAE and RMSE values than 
the other methods. When the missing rate was greater 
than 20%, the errors of the four methods significantly 
increased, with the ARIMA prediction error increasing 
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the most. The prediction accuracy of CSDI did not 
change much when the missing rate was increased 
further, and the error at a 30% missing rate was almost 
the same as that at the 50% missing rate, corresponding 
to RMSE values of 9.35 and 9.4 µg·m–3, respectively. 
In general, CSDI was competent at filling the missing 
values of the PM2.5 monitoring data, and its prediction 
accuracy was less affected by the missing rate, while 
the prediction effect of the other three methods was 
greatly reduced when the data missing rate was greater 
than 20%. Therefore, CSDI has a significant advantage 
under high missing rate conditions, where conventional 
methods suffer from insufficient reference information, 
while the probabilistic framework of CSDI provides 
robust uncertainty quantification to maintain stable 
performance [21, 47].

Additionally, imputation experiments were also 
conducted using two well-known traditional methods, 
linear regression (LR) and polynomial regression 
(PR). It was found that CSDI also outperformed these 
traditional methods (Table 1). LR and PR inherently 
assume fixed functional relationships between variables 
(e.g., PM2.5 concentrations and meteorological factors), 
which oversimplifies the complex nonlinear interactions 
observed in real atmospheric systems [48-50].

A comparison of the filling effects of the four 
methods for two missing scenarios (Fig. 2) showed that 
both the ARIMA model and CSDI could effectively 
fill discontinuous missing data. In contrast, both the 
KNN and MI methods performed poorly in filling 
discontinuous missing data, and the imputation results 
were unstable (see Fig. 2a)); this may have been related 
to the insufficient learning ability of these models. The 
CSDI method still performed well in filling in continuous 
missing data and was markedly superior to the other 
methods. KNN and MI could enable the approximate 
estimation of continuous missing values, and the 
difference between the two methods was not significant. 
As an autoregressive method, ARIMA was inadequate 
in solving the problem of continuous missing data (Fig. 

2b)). The comparison of the four methods across missing 
scenarios demonstrated CSDI’s considerable advantage 
compared to conventional methods in handling long-
term continuous missing values. This superiority 
arises from CSDI’s conditional score-based diffusion 
mechanism, which effectively captures the evolving 
temporal correlations in non-stationary scenarios [51], a 
capability that conventional methods lack.

Missing PM2.5 Monitoring Data Imputation 
Using CSDI Based on Clustering Partitioning

Because of the spatial heterogeneity of air quality, 
it is necessary to analyze the time series and partition 
the air quality monitoring sites. The K-shape method 
was used to perform temporal cluster analysis on 172 
effective sites in the YRD. When the number of cluster 
categories was set to four, elbow points appeared (as 
shown in Fig. 3), the elbow coefficient descending 
gradient was the largest, and the number of clusters 
was optimal. Accordingly, the sites were classified into 
Partition I (53 sites), Partition II (31 sites), Partition III 
(70 sites), and Partition IV (18 sites). As can be seen 
from the contour coefficient diagram in Fig. 3, the 
overall average contour coefficient tended to be 0.34, 
the average contour coefficient in Partitions I and II was 
small, and the classification effect was poor. Less than 
half of the sites had a contour coefficient greater than 
average. The average contour coefficient of Partition 
IV was the largest, and, except for two misclassified 
sites, the contour coefficient was greater than 0.34. 
The contour coefficient of the vast majority of sites in 
Partition III was higher than the average.

The results of the K-shape cluster analysis (Fig. 4) 
showed that the monitoring sites in Partition I were 
clustered in the central and western parts of the YRD 
and spread throughout Anhui Province. The average 
annual PM2.5 concentration from 2015 to 2020 was 
47.87 μg·m–3, and this period had the most pronounced 
annual decline trend, with an average annual PM2.5 

Missing rate Error ARIMA MI KNN CSDI LR PR

5%
RMSE 9.37 10.02 10.33 6.36 26.26 25.51

MAE 7.44 8.38 8.57 4.42 18.96 18.32

10%
RMSE 13.41 12.34 12.69 7.7 27.89 26.35

MAE 10.11 9.12 9.16 5.15 19.57 18.36

20%
RMSE 19.21 14.97 15.55 7.96 29.10 27.32

MAE 15.34 12.27 13.31 5.29 20.16 18.78

30%
RMSE 27.34 23.54 23.39 9.35 29.39 27.54

MAE 24.21 20.75 20.22 5.64 20.29 18.86

50%
RMSE 46.56 27.63 28.11 9.4 29.28 27.48

MAE 39.49 23.84 24.66 6.04 20.41 18.96

Table 1. Cross-validation results of the four methods under different missing rates.
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concentration in 2020 of only 35.33 μg·m–3. The 
monitoring sites in Partition II were clustered in the 
northern part of the YRD, in the northern cities of Anhui 
and Jiangsu provinces. The average PM2.5 concentration 
was the highest; the average PM2.5 concentration from 
2015 to 2020 was as high as 55.72 μg·m–3, and the 
inter-annual decline trend was small. The monitoring 
sites in Partition III were clustered in the eastern part 
of the YRD, in Shanghai and some cities in Jiangsu 
and Zhejiang provinces. The average annual PM2.5 
concentration from 2015 to 2020 was 42.26 μg·m–3, with 
a pronounced annual decline trend. The monitoring sites 
in Partition IV were clustered southwest of the YRD, 
mainly in Zhejiang Province. These had the lowest 
average PM2.5 concentration from 2015 to 2020 of 32.51 
μg·m–3.

To improve the accuracy of the complete PM2.5 
concentration dataset after filling, a PM2.5 sample set was 

constructed with a 20% missing rate (2016-2017) and 
divided into training sample sets by spatial partitioning. 
The results (Table 2) showed that the RMSE, MAE, and 
CRPS values of the entire region were 10.69 μg·m–3, 
6.72 μg·m–3, and 0.103, with all indicators inferior to the 
filling accuracy of any partition. Therefore, capturing 
temporal and spatial correlation information based on 
spatial partitioning effectively improved the accuracy of 
the time series data prediction model. 

Comparing the error evaluation of each partition 
revealed that the model error of Partition II was the 
highest, with an RMSE of 8.55 μg·m–3, and the model 
error of Partition III was the lowest, with an RMSE of 
only 5.4 μg·m–3. From the perspective of probability 
prediction, the predicted values distribution of the 
Partition III simulation was closer to the real values 
distribution. Although the RMSE and MAE values of 
Partition II were much higher than those of Partition 

Fig. 2. Imputation results of the four methods for a) univariate discontinuous missing data and b) univariate continuous missing data.

Ⅰ Ⅱ Ⅲ Ⅳ Entire region

RMSE 7.83 8.55 5.4 5.78 10.69

MAE 5.17 5.3 3.26 3.27 6.72

CPRS 0.075 0.063 0.055 0.067 0.103

Table 2. Prediction accuracy evaluation of CSDI in different partitions.
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Fig. 3. Elbow coefficient and contour coefficient.

Fig. 4. Clustering partitioning results of air quality monitoring sites in the YRD based on K-Shape.
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IV, the probability prediction effect of Partition II was 
slightly better than that of Partition IV. The probability 
prediction effect of Partition I is the worst. This 
phenomenon was attributed to the poor classification 
effect of cluster analysis in Partitions Ⅰ and Ⅱ, as well 
as the different data distribution characteristics. This 
meant that CSDI tended to be smoother than the real 
dataset when interpolating missing values. 

It is noteworthy that while the K-shape clustering 
effectively captured temporal patterns in the YRD, the 
framework’s adaptability to regions with contrasting 
geographical and climatic conditions (e.g., plateau, 
coastal, or industrial zones) requires further validation. 
Studies have demonstrated that terrain-driven airflow 
stagnation [52] and monsoon-induced pollutant 
dispersion [53] can fundamentally alter PM2.5 diurnal 
cycles. Additionally, regional disparities in dominant 
emission sources—such as biomass burning versus 
vehicular emissions [54]—may challenge the assumption 
of intra-cluster homogeneity. Future implementations 
should incorporate geospatial covariates (e.g., elevation 
gradients, land-use types) into the clustering phase to 
enhance model generalizability across heterogeneous 
regions.

Daily Variation Characteristics of PM2.5 
Concentrations in Different Spatial Partitions

To explore the important time nodes of the missing 
data imputation, this study analyzed the variation 
trend in the average hourly PM2.5 concentration in 
different cluster partitions in the four seasons from 
2015 to 2020. The results (Fig. 5) showed that the daily 
variation in PM2.5 concentration in the four seasons in 
the YRD presented a fluctuating trend of increasing, 
then decreasing, and then increasing, with obvious 
‘peaks’ and ‘valleys’. In the four seasons, the daily 
PM2.5 concentration variation curve presented a ‘peak’ 
and a ‘valley’ in the daytime and at night, respectively. 
The peak values in the daytime and at night were 
essentially the same in autumn. However, the peak PM2.5 
concentration during the daytime in spring and summer 
was significantly higher than at night, while the reverse 
was true in winter. As follows, the specific periods 
and fluctuations of peak and valley values in different 
partitions were different in different seasons. In spring, 
the highest PM2.5 concentrations in Partitions II and IV 
were at 8 am, and in Partitions I and III, they were at 9 am 
and 7 am, respectively. The lowest PM2.5 concentrations 
in the four partitions were concentrated at about 5 pm, 
and the change in PM2.5 concentration tended to be flat 

Fig. 5. Daily variation trend in PM2.5 concentration in different cluster partitions in spring, summer, autumn, and winter.
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from 2 pm to 6 pm. In summer, the highest and lowest 
PM2.5 concentration values in Partitions I, II, and III 
were at 8 am and 5 pm. In contrast to other partitions, 
Partition IV showed an ‘M’ pattern in summer, with the 
peak PM2.5 concentrations at 9 am and 7 pm. In autumn, 
the trend in PM2.5 concentrations in Partitions I and III 
was the same, with the highest values at 9 am and 9 
pm. The highest values in Partition II were at 9 am and 
11 pm, and the peak value at 8 pm in Partition IV was 
higher than at 9 am. The lowest values in each partition 
were at about 4 pm. In winter, the peak values of each 
partition at night were higher than the peak values in 
the day. The timing of the peak and valley values of 
Partitions I and II were the same, with the highest values 
at 10 am and 10 pm, respectively, and the lowest values 
at 5 pm. The PM2.5 concentration trend for Partitions Ⅲ 
and Ⅳ was similar, with the valley values at 3 pm and 
the peak values at 10 pm and 8 pm, respectively.

In general, the daily change in PM2.5 concentration 
had two peaks at approximately 9 am and 9 pm, as 
well as a valley at approximately 3 pm. The increases 
and decreases in different partitions in different seasons 
were slightly different, and the peak PM2.5 concentration 
at night in Partition IV appeared earlier than in other 
partitions. In terms of the fluctuation trend, the variation 
in PM2.5 concentration in Partition III was gentler than 
that of other partitions, and the variation fluctuation in 
Partition II was the largest; this was the main reason for 
the higher CSDI interpolation accuracy in Partition III 
and lowest interpolation accuracy in Partition II.

Conclusions

The main conclusions of this study were as follows.
(1) A comparison of the filling effects of the four 

missing value imputation methods under different 
missing rates and different missing scenarios revealed 
the CSDI to have the highest accuracy and the best 
filling effect overall.

(2) Based on the results of K-shape clustering 
partitioning, CSDI was used to fill the historical 
PM2.5 monitoring data of the YRD sites. The spatial 
partitioning effectively improved the CSDI’s filling 
effect. The filling error of the historical PM2.5 
concentration data of the sites in Partition III was the 
smallest, and the filling error of Partition II was the 
largest; this was related to the site’s clustering accuracy 
as well as the characteristics of the data of different 
partitions.

(3) Analysis of the daily variation trend in PM2.5 
concentrations in different seasons revealed that 
approximately 9 am, 3 pm, and 9 pm were the three 
main time nodes with large CDSI filling errors in the 
YRD region.

This study verified the effectiveness of CSDI 
in imputing real air quality monitoring datasets, 
demonstrating its significant practical relevance for air 
quality prediction. In practical applications, the trained 

CSDI can be integrated into air quality prediction 
systems, enabling it to receive new observational data 
in real time and perform imputation. Using the complete 
dataset obtained after imputation, it is possible to 
characterize the evolution of air pollutants more reliably 
and improve the accuracy of air quality prediction.

However, this study had some limitations, such as 
the lower interpolation effect of CSDI in the period of 
large PM2.5 concentration fluctuations. Improvements 
can be achieved via two approaches. First, develop 
a variant of the diffusion model based on Gated 
Recurrent Units (GRUs) and implement dynamic 
updates of model parameters through a sliding window 
mechanism (e.g., a 6-hour window). Trigger a real-
time gradient update mechanism when the hourly 
change in PM2.5 concentration exceeds a set threshold. 
Second, Variational Autoencoders (VAEs) separate the 
fluctuation features driven by meteorology and those 
driven by anthropogenic emissions. Use the decoupled 
features as the conditional input for the diffusion model.
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